Article

Arabic Lexical Substitution: AraLexSubD Dataset and AraLexSub Pipeline

Eman Naser-Karajah 1,* and Nabil Arman 2

1 Department of Computer Science, Al-Quds University, Abu Dis P144, Palestine
2 Department of Computer Science, Palestine Polytechnic University, Hebron P726, Palestine; narman@ppu.edu
* Correspondence: eman.naser@students.alquds.edu

Abstract: Lexical substitution aims to generate a list of equivalent substitutions (i.e., synonyms) to a sentence’s target word or phrase while preserving the sentence’s meaning to improve writing, enhance language understanding, improve natural language processing models, and handle ambiguity. This task has recently attracted much attention in many languages. Despite the richness of Arabic vocabulary, limited research has been performed on the lexical substitution task due to the lack of annotated data. To bridge this gap, we present the first Arabic lexical substitution benchmark dataset AraLexSubD for benchmarking lexical substitution pipelines. AraLexSubD is manually built by eight native Arabic speakers and linguists (six linguist annotators, a doctor, and an economist) who annotate the 630 sentences. AraLexSubD covers three domains: general, finance, and medical. It encompasses 2476 substitution candidates ranked according to their semantic relatedness. We also present the first Arabic lexical substitution pipeline, AraLexSub, which uses the AraBERT pre-trained language model. The pipeline consists of several modules: substitute generation, substitute filtering, and candidate ranking. The filtering step shows its effectiveness by achieving an increase of 1.6 in the F1 score on the entire AraLexSubD dataset. Additionally, an error analysis of the experiment is reported. To our knowledge, this is the first study on Arabic lexical substitution.

Keywords: lexical substitution (LS); evaluation dataset; pre-trained language model BERT

1. Introduction

Lexical substitution (LS) is an essential task in natural language processing (NLP) applications, which aims to replace a word in a sentence with suitable candidates (e.g., synonyms) as long as the sentence’s meaning is maintained [1,2]. Lexical substitution has two variants: substitute prediction and candidate ranking [3]. It is widely used in many NLP tasks like data augmentation, paraphrase generation, semantic text similarity, paraphrase generation, and word sense induction [4]. The LS task has been applied widely to English using different methods [5]. Little research has been conducted on Arabic and no evaluation dataset has been created on Arabic lexical substitution.

One of the main challenges in lexical substitution is that previous algorithms find the substitutions for the target words from lexical resources (like WordNet) and then rank them based on their contexts. Such algorithms have two typical challenges: (1) they should not ignore good substitute candidates, which can be suitable synonyms for the target word as they are not included in the lexical resources, and (2) they should preserve the sentence’s meaning as it contains all the meanings of the word and cannot scan the exact meaning that is suitable for the sentence meaning [6]. To address such challenges, we propose utilizing the BERT contextualized embedding model that can be used to extract synonyms in dynamic contexts [7].
(1) **AraLexSubD**, which is a benchmark dataset for evaluating the Arabic lexical substitution methods. The dataset is built by eight native Arabic language linguists who annotated 630 sentences, which are divided into three domains: the general domain (470 sentences), the finance domain (80 sentences), and the medical domain (80 sentences). The target words have 2476 substitution candidates, ranked according to their semantic relatedness.

(2) **AraLexSub**, which is an Arabic lexical substitution pipeline. The pipeline uses the pre-trained language model AraBERT to generate substitutions and rank them based on three features: the BERT prediction order (BERT probability), the BERT-based language model (loss), and BERT similarity. To our knowledge, this is the first attempt to build an Arabic LS pipeline. Our experimental results demonstrate encouraging results for Arabic LS.

This paper is organized as follows: Section 2 presents the related work, Section 3 describes the construction of the AraLexSubD dataset, and Section 4 presents the AraLexSub pipeline. In Section 5, we describe the evaluation of the AraLexSub pipeline. Section 6 presents the qualitative analysis of the AraLexSubD dataset construction and AraLexSub pipeline. Finally, in Section 7, the conclusion is presented.

2. Related Work

Lexical substitution datasets can be divided into manual and automatic construction. The existing LS datasets are primarily for English. Each instance in the LS datasets comprises a sentence, a target word, and suggested substitutions.

Manual construction of English LS datasets includes SemeEaL, which is the first lexical substitution shared task, called SemeEaL-2007 task 10 [8]. The dataset in this shared task consists of 201 manually selected target words, which are polysemous, and 10 different sentences for each target result in 2010 sentences. Each sentence has one target word from the English Internet Corpus [9]. Five annotators then suggest three substitutes for all 201 target words from their memory, resulting in 12,300 labels and four substitutes for each target. Afterward, the Turk bootstrap Word Sense Inventory (TWSI) dataset [10] was the first attempt to construct a large-scale English dataset by choosing 25K sentences from Wikipedia with 1012 distinct nouns annotated through Amazon Mechanical Turk. This dataset deals with polysemous target words, which means different substitutes for the various contexts of the same target word, as TWSI deals with only noun target words. CoInCo [11] was constructed to mitigate this restriction by choosing 2474 sentences from the Manually Annotated Sub-Corpus (MASC) [12,13]; all the words in the sentences were target words. Six annotators classified the target words into suitable and unsubstitutable, resulting in 3874 distinct words with defined part-of-speech tags. Each annotator was asked to suggest 5 substitutions, resulting in 167,446 labels and 7.2 substitutions for each target word.

Automatic construction of English LS datasets includes the Stanford word substitution benchmark SWORDS [14], which builds on CoInCo, is a higher-coverage and higher-quality benchmark that treats lexical substitution as a classification problem by asking humans to judge the appropriateness of given substitutes and not to suggest them. The dataset contains 1132 sentences with 1132 target words and 68,683 substitutions. ALaSca is another English large-scale lexical substitution dataset [15] that selects a set of target words to ALaSca, which collects sentences containing target words. ALaSca then clusters words based on context, considering the target word polysemy. ALaSca then provides possible substitutes depending on the context of the target word. The dataset contains 3442 target words, 34,755 sentences, and 50.24 substitutes for each target word. ProLex is a novel benchmark [16] that selects contexts, targets words from the TOEFL-11 dataset [17], and generates substitution using GPT-4. Following the annotation in [14], which gives the annotators a context, a target word, and a candidate substitute to judge whether the substitution is appropriate for the target word, the dataset contains 680 sentences with 680 different target words and 2.9 acceptable substitutes on average.
LS dataset construction of other languages includes GermEval, which is a manual German lexical substitution dataset from GermEval 2015 [18] containing 2040 sentences from the German Wikipedia containing 153 unique target words. **EVALITA** is a manual Italian lexical substitution dataset from EVALITA 2009 [19] comprising 2310 sentences and 231 unique target words. **CHNLS** is a new automatic Chinese lexical substitution dataset [20] with 33,695 instances and 144,708 substitutes from three sources: News, Novel, and Wikipedia. The substitutions are generated using four unsupervised LS methods, and then human annotators judge the appropriateness of these substitutions or add new ones.

Regrettably, there is still a dearth of research on Arabic LS. As far as we know, there is currently no publicly available Arabic LS dataset to evaluate the ability of Arabic LS models.

3. **AraLexSubD Dataset Construction**

Building an Arabic LS dataset is challenging due to the language’s complexity and richness. Arabic words have a complex morphology, with numerous grammatical forms that rely on grammatical rules and structures, making generating accurate and contextually relevant substitutions for Arabic words difficult. Additionally, many Arabic words are polysemous with multiple meanings that depend on context, which adds another layer of complexity to creating an Arabic LS dataset. The AraLexSubD dataset is used to assess the AraLexSub steps in the pipeline.

Eight Arabic native linguist annotators have been involved in constructing the AraLexSubD dataset. Six linguist annotators are top students who graduated recently with high distinction from the Department of Linguistics and Translation. The other two annotators are a human doctor and an economist. The eight native Arabic-speaker linguists annotate the 630 sentences in the AraLexSubD dataset. The annotators then split the sentences into the general domain (470 sentences), the finance domain (80 sentences), and the medical domain (80 sentences). The PoS tags of the target words are 317 nouns, 256 verbs, and 57 adjectives.

For each target word, several sentences were created, considering its multiple meanings (polysemy). The reason behind this approach is that the definition of a word is influenced by the context in which it is used. By presenting different sentences, each employing the target word in a distinct context, then exploring the meanings associated with the word becomes possible. The number of polysemous target words with more than one sentence reached approximately 80 in the general domain and 80 in particular domains.

The AraLexSubD dataset contains five primary and five secondary columns; the five primary columns are the sentences with one target word, the target word, the target word PoS tag in the sentence, the possible candidate words (synonyms) for each target word, and the ranking order for the candidate words using the scoring guidelines in [21]. The seven secondary columns are three for target words (root, lemma) and four for candidates (root, lemma, transformation), where the lemma and the root are found from Qabas [22]. Qabas is a morphological part of Arabic ontology. A transformation column is added to add the necessary transformation characters to the candidate based on the target word morphological form.

3.1. **AraLexSubD Construction Steps**

This section presents the steps that we followed to construct AraLexSubD:

1. **Determining domains**

 The AraLexSubD dataset has three domains:

 - General domain: The general domain comprises 470 sentences with 390 distinct target words; 80 target words were polysemous, and each of the 80 target words has at least two sentences with different contexts.
 - Medical domain: The medical domain comprises 80 sentences focused on a medical field with 80 target words.
• Finance domain: The finance domain comprises 80 sentences focused on finance, with 80 target words.

In other words, for every 80 target words, polysemy was applied to two contexts, one in medicine and the other in finance. Three linguist annotators selected the contexts.

2. Extracting target words and sentences

Three linguist annotators selected the target words of the general domain. In contrast, two linguist annotators, a human doctor and an economist, collaborated to ensure the accuracy of identifying and selecting common words (target words). These words could be utilized in both domains but within their respective contexts and maintained the specificity required for each domain.

The three linguist annotators select the general domain sentences from Arabic ontology [23] that cover a wide range of subjects, including poetry, the Quran, and essay sentences. Furthermore, they also write or select the sentences of the medical and finance domains from essays.

3. Providing substitutes

The three linguist annotators who have chosen the general domain target words and have selected or written the sentences for the three domains are used to determine the possible substitutes for each target word in the three domains.

The chosen substitutes should be synonyms for target words and not alter the sentence’s sense. The likely candidates are selected from the Arabic ontology and Qabas, as well as Arabic dictionaries such as Al-Waseet [24], Al-Muaser [25], and Al-Maani [26]. When one of the linguist annotators could not think of or find a suitable candidate, the linguist put no entries. Then, the candidates from the three linguist annotators for each sentence in the AraLexSubD dataset were merged.

4. Ranking substitute guidelines

Three expert annotators are used separately in this step to manually rank the substitutes for each sentence in the three domains based on the scoring guidelines and standards in [21]. These standards are used as annotation methodology to maintain consistency among linguist annotator scores. The guidelines ranked the substitutes mainly based on semantics, style, and use as follows:

• Same semantics (synonyms): The candidates should share the exact meaning of the target word and not should not alter the sentence’s meaning [27]. We define synonyms as: “Two expressions are synonymous if the substitution of one for the other never changes the truth value of a sentence in which the substitution is made” [2]. A more formal definition of synonymy in ontology engineering is “a formal equivalence relation (i.e., reflexive, symmetric, and transitive)”. Thus, “Two terms are synonyms iff they have the same concept (i.e., refer, intentionally, to the same set of instances). Thus, T1 = Ci T2. In other words, given two terms, T1 and T2, lexicalizing concepts C1 and C2, respectively, then T1 and T2 are considered synonyms iff C1 = C2” [28].

• Style: How much of the use of the substitute is correct and robust in the sentence? For example, consider two substitutes (أسف, asfu, Sorry / اعتذر, aetadh, apologize). Both substitutes have the same meaning, and both are frequently used, but (أسف, asfu, Sorry) present feelings, which makes the substitute (أسف, asfu, Sorry) more stylistic.

• Use (frequently used): How often is a word used in this context? For example, consider two substitutes (جوال, jawal, Mobile / خليوي, khilaywy, cellular). Which one is more useful? Both substitutes have the same meaning, but the خليوي (khilaywy, cellular) is rarely used in this context.

The scoring standards in [21], as shown in Figure 1, are fuzzy scales from 0 to 100, representing the strength of the synonymy relation. The strength is 100, which means the same semantics, style, and use. The scoring schema has three categories: a score from 60
to 100 means that the substitutes have the same meaning, a score from 50 to 60 is close in meaning, and below 50 means different semantics.

![Figure 1. The fuzzy scoring scale–synonymy strength.]

5. Merging all annotations' ranking

The scoring annotations from the three annotators were merged by averaging them to achieve a more accurate, reliable, and balanced estimate. The average ranks of these substitutions are rearranged in ascending order to obtain the final ranking for each instance. One annotator checks the final ranks and removes the inappropriate substitutes whose score is under 60% as nonsynonymous (see Figure 1). The final dataset instances in the AraLexSubD dataset are as presented in Table 1:

<table>
<thead>
<tr>
<th>Domains</th>
<th># of Target Words</th>
<th># of Candidates</th>
<th># of Candidates < 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finance</td>
<td>80</td>
<td>254</td>
<td>9</td>
</tr>
<tr>
<td>Medical</td>
<td>80</td>
<td>282</td>
<td>22</td>
</tr>
<tr>
<td>General</td>
<td>470</td>
<td>1940</td>
<td>29</td>
</tr>
<tr>
<td>Entire dataset</td>
<td>630</td>
<td>2476</td>
<td>60</td>
</tr>
</tbody>
</table>

Table 2 presents the number of all PoS tags in each domain in the AraLexSubD dataset. The target words (nouns, verbs, and adjectives) are 317, 256, and 57, respectively. The finance and medical domains did not contain verbs, as we cannot find verbs in such specialized domains.

<table>
<thead>
<tr>
<th>Domains</th>
<th>Noun #</th>
<th>Verb #</th>
<th>Adjective #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finance</td>
<td>63</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>Medical</td>
<td>70</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>General</td>
<td>185</td>
<td>256</td>
<td>29</td>
</tr>
<tr>
<td>Entire dataset</td>
<td>317</td>
<td>256</td>
<td>57</td>
</tr>
</tbody>
</table>

3.2. The Ranking Experimental Setup Steps

Before describing the work, we conducted a training session and ranking tests. The purpose of the training session was to go over the experiment and emphasize the concept of synonymy. The three linguist annotators who carried out the ranking phase took part in three ranking tests.
The training session explained the ranking guidelines to determine if the suggested candidates in each sentence are synonyms for the target word by substituting the candidates and determining if it alters the sentence’s meaning. This training session emphasized that linguists have the same understanding and the logic of thinking as much as possible, making their ranking consistent.

Three tests were performed by giving each linguist 10, 20, and 50 sentences to try alone. Then, the results for each test are discussed jointly to compare their works and identify the gaps and inconsistencies. After the first test is performed and jointly discussed, the next test is conducted, and so on. After that, each linguist annotator is given the sentences and suggested candidates for the three domains in a separate file in Google Sheets. The AraLexSubD dataset was completed after 3 months. The working hours were distributed as follows:

1. Scoring 630 sentences with 2476 candidates (synonyms) took 25 working hours for each annotator linguist over one month.
2. The scoring annotations from the three annotators were merged into one score by averaging them, which took about 2 working hours.
3. The annotator who removed the inappropriate substitutes whose score is under 60 took about 1 working hour.
4. Adding the lemma and the root for each target word and its candidates from Qabas took about 25 working hours over one month.

4. Lexical Substitution AraLexSub Pipeline

This section presents the steps followed in the AraLexSub pipeline, including substitute generation, filtering, and candidate ranking.

4.1. Substitute Generation

Given a sentence S and a target word w, the substitute generation generates a list of substitutions that can replace the word w. Recent LS approaches used the pre-trained language model BERT to generate the substitutes [6] as it proves its effectiveness in many NLP tasks. Our pipeline AraLexSub generates the substitutions using the AraBERT model, an Arabic bi-directional language model [29], which applies BERT-masked language modeling.

BERT is a deep bi-directional model and self-supervised method based on the encoder in the transformer architecture. The transformer provides more structured memory, which handles long-term dependencies in the text. BERT can be trained with masked language modeling (MLM) and next-sentence prediction (NSP). MLM predicts the next word in a sequence given its left and right context, while NSP checks if the second sentence in the pair that is given is the subsequent sentence in the original text [7]. BERT achieves the NSP task by prepending every sentence with a particular classification token [CLS] and a unique separator token [SEP] combined with the sentences. During training, BERT applies the masked language modeling task by replacing random words with unique tokens [MASK]. The bi-directional nature of the BERT model allows candidate generation depending on the whole sentence context [30].

Our AraLexSub pipeline, which considers feeding AraBERT with sentence pair (S, \hat{S}) to generate the candidates, where S is the original sentence with the target word w and \hat{S} is the same sentence after replacing the target word w in the sentence S with a [MASK] symbol. AraBERT tokenizes the sentence into tokens before converting them into their embedding vector. For example, consider this sentence S in the general domain of AraLexSubD with target word w:

لا يظهر كيدا لأحد يعيّنه

La yutheheru tahyozan le’ahaden be ayn ehe

[Do not show bias towards anyone in particular]
The sentence is segmented as follows:

لا يظهر كيّراً لأحد بعيّنه

The sentence pair \((S, \hat{S})\) is fed into AraBERT, as shown in Figure 2. AraBERT generates a substitute list for the [MASK] word (اين، عين، particular).

![Figure 2](image_url)

Figure 2. The substitution generation of AraLexSub for the target word prediction. The sentence is لا يظهر كيّراً لأحد بعيّنه / Do not show bias towards anyone in particular] with the target word [عين/ particular]. [MASK], [CLS], and [SEP] are Bert special symbols, where [MASK] is used to mask the word, [CLS] is added before each input instance, and [SEP] is a unique separator token.

AraBERT uses a Farasa tokenizer to tokenize the sentence into tokens before converting them into their appropriate embedding vector. During this step, we notice three main aspects, which are:

1. The AraBERT model is trained on a specific corpus, so the suggested substitutes will be limited to the training corpus, which means the unknown target word will not generate any substitutes.
2. The AraBERT tokenizer algorithm depends on the Word Piece algorithm. It splits the unknown tokens into subtokens by adding ## to the subtoken. For example, the word (يظهر، yazhar، show) will split the word into two subwords, [ي] and [ظهور ##], which means that the subword [ظهور ##] is a suffix followed by another subword. It is seen as an unknown token if there is no way to divide it into subtokens.
3. During the tokenization process, AraBERT showed another problem: the words with three letters and beginning with the letter waw “و”. In our AraLexSubD dataset, four words appeared, as presented in Table 3. The segmenter segments them into three subwords: a conjunction, a preposition, and a pronoun. For example, for the word (ولو، Walla (v), go), the segmenter did not deal with the word [ولو، Walla(v), go] as a word; it is segmented into three different subwords [واو، و،โล] as a conjunction, [لا، Walla as a preposition, and [يء،ي] as a pronoun.

Table 4 presents the special case list of rules introduced for the PoS tags of the four words. The Farasa and Camel taggers utilize their PoS tag if the target word is not included in the particular list.
Table 3. PoS tags for the four words in the particular case list in the AraLexSubD dataset.

<table>
<thead>
<tr>
<th>Word</th>
<th>PoS Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q»ð , Wakr</td>
<td>Noun</td>
</tr>
<tr>
<td>ú Í ð , Walla</td>
<td>Verb</td>
</tr>
<tr>
<td>Q¯ ð , Waqra (v)</td>
<td>Verb/noun</td>
</tr>
<tr>
<td>éË ð , Walh (n)</td>
<td>Noun/verb</td>
</tr>
</tbody>
</table>

Table 4. PoS tag rules for the four words in the particular case list.

<table>
<thead>
<tr>
<th>Rule</th>
<th>PoS Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the letter (¬ , fa) is a prefix for the target word, then the target word is:</td>
<td>Verb</td>
</tr>
<tr>
<td>If the letter (È@ , all) is a prefix for the target word, then the target word is:</td>
<td>Noun</td>
</tr>
<tr>
<td>If the PoS for the previous word is a verb, then the target word is:</td>
<td>Noun</td>
</tr>
</tbody>
</table>
| If the pronoun (Ø
 , ya) is connected to the target word, then it is: | Noun |
| If the pronoun (ú
	G , nee/@ð , oww) is connected to the target word, then it is: | Verb |
| Otherwise | Noun |

4.2. Substitute Filtering

This section presents the filtering step for the generated substitutions. This step is essential to clean up the generated substitutions from unsuitable ones. The filtering step includes PoS filtering and postprocessing filtering, which are described below:

1. The PoS filter eliminates the generated substitutions that did not match the PoS of the target word. The PoS tag target word and the PoS tag substitutions must be the same: verb-verb, noun-noun, and adjective-adjective. In other words, if the target word has a verb PoS tag, then all of the suggested substitutions must have the verb PoS tag, and the same is true for noun and adjective target words.

2. The postprocessing filter cleans up the generated substitute list from the target word, its morphological derivative forms, the substitute morphological derivation, subwords with ##, subwords containing the + sign, and repeated words.

4.3. Candidate Ranking

After generating and filtering the substitutions, the filtered substitute candidates, \(C = \{c_1, c_2, \ldots, c_n\} \), where \(c_i \), \(i = 1 \ldots n \), is the candidate and \(n \) is the number of substitute candidates, are ranked by three ranking features that capture an aspect of fitting the substitute to replace the target word. The three features used for ranking are described below:

1. The language modeling feature is a ranking feature (BERT loss) used to evaluate the fluency of substitutes for each sentence in our dataset. The AraBERT is used to calculate the sentence probability. AraBERT is an MLM, so we cannot estimate the sentence probability directly by AraBERT. Let \(w \) be the target word and \(W = w_{-n} \ldots w_{-1}, w, w_1 \ldots w_n \) be the target word \(w \) context. The sentence probability is calculated by replacing the target word \(w \) with each substitution candidate set. Then, mask one word of \(W \) in the sentence around the target word position from back and front, then feed it into AraBERT to calculate the cross-entropy loss of the masked word. This step is repeated for each word in the sentence. The substitute candidates will be ranked based on the average loss of \(W \). The lower loss is a good substitute for the original target word. A context with a symmetric window size equal to five is used around the target words.
2. The BERT prediction order is a ranking feature (BERT probability) that predicts the probability distribution of the words corresponding to the masked word. As our generation method is AraBERT, it depends on context when generating substitutions. This feature includes information about the context and the target word. The substitute with a higher probability is more relevant to the original target word.

3. BERT similarity is a ranking feature that depends on BERT for the contextual representation of the original sentence and the contextual representation of the sentence after replacing the target word with one of the generated substitution lists. It calculates the cosine similarity between these sentences. This feature measures how much the generated candidates preserve meaning. The substitute with a higher similarity is more relevant to the original target word.

4.4. Lexical Substitution Algorithm

The lexical substitution algorithm (AraLexSub) is presented in Algorithm 1. Each sentence S has one highlighted target word w of the type (noun, verb, adjectives). The substitutions of the target word are generated using AraBERT and fed with the (S, \hat{S}) pair. Next, the generated substitutions are filtered using the PoS and postprocessing filters. Then, the filtered substitutions are ranked by the three ranking features: BERT loss, BERT probability, and BERT similarity features.

Algorithm 1: AraLexSub Algorithm

Sentence S

target word w

for each $w \in S$, do
 subs ← Substitution Generation (S, w) by AraBERT by concatenating (S, \hat{S})
 subs ← Substitution Filtering (S, w)
 for each filter, do
 PoS filter for generated subs
 return PoS-filtered subs
 postprocessing filter for the PoS-filtered subs
 return filtered subs
 end for
 rank_subs ← Substitute Ranking (subs)
 for each ranking feature f, do
 calculate feature scores
 scores ← scores (f)
 end for
 rank ← rank(scores)
 return rank_subs
end for

5. Evaluation

This section presents the quantitative evaluation procedure, metrics, and performance evaluation results of the AraLexSub pipeline.

5.1. Evaluation of Substitution Generation

The AraLexSub generates a set of substitutions by feeding AraBERT with (S, \hat{S}). There are no limits on the number of generated substitutes. The evaluation procedure contains automatic and manual evaluations over the three domains. Four metrics are used in the automatic evaluation to evaluate the performance of the substitution generation:

- **Potential**: The proportion of instances for which at least one of the generated substitutes is in the annotated AraLexSubD.
- **Precision**: The proportion of generated substitutes that are in the annotated AraLexSubD.
- **Recall**: The proportion of the annotated substitutes included in the generated substitutes.
F1: The harmonic mean between Precision and Recall.

The generated substitutes by the AraBERT model have two advantages: (1) the AraBERT model is the only input needed, and no corpus is needed, and (2) the generated substitutions do not require morphological transformation.

The automatic evaluation compares the generated substitution with the annotated substitute in the AraLexSubD dataset, so it cannot provide a complete view of the generation method’s feasibility. Automatic evaluation will exclude these correct substitutes that are not in the AraLexSubD dataset. However, manual evaluation includes all correct substitutions regardless of the annotated AraLexSubD.

The manual evaluation is calculated by counting the proportion of the correct substitutes in the generated substitutes, excluding the target word and its morphological forms, and ignoring the grammatical correctness (only meaning matters). The automatic and manual evaluation is computed across the three domains separately and the entire AraLexSubD, as presented in Table 5.

Table 5. Automatic and manual evaluation results for substitute generation over the three domains and the entire AraLexSubD.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Potential</th>
<th>Precision</th>
<th>Recall</th>
<th>F1</th>
<th>Manual Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>57.24</td>
<td>26.07</td>
<td>24.59</td>
<td>25.31</td>
<td>51.01</td>
</tr>
<tr>
<td>Medical</td>
<td>73.75</td>
<td>32.25</td>
<td>38.27</td>
<td>35.01</td>
<td>56.05</td>
</tr>
<tr>
<td>Finance</td>
<td>60.00</td>
<td>21.08</td>
<td>26.89</td>
<td>23.63</td>
<td>54.15</td>
</tr>
<tr>
<td>Entire dataset</td>
<td>59.68</td>
<td>26.23</td>
<td>26.62</td>
<td>26.42</td>
<td>52.47</td>
</tr>
</tbody>
</table>

5.2. Evaluation of Substitution Filtering

The PoS filter and postprocessing filter clean up the generated substitutions from the original target word, its morphological form, substitutions’ morphological derivation, and substitutions with different PoS tags. The automatic evaluation is applied using the evaluation metrics used in the substitute generation: Potential, Precision, Recall, and F1. The evaluation is computed across the three domains separately and the entire AraLexSubD, as presented in Table 6.

Table 6. Evaluation results for substitute filtering using PoS and postprocessing filters over the three domains and the entire AraLexSubD.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Filter Name</th>
<th>Potential</th>
<th>Precision</th>
<th>Recall</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Without filter</td>
<td>57.24</td>
<td>26.07</td>
<td>24.59</td>
<td>25.31</td>
</tr>
<tr>
<td></td>
<td>PoS filter</td>
<td>51.49</td>
<td>28.79</td>
<td>21.35</td>
<td>24.52</td>
</tr>
<tr>
<td></td>
<td>Postprocessing filter</td>
<td>56.17</td>
<td>32.24</td>
<td>24.01</td>
<td>27.52</td>
</tr>
<tr>
<td></td>
<td>(PoS + Postprocessing) filters</td>
<td>50.64</td>
<td>34.05</td>
<td>21.01</td>
<td>25.99</td>
</tr>
<tr>
<td>Medical</td>
<td>Without filter</td>
<td>73.75</td>
<td>32.25</td>
<td>38.27</td>
<td>35.01</td>
</tr>
<tr>
<td></td>
<td>PoS filter</td>
<td>71.25</td>
<td>39.25</td>
<td>35.79</td>
<td>37.44</td>
</tr>
<tr>
<td></td>
<td>Postprocessing filter</td>
<td>73.75</td>
<td>41.75</td>
<td>38.03</td>
<td>39.80</td>
</tr>
<tr>
<td></td>
<td>(PoS + Postprocessing) filters</td>
<td>71.25</td>
<td>47.08</td>
<td>35.80</td>
<td>40.67</td>
</tr>
<tr>
<td>Finance</td>
<td>Without filter</td>
<td>60.00</td>
<td>21.08</td>
<td>26.89</td>
<td>23.63</td>
</tr>
<tr>
<td></td>
<td>PoS filter</td>
<td>57.50</td>
<td>23.15</td>
<td>24.48</td>
<td>23.80</td>
</tr>
<tr>
<td></td>
<td>Postprocessing filter</td>
<td>60.00</td>
<td>26.75</td>
<td>26.88</td>
<td>26.81</td>
</tr>
<tr>
<td></td>
<td>(PoS + Postprocessing) filters</td>
<td>57.50</td>
<td>29.17</td>
<td>24.48</td>
<td>26.62</td>
</tr>
<tr>
<td>Entire dataset</td>
<td>Without filter</td>
<td>59.68</td>
<td>26.23</td>
<td>26.62</td>
<td>26.42</td>
</tr>
<tr>
<td></td>
<td>PoS filter</td>
<td>54.76</td>
<td>29.41</td>
<td>23.58</td>
<td>26.17</td>
</tr>
<tr>
<td></td>
<td>Postprocessing filter</td>
<td>58.89</td>
<td>32.75</td>
<td>26.15</td>
<td>29.08</td>
</tr>
<tr>
<td></td>
<td>(PoS + Postprocessing) filters</td>
<td>54.13</td>
<td>35.08</td>
<td>23.32</td>
<td>28.02</td>
</tr>
</tbody>
</table>
As we see in Table 4, despite the importance of PoS filtering, it decreases the potential and recall values due to ambiguity and incorrect PoS tagging from Camel and Farasah taggers, which removes correct substitutions. The postprocessing filter improves the precision and F1 values results for the three domains and the entire AraLexSubD dataset. For example, in [عَيَّنَهُ إِلَى مَنْصُوبٍ هَامٍ], the target word [عَيَّنَ, appointed] could be a verb or noun. However, it is a verb in this sentence, and the PoS tagger tags [عَيَّنَ, appointed] as a noun, which causes the PoS filter to delete all candidates with a verb tagging, explaining the decrease in potential value. The results in Table 6 show the importance of using both filters to clean up the generated synset, increasing Precision and F1 in the three domains and the entire AraLexSubD dataset.

5.3. Evaluation of Substitution Ranking

In the substitution ranking stage, the annotated candidates in the AraLexSubD dataset are provided, and the goal is to rerank them by the three ranking features: the BERT prediction order (BERT probability), BERT similarity, and language model (BERT loss). A ranking score is computed using each rank feature, which reranks the annotated substitutions according to the feature appropriateness. Two annotators evaluate the feature rank manually by comparing the annotated candidates rank in the AraLexSubD benchmark with each feature rank.

The results are presented in Table 7. The BERT prediction order (BERT probability) feature shows the best ranking score in the three domains compared to the annotated candidates rank in the AraLexSubD benchmark.

Table 7. Manual evaluation results for the ranking features for the three domains.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Rank Feature</th>
<th>Manual Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>BERT loss</td>
<td>42.02</td>
</tr>
<tr>
<td></td>
<td>BERT similarity</td>
<td>42.85</td>
</tr>
<tr>
<td></td>
<td>BERT probability</td>
<td>51.89</td>
</tr>
<tr>
<td>Medical</td>
<td>BERT loss</td>
<td>45.31</td>
</tr>
<tr>
<td></td>
<td>BERT similarity</td>
<td>43.85</td>
</tr>
<tr>
<td></td>
<td>BERT probability</td>
<td>49.79</td>
</tr>
<tr>
<td>Finance</td>
<td>BERT loss</td>
<td>43.70</td>
</tr>
<tr>
<td></td>
<td>BERT similarity</td>
<td>48.17</td>
</tr>
<tr>
<td></td>
<td>BERT probability</td>
<td>50.19</td>
</tr>
</tbody>
</table>

BERT probability correctly ranks 51.89% of the annotated candidates in the general domain, 49.79% in the medical domain, and 50.19% in the AraLexSubD dataset.

6. Qualitative Analysis

This section discusses the qualitative analysis of the construction of the AraLexSubD dataset and the AraLexSub pipeline. For the AraLexSub pipeline, this work analyzes the errors of substitute generation and substitute filtering and defers the ranking errors to future research.

6.1. Analysis of AraLexSubD Dataset

The manual dataset construction process is time-consuming and labor-intensive. Human annotators must consider appropriate substitutes, considering various linguistic and contextual factors. The task’s complexity makes annotating many instances within a realistic budget and timetable challenging.

Additionally, providing annotators with all synonymous suggestions to the annotated target words is impossible, leading to missing entries that can affect the evaluation results.
During the construction of the AraLexSubD dataset, which annotates target words, sentences, and suitable substitutes, finding the roots and lemmas of the target word and substitutions was sometimes challenging for three main reasons:

1. Some target words and annotated substitutions have two roots in the three domains.
2. Some target words and annotated substitutions do not have a lemma on Qabas; the annotator found the word lemma and then added it to Qabas.
3. For the target words that are phrases of two words, such as [عين الاعتبار, ayn al aetibar, in consideration], no lemma is found for these phrases in Qabas, but the lemma for each word alone is found. In the case of the lemma for the word [عين, eyn] and lemma for the word [الاعتبار, al aetibar], if the target word contains two words, then the lemma for the first word is the phrase lemma.

During the construction of the particular domains, medical and finance domains, ranking the suggested substitutions was sometimes challenging for two main reasons:

1. Lack of clarity of synonyms because they are specialized words and not general ones.
2. The options presented in the rank list are accurate.

6.2. Analysis of AraLexSub Pipeline

In this subsection, we analyze the AraLexSub pipeline to understand the source of the error in the substitute generation and substitute filtering steps. Some errors occur due to the following:

1. Difficulty: Some target words in the AraLexSubD dataset are challenging to understand. AraBERT cannot generate suitable candidates or has no suggestions, as it is trained on a specific corpus.
2. Ambiguity: The PoS tagger may wrongly tag some of the suggested substitutions due to the ambiguity in understanding the sentence or substitute.
3. Semantics: Misunderstanding the sentence’s semantics can lead to incorrectly suggested substitutions.
4. Model architecture: The architecture of AraBERT removes the last character of the generated substitutions, such as the character è, or generates the antonyms of the target word.
5. Missing entries: Some suggested substitutes are correct but are not in the AraLexSubD dataset.

In our AraLexSub pipeline, eight types of errors were identified:

1. No candidate substitutions are generated (Difficulty).
2. None of the generated substitutions are synonyms (Difficulty).
3. Part of the generated substitutions are synonyms (Semantics).
4. The generated substitutions are affected by the architecture of generational methods such as AraBERT (Model architecture).
5. The generated substitutions are neutral; they are neither wrong nor correct but compromise the sentence’s meaning (Semantics).
6. The generated substitutions are synonyms but are not in the AraLexSubD dataset (Missing entries).
7. Due to ambiguity, the PoS tagger Farassa cannot correctly determine the PoS tag for the generated substitution (Ambiguity).
8. The filtering step removes the words of two letters as it cannot determine if it is a complete word or a subword.

Type 1, 2, 3, 4, 5, and 6 errors are made during substitute generation, and errors 7 and 8 occur during substitute filtering. Many sentences are recorded for each error type. Table 8 presents the sentence count in AraLexSubD for each error. Table 8 also shows that AraBERT makes the fewest errors of types 1, 2, 4, and 5. However, it can be noticed that AraBERT makes many errors of types 3 and 6.
Table 8. The count of each Error type results over the three domains.

<table>
<thead>
<tr>
<th>Domain, Error Type</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>General (470 sentences)</td>
<td>15</td>
<td>48</td>
<td>366</td>
<td>30</td>
<td>32</td>
<td>195</td>
<td>20</td>
<td>45</td>
</tr>
<tr>
<td>Medical (80 sentences)</td>
<td>3</td>
<td>3</td>
<td>72</td>
<td>3</td>
<td>5</td>
<td>11</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Finance (80 sentences)</td>
<td>2</td>
<td>4</td>
<td>74</td>
<td>9</td>
<td>4</td>
<td>24</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Entire dataset (630 sentences)</td>
<td>20</td>
<td>55</td>
<td>512</td>
<td>42</td>
<td>41</td>
<td>230</td>
<td>28</td>
<td>56</td>
</tr>
</tbody>
</table>

Below are examples that are chosen randomly as an example of each error type in substitute generation and substitute filtering errors:

- **The error of type 1**: In the medical domain, for the sentence: "Central muscles are the muscles that control the limbs of the body" with target word (Central), AraBERT generates no substitute except which are removed by the postprocessing filter.

- **The error of type 2**: In the medical domain, for the sentence: "Blood fluidity is an essential vital indicator for diagnosing medical conditions" with target word (fluidity), AraBERT generates the substitutions (rare, faction), and none have the same semantics of the target word and fit the context.

- **The error of type 3**: In the medical domain, for the sentence: "A margin of tissue is removed in the surgical procedure" with target word (margin), AraBERT generates the substitutes (part, bag, space, section); a part of the generated substitutes are synonyms, which are included in the AraLexSubD dataset.

- **The error of type 4**: Missing the character ง: In the general domain, for the sentence: "Every person has a certain standard of life" with target (life), AraBERT generates (substitutions, which are correct, and included in the AraLexSubD dataset, but with missing character ง at the end of the generated candidates, they should be (Signal, condition).

- **The error of type 5**: In the medical domain, for the sentence: "Determining the size of the tumor in the case of cancer is crucial for diagnosis and identification" with target word (size), AraBERT generates the substitutes (part, type), which are neutral; they are not wrong nor correct but compromise the sentence’s meaning. The words (part, type) are suitable to the sentence but do not fit the original sentence context.
The error of type 6: In the general domain, for the sentence Every person has a certain standard of life, AraBERT generates substitutions that are suitable, but the sentence itself contains more than one option. Still, the option was specified in the AraLexSubD dataset as a specific term.

The error of type 7: In the medical domain, for the sentence Every hour 7 surgeries are performed, AraBERT generates the substitute (مداخلة/intervène), which is semantically correct and in the AraLexSubD dataset, but when applying the PoS filter, which removes the unmatched PoS tags in the filtering step, the substitute (مداخلة) is removed as the tagger tags it as a verb, not a noun.

The error of type 8: In the medical domain, for the sentence Migraines usually affect one part of the head, AraBERT generates the substitute (حول), which is semantically related and not in the AraLexSubD dataset, but when applying the postprocessing filter, which removes the subwords, the substitute (حول) is removed as the filter understands it as a subword containing two letters.

7. Conclusions

This paper presents the manual construction of the first evaluation benchmark, the AraLexSubD dataset, for the Arabic lexical substitution task. AraLexSubD was built by eight native Arabic speakers and linguists (six linguist annotators, a doctor, and an economist). AraLexSubD contains 630 sentences with one target word and 2476 substitution candidates, semantically ranked, using the guidelines in [21]. The benchmark is split into three domains: general domains (470 sentences), finance domains (80 sentences), and medical domains (80 sentences). We propose an Arabic lexical substitution pipeline, AraLexSub, which contains three stages, generation, filtering, and ranking, using the AraLexSubD dataset. We believe the proposed AraLexSubD and AraLexSub can accelerate future research on this task. Despite the initial positive results of this challenging task, the substitution generation method and substitution ranking feature can affect the performance. In the future, we will use different generation methods and ranking features.

Author Contributions: Conceptualization, N.A.; methodology, N.A. and E.N.-K.; software, E.N.-K.; validation, E.N.-K.; formal analysis, E.N.-K.; investigation, N.A. and E.N.-K.; resources, E.N.-K.; data curation, N.A. and E.N.-K.; writing—original draft preparation, E.N.-K.; writing—review and editing N.A. and E.N.-K.; visualization, E.N.-K.; supervision, N.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The AraLexSubD dataset, constructed and presented in the article, is available on GitHub at https://github.com/karajah2024/Arabic-Lexical-Substitution.git (accessed on 1 March 2024).

Conflicts of Interest: The authors declare no conflict of interest.

References

23. Available online: https://ontology.birzeit.edu/ (accessed on 1 March 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.