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Abstract: For decades, oxybutynin hydrochloride has been prescribed to improve bladder control
in cases of incontinence and excessive urination frequency. This review summarizes synthetic
methods enabling the preparation of the racemic drug and, in a detailed manner, preparation of
(S)-2-cyclohexyl-2-hydroxy-2-phenylacetic acid, a key intermediate in the synthesis of (S)-oxybutynin.
The mode of action and metabolism are briefly addressed in order to explain the main adverse
effects associated with its use and to justify the evolution observed in the diverse commercial
formulations. Repositioning opportunities are discussed in terms of clinical trials for the management
of hyperhidrosis, hot flashes, and obstructive sleep apnea.

Keywords: bladder; breast cancer; hot flashes; hyperhidrosis; obstructive sleep apnea; oxybutynin;
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1. Introduction

Better knowledge of signaling pathways and therapeutic targets allows us to find novel
applications for marketed drugs or drug candidates failing in late stages of clinical trials.
The so-called “drug repositioning” or “drug repurposing” concept was introduced in 2004
by Ashburn and Thor [1]. It enables pharmaceutical companies to save time and money
because efficient procedures of preparation at laboratory and pilot scales have already been
developed. In addition, results of most pre-clinical and clinical assays have already been
accumulated. Drug repositioning also provides new tools to physicians, giving them the
opportunity of proposing innovative, but sometimes experimental, medications to their
patients. Examples of successfully repositioned drugs (Figure 1) include acetylsalicylic acid
(1), sildenafil (2), and thalidomide (3). Acetylsalycilic acid, well-known for its antipyretic
and analgesic effects, eases blood circulation [2] and could exhibit beneficial effects in some
cancers [3]. Sildenafil was initially developed to treat cardiovascular problems but it failed
in the corresponding clinical trials. The molecule is now prescribed in the case of erectile
dysfunction [4] and extensively studied for its antitumoral activities [5]. Thalidomide [6],
on the other hand, was commercialized to relieve nausea in pregnant women but was soon
abandoned due to its teratogenic consequences. Thalidomide is now manufactured as an
effective agent against erythema nodosum leprosum and multiple myeloma.

Many other approved drugs have been screened or are still screened in order to find
them new applications for the treatment of, among other things, Alzheimer’s disease [7],
asthma [8], and more recently, COVID-19 [9].

The racemic oxybutynin (4, Figure 2) is an antimuscarinic agent clinically that has been
used, in its hydrochloride form (4.HCl), in the therapy of overactive bladder for almost
five decades. Interestingly, a series of reports indicated that it could emerge as a promising
medication for managing hyperhidrosis, hot flashes, and, hopefully, obstructive sleep
apnea. Therefore, we thought it useful to summarize, for the first time in a single paper, the
knowledge acquired on the syntheses, mode of action, metabolism, and formulations of
this substance. Repositioning opportunities are highlighted.
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paper, the knowledge acquired on the syntheses, mode of action, metabolism, and formu-
lations of this substance. Repositioning opportunities are highlighted. 

 
Figure 1. Structure of acetylsalicylic acid (1), sildenafil (2), and thalidomide (3). 

 
Figure 2. Structure of oxybutynin (4) and its (S)-enantiomer. 

2. Chemical Names 
The Chemical Abstracts registry numbers of the racemate of oxybutynin and its hy-

drochloride are 5633-20-5 and 1508-65-2, respectively. Its index name is benzeneacetic 
acid, α-cyclohexyl-α-hydroxy-, 4-(diethylamino)-2-butynyl ester. Registry numbers of the 
(R)- and (S)-enantiomers (Figure 2) are 119618-21-2 and 119618-22-3, respectively. The cor-
responding registry numbers for the hydrochlorides are 1207344-05-5 and 230949-16-3. 
The denominations aroxybutynin [10] for the (R)-enantiomer and esoxybutynin [11] for 
the (S)-enantiomer can also be found in the literature. 

The IUPAC name is 4-diethylaminobut-2-ynyl 2-cyclohexyl-2-hydroxy-2-phenyleth-
anoate. 

Sometimes, oxybutynin is considered as a derivative of the following: 
• glycolic acid: 4-diethylamino-2-butynyl phenylcyclohexylglycolate; 
• acetic acid: 4-diethylamino-2-butynyl 2-cyclohexyl-2-hydroxy-2-phenylacetate. 

The name oxybutynin is often used, indifferently, to designate the free base as well 
as its hydrochloride. Therefore, in order to stay consistent and to lighten the text of the 
review, we shall distinguish both species by numbering them 4 and 4.HCl, respectively. 

3. Syntheses 
3.1. Syntheses of the Racemic Mixture 

Practically, oxybutynin can be prepared by a convergent synthesis requiring two key 
reagents, namely 2-cyclohexyl-2-hydroxy-2-phenylacetic acid (9, Scheme 1) or a corre-
sponding ester (usually the methyl ester 8, Scheme 1) and 2-propyn-1-ol (propargyl alco-
hol; 12, Scheme 2) or a derivative, which are coupled in an esterification or transesterifica-
tion reaction. 

3.1.1. Preparation of Methyl 2-Cyclohexyl-2-Hydroxy-2-Phenylacetate (8) and the  
Corresponding Acid (9) 

There are two routes (Scheme 1) to obtain reagents 8 and 9. One route starts from 2-
oxo-2-phenylacetic acid (phenylglyoxylic acid; 5), which is first converted into the acid 
chloride 6 by treatment with thionyl chloride. Further reaction with methanol produced 
the ester 7. Action of bromocyclohexane under conditions of a Grignard reaction afforded 

Figure 1. Structure of acetylsalicylic acid (1), sildenafil (2), and thalidomide (3).
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Figure 2. Structure of oxybutynin (4) and its (S)-enantiomer.

2. Chemical Names

The Chemical Abstracts registry numbers of the racemate of oxybutynin and its
hydrochloride are 5633-20-5 and 1508-65-2, respectively. Its index name is benzeneacetic
acid, α-cyclohexyl-α-hydroxy-, 4-(diethylamino)-2-butynyl ester. Registry numbers of the
(R)- and (S)-enantiomers (Figure 2) are 119618-21-2 and 119618-22-3, respectively. The
corresponding registry numbers for the hydrochlorides are 1207344-05-5 and 230949-16-3.
The denominations aroxybutynin [10] for the (R)-enantiomer and esoxybutynin [11] for the
(S)-enantiomer can also be found in the literature.

The IUPAC name is 4-diethylaminobut-2-ynyl 2-cyclohexyl-2-hydroxy-2-phenylethanoate.
Sometimes, oxybutynin is considered as a derivative of the following:

• glycolic acid: 4-diethylamino-2-butynyl phenylcyclohexylglycolate;
• acetic acid: 4-diethylamino-2-butynyl 2-cyclohexyl-2-hydroxy-2-phenylacetate.

The name oxybutynin is often used, indifferently, to designate the free base as well as
its hydrochloride. Therefore, in order to stay consistent and to lighten the text of the review,
we shall distinguish both species by numbering them 4 and 4.HCl, respectively.

3. Syntheses
3.1. Syntheses of the Racemic Mixture

Practically, oxybutynin can be prepared by a convergent synthesis requiring two
key reagents, namely 2-cyclohexyl-2-hydroxy-2-phenylacetic acid (9, Scheme 1) or a
corresponding ester (usually the methyl ester 8, Scheme 1) and 2-propyn-1-ol (propar-
gyl alcohol; 12, Scheme 2) or a derivative, which are coupled in an esterification or
transesterification reaction.

3.1.1. Preparation of Methyl 2-Cyclohexyl-2-Hydroxy-2-Phenylacetate (8) and the
Corresponding Acid (9)

There are two routes (Scheme 1) to obtain reagents 8 and 9. One route starts from 2-oxo-
2-phenylacetic acid (phenylglyoxylic acid; 5), which is first converted into the acid chloride
6 by treatment with thionyl chloride. Further reaction with methanol produced the ester 7.
Action of bromocyclohexane under conditions of a Grignard reaction afforded methyl 2-
cyclohexyl-2-hydroxy-2-phenylacetate 8, which could be hydrolyzed to the corresponding
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acid 9 [12,13]. In the alternative route, methyl 2-hydroxy-2-phenylacetate (methyl mande-
late; 10) was the starting material that could readily be oxidized into 7 before the Grignard
reaction [13]. Optionally, activation of acid 9 under the form of 5-cyclohexyl-5-phenyl-1,3-
dioxolane-2,4-dione 11 (Scheme 1) by reaction with trichloromethylchloroformate has been
reported [14].
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Scheme 1. Preparation of the intermediates 8, 9, and 11. Reagent(s); catalyst; solvent(s); yield(s).
(i) SOCl2; toluene; 92% [12]. (ii) CH3OH; 87% [12]. (iii) Bromocyclohexane, Mg; I2; tetrahydrofuran;
65% [12], 57% [13]. (iv) NaOH; H2O, CH3OH; 77% [13]. (v) Pyridinium chlorochromate; CH2Cl2;
76% [13]. (vi) N-methylpiperidine, trichloromethylchloroformate; tetrahydrofuran; 79% [14].

3.1.2. Preparation of Derivatives of 2-Propyn-1-ol

In most procedures, the butynyl alcohol 13 (Scheme 2) was prepared by a Mannich
reaction involving 2-propyn-1-ol 12 [13], formadehyde, and diethylamine. In some works,
12 [12] was esterified with acetyl chloride (to give 14) before the Mannich reaction to finally
afford acetate 15 [12,14]. The later could also be obtained from 13 and a mixture of acetic
acid and acetic anhydride [15].
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Scheme 2. Preparation of derivatives 13–15. Reagent(s); catalyst; solvent(s); yield(s). (i) HCHO,
(C2H5)2NH; CuSO4; H2O; 23% [13]; (ii) CH3COCl, (C2H5)3N; CH2Cl2; 91% [12]. (iii) HCHO,
(C2H5)2NH; CuCl; 1,4-dioxane; 89% [12]. (iii) HCHO, (C2H5)2NH; (CH3CO2)2Cu; 1,4-dioxane;
84% [15]. (iv) (CH3CO)2O; H2SO4; CH3CO2H; 81% [15].
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3.1.3. Final Step

Ultimately, oxybutynin 4 and its hydrochloride 4.HCl were synthesized (Scheme 3)
by coupling ester 8 or acid 9 and alcohol 13 or ester 15. Details on published sequences,
experimental conditions, and yields can be found in Table 1. Overall yields, calculated from
commercially available precursors 2-oxo-2-phenylacetic acid 5 [12] or methyl 2-hydroxy-
2-phenylacetate 10 [13] and 2-propyn-1-ol 12, ranged from a modest 23% [12] to a poor
6% [13].
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Sequence Experimental Conditions Yield [Reference]

8 + 15 -> [4] -> 4.HCl (i) CH3ONa; n-heptane, then
(ii) HClaq; H2O 86% [12]; 51% [16]

8 + 15 -> 4 (i) CH3ONa; n-heptane 73% [16]
8 + 13 -> 4 (i) NaOH; H2O 91% [17]

9 +13 -> [4] -> 4.HCl

(i) 1-Hydroxybenzotriazole hydrate,
N-methylmorpholine, 1-(3-
dimethylaminopropyl)-3-ethylcarbodiimide
hydrochloride; CH2Cl2, then
(ii) HClg; CH3OH

27% [13]

4.HCl -> 4 (iii) NaOH; H2O, n-heptane 96% [16]
4.HCl -> 4 (iii) NaOH; H2O 95% [18,19]

Yes, it is a compound number; brackets indicate. Additionally, a recent Chinese
patent [20] mentioned, as illustrated in Scheme 4, the possibility of preparing ester 17
from 9 and 3-chloroprop-1-yne 16. The Mannich reaction was then performed in the last
reaction of the sequence yielding 4.HCl. A sequence allowing access to ester 17 from 9
and 2-propyn-1-ol 12 has also been adapted to synthesize some deuterated derivatives of
oxybutynin [13,21,22]. However, experimental details were not clearly disclosed in any of
those four references.
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3.2. Preparation of (S)-Oxybutynin

Because the (S)-enantiomer of oxybutynin exhibits a better tolerability than the (R)-
enantiomer (see Section 4), its preparation has attracted much interest, essentially during
the first decade of this century. In fact, all efforts were dedicated to the obtention of the key
intermediate, namely the (S)-enantiomer of 2-cyclohexyl-2-hydroxy-2-phenylacetic acid 9.
The simplest way to isolate it was to treat, as described in the patent of Bakale et al. [23], the
racemic mixture with L-tyrosine methyl ester in order to afford the expected (S)-oxybutynin
in 42% yield.

Besides the separation of diastereoisomers, more sophisticated methods have been
described to prepare (S)-9, and they are summarized hereafter. Evidently, those protocols
can be adapted to afford the (R)-enantiomer of 9.

For example, Senanayake et al. [24] obtained (S)-2-cyclohexyl-2-hydroxy-2-phenylacetic
acid in enantiomeric excesses higher than 98% by forcing a Grignard reagent to preferen-
tially attack the less hindered face of 2-oxo-2-phenylacetic acid or 2-oxo-cyclohexylacetic
acid derivatives. To achieve that goal, the authors used bulky chiral auxiliaries based on sub-
stituted cis-1-amino-2-indanol moieties (1-para-tolylsulfonyl group and acetonide). One rep-
resentative case is depicted in Scheme 5. Thus, 2-oxo-2-phenylacetic acid (5) was converted
into its acyl chloride and then reacted with cis-(1S,2R)-2-para-tolylsulfonamidoindanol to
afford ester 18. Subsequent Grignard reaction and hydrolysis of the ester yielded the tar-
geted (S)-2-cyclohexyl-2-hydroxy-2-phenylacetic acid (S)-9. Other structurally related chiral
intermediates (19–21) evaluated in the study are represented in Scheme 4. The best yields
were obtained from esters 18 and 19 bearing the N-para-tolylsulfonamidoindanyl group.

Sequence Overall Yield

18 -> (S)-9 81%
19 -> (S)-9 80%
20 -> (S)-9 30%
21 -> (S)-9 42%Drugs Drug Candidates 2023, 2, FOR PEER REVIEW 6 
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Later, Chattopadhyay et al. [25] described another stereocontrolled Grignard reaction
(Scheme 6) by addition of cyclohexylmagnesium bromide on phenyl ketone 23, obtained
from (R)-2,3-O-cyclohexylydene-D-glyceraldehyde 22. The first attempts to hydrolyze
acetal 24 and subsequent oxidation led to decomposition or poor yields. Better results
were obtained by protecting the alcohol function of 24 by reaction with benzylbromide.
That expanded the sequence but enabled isolation of the expected (S)-9 with an acceptable
overall yield (eight steps) of 25%, with an enantiomeric excess of 98%.
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In another approach (Scheme 7), trimethylacetaldehyde (pivaldehyde) was acetalized
with (S)-2-hydroxy-2-phenylacetic acid (26; (S)- mandelic acid). The resulting dioxolone
(27) was deprotonated and stereoselectively coupled with cyclohexanone at −78 ◦C. Dehy-
dration of the so-formed alcohol (28) followed by hydrolysis and hydrogenation (or the
inverse sequence) yielded (S)-9 in excellent enantiomeric excess (>99.9%) and an overall
yield of 66% [26].
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Scheme 7. Preparation of S-2-cyclohexyl-2-hydroxy-2-phenylacetic acid (S)-9 following [26].
Reagent(s); catalyst; solvent(s); yield(s). (i) (CH3)3CHO; trifluoromethylmethanesulfonic acid; pen-
tane; 96%. (ii) Lithium bis(trimethylsilyl)amide; cyclohexanone, tetrahydrofuran; 76%. (iii) SOCl2,
pyridine; tetrahydrofuran; >98%. (iv) H2; Pd/C; CH3OH; 95%. (v) KOH; CH3OH; then HCl; 96%.

Catalytic enantioselective cyanosilylation of cyclohexyl phenyl ketone 29 (Scheme 8)
with a chiral gadolinium complex was the first step of the procedure reported by Shibasaki
et al. [27]. Subsequent reduction, desilylation, and oxidation afforded the expected (S)-9
in an overall yield of 80% with an enantiomeric excess higher than 99.5%. Interestingly,
enzymatic resolution of racemic mixtures of cyanohydrins structurally related to 30 has
been the subject of a study by Gotor et al. [28].
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Scheme 8. Preparation of S-2-cyclohexyl-2-hydroxy-2-phenylacetic acid (S)-9 following [27].
Reagent(s); catalyst; solvent(s); yield(s). (i) Trimethylsilyl cyanide; gadolinium (O-isopropyl)3,
ligand; C2H5CN; 100%. (ii) Diisobutylaluminium hydride; toluene then HClaq; tetrahydrofuran then
NaClO2, NaH2PO4, 2-methyl-2-butene; H2O, tert-butanol; 80%.

Alternatively (Scheme 9), ketone 29 was introduced in a Wittig reaction with methylen-
etriphenylphosphorane yielding alkene 31. Asymmetric dihydroxylation with osmium
tetraoxide under Sharpless conditions gave 32 in an enantiomeric excess of 92%. Then, a
Swern reaction oxidized the terminal alcohol into the corresponding aldehyde 25, which
could be further oxidized to acid (S)-9 with an overall yield of 45% [29]. Notice that
aldehyde 25 has also been obtained, in an enantiomeric excess of 84%, from 3-[(Z)-2-phenyl-
2-cyclohexylvinyl]oxazolidin-2-one 33 (Scheme 9), as proposed by Gourdet and Lam [30].
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Scheme 9. Preparation of (S)-2-cyclohexyl-2-hydroxy-2-phenylacetic acid (S)-9 following [29,30].
Reagent(s); catalyst; solvent(s); yield(s). (i) Ph3P+CH3I−, n-C4H9Li; tetrahydrofuran; 92%.
(ii) OsO4, K3Fe(CN)6, hydroquinine 1,4-phthalazinediylether; tert-ButOH, H2O; 70%. (iii) (COCl)2,
(C2H5N)3; dimethylsulfoxide, CH2Cl2; not isolated. (iv) NaClO2, NaHPO4.2H2O, 2-methyl-2-
butene; tert-ButOH; 70%. (v) Cyclohexylmagnesium bromide, (CH3CO)2Cu; tetrahydrofuran; 74%.
(vi) K2OsO2(OH)2, K3Fe(CN)6, hydroquinine 1,4-phthalazinediylether; tert-butanol; 80%.

Following Maruoka et al. [31], (S)-9 could be prepared through a L-proline-catalyzed
asymmetric aldol reaction between cyclohexanone (in 10-fold excess) and ethyl 2-oxo-2-
phenylacetate (34, Scheme 10). That reaction yielded ester 35 in good yield (79%), good
diastereoselectivity (dr ≥ 20:1), and good enantiomeric excess (96%). However, synthesis
of the pure corresponding acid (S)-9 was not straightforward, so that the authors had to
design a tedious five-step sequence starting from 35. The overall yield, calculated on 34,
fell to 40%.
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Scheme 10. Preparation of (S)-2-cyclohexyl-2-hydroxy-2-phenylacetic acid (S)-9 following [31].
Reagent(s); catalyst; solvent(s); yield(s). (i) L-proline; dimethylsulfoxide; 79%; (ii) BH3-(CH3)2S;
tetrahydrofuran, CH3OH; not purified. (iii) Methanesulfonyl chloride, (C2H5N)3; CH2Cl2; 80%
(iv) LiCl; hexamethylphosphoramide; 81%. (v) H2; Pd/C; C2H5OH; 94%. (vi) NaOH; CH3OH; 93%.

In the work of Trost et al. [32], the initial precursor of (S)-9 was the commercially
available cyclohex-2-en-1-ol 36 (Scheme 11), which was converted in a basic medium by
treatment with carbon dioxide and then 2-bromoacetophenone, into ketocarbonate 37.
Deprotonation of 37 and protection of the enol by tert-butyldimethylsilyl chloride was
accompanied by an intramolecular rearrangement affording 38. In the subsequent step, an
internal allylic alkylation involving a chiral palladium catalyst gave aldehyde 39. Reduction
of the cyclohexenyl ring, oxidation, and deprotection afforded the expected (S)-acid 9 with
an enantiomeric excess higher than 99% but an overall yield of 22%.
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tography. The silica-based support of the columns was covalently bonded to ovomucoid 
[34] or, more often, coated with polysaccharides such as amylose-tris(3,5-dimethylphenyl-
carbamate) [35,36] or cellulose-tris(4-methylbenzoate) [37]. Also reported and noteworthy 
is the use of β-cyclodextrin derivatives, essentially hydroxypropyl-β-cyclodextrin, as chi-
ral selectors for the separation by high-performance liquid chromatography [38] as well 
as by electrophoresis [39], liquid–liquid reactive extraction [40], and recycling high-speed 
counter-current chromatography [41]. 

Astonishingly, preparation of diastereoisomers was seldom described. One example 
could be found in the patents of Molnar and Johnston [18,19]. The inventors treated the 
racemic mixture under its free base form, with D-malic acid in 2-propanol, and isolated 
the D-malate salt of (R)-oxybutynin in 41% yield. In the most recent patent [19], the same 
inventors claimed that “eleven other chiral acids were tested for production of (R)-oxy-
butynin salt from racemic oxybutynin: L-tartric acid, D-tartric acid, L-(+)-lactic acid, D-
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Scheme 11. Preparation of (S)-2-cyclohexyl-2-hydroxy-2-phenylacetic acid (S)-9 following [32].
Reagent(s); catalyst; solvent(s); yield(s). (i) NaH, CO2; then C6H5COCH2Br; HCON(CH3)2;
42%. (ii) Sodium bis(trimethylsilyl)amide, tert-butyldimethylsilyl chloride; tetrahydrofuran; 83%.
(iii) Tris(dibenzylideneacetone)dipalladium(0)-chloroform adduct; ligand; 1,4-dioxane; 94%. (iv) H2;
Pd/C; C2H5OH; 94%. (v) NaClO2, NaHPO4.2H2O, 2-methyl-2-butene; tert-butanol, H2O; 95%.

Having in hand (S)-2-cyclohexyl-2-hydroxy-2-phenylacetic acid 9 (or the (R) enan-
tiomer), optically active oxybutynin (hydrochloride) could be synthesized using one of the
procedures described in Schemes 3 and 4. The activated (S)-acid 11 has been involved, with
butynyl alcohol 13, in the multigram preparation of (S)-oxybutynin hydrochloride [14].

3.3. Resolution of the Racemic Mixture

Although high-performance thin-layer chromatography has been cited [33], enan-
tiomers of oxybutynin have been generally separated by high-performance liquid chro-
matography. The silica-based support of the columns was covalently bonded to ovomu-
coid [34] or, more often, coated with polysaccharides such as amylose-tris(3,5-
dimethylphenylcarbamate) [35,36] or cellulose-tris(4-methylbenzoate) [37]. Also reported
and noteworthy is the use of β-cyclodextrin derivatives, essentially hydroxypropyl-β-
cyclodextrin, as chiral selectors for the separation by high-performance liquid chromatog-
raphy [38] as well as by electrophoresis [39], liquid–liquid reactive extraction [40], and
recycling high-speed counter-current chromatography [41].

Astonishingly, preparation of diastereoisomers was seldom described. One example
could be found in the patents of Molnar and Johnston [18,19]. The inventors treated the
racemic mixture under its free base form, with D-malic acid in 2-propanol, and isolated
the D-malate salt of (R)-oxybutynin in 41% yield. In the most recent patent [19], the
same inventors claimed that “eleven other chiral acids were tested for production of
(R)-oxybutynin salt from racemic oxybutynin: L-tartric acid, D-tartric acid, L-(+)-lactic
acid, D-glucuronic acid, D-gluconic acid, L-malic acid, (1R,3S)-(+)-camphoric acid, (S)-(+)-
mandelic acid, (1R)-(-)-10-camphorsulfonic acid, L-pyroglutamic acid, and D-(-)-quinic
acid. None of the other eleven chiral acids were successful in chiral resolution to produce
an (R)-oxybutynin salt from racemic oxybutynin”.

4. Mode of Action and Metabolism

Micturition is mainly controlled by coordinated actions of the detrusor muscle and the
bladder neck muscle. During bladder filling, the detrusor muscle is relaxed, whereas the
neck muscle is contracted. The situation is reversed during urine elimination. Too frequent
urinary urgencies, which are caused by abnormal contractions of the detrusor muscle, are
manifestations of the so-called overactive bladder condition. Those contractions occur, in
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brief, when acetylcholine, released from parasympathetic nerves, binds to M3 muscarinic
receptors located on the detrusor muscle. Therefore, blockade of those M3 muscarinic
receptors emerged as a strategy of choice for treating overactive bladder [42,43].

Oxybutynin is one of the most popular antagonists of muscarinic receptors and it
has been widely prescribed in the therapy of overactive bladder for decades. However,
muscarinic receptors are present in many parts of the body, including salivary glands,
gut smooth muscle, eyes, heart, and brain [42,44]. That explains the series of side-effects
observed after administration of the drug, among which are dry mouth, the most common
and frequent side-effect, decreased sweating, constipation, blurred vision, tachycardia,
and nausea. Impairments of cognitive function have also been reported and should be
linked to the ability of the drug to cross the blood–brain barrier, due to its lipophilic
character [43,45–47]. That adverse effect is observed in elderly patients especially, since
permeability of the barrier increases with aging, as evidenced by magnetic resonance
imaging [48]. Narrowing and degradation of endothelial cells, alterations of tight junction
proteins, and dysregulations of transport mechanisms are among the factors contributing
to blood–brain barrier deterioration [49].

Interestingly, it was demonstrated that, when orally absorbed, oxybutynin had a
bioavailability as low as 6% [50]. Indeed, in the gut and the liver, the drug is rapidly
metabolized by cytochrome P450 isozyme 3A4 into N-desethyloxybutynin (40; Figure 3),
giving rise to concentrations of N-desethyloxybutynin in serum 4 to 10 times higher than
those of the initial drug (additional data can be found under Section 5). However, that
first metabolite also exhibits high affinity for the M3 muscarinic receptors and especially
for those located in the parotid gland. N-desethyloxybutynin is thought to be the main
agent responsible for the dry mouth side-effect associated with the oral administration of
oxybutynin [42,51,52].
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It is important to note that oxybutynin also exerts spasmolytic and local anesthetic
effects on the bladder smooth muscle. However, those effects are far weaker than the
antimuscarinic activity. Nevertheless, the efficacy of each enantiomer in both pathways has
been studied. There were conflicting reports on the spasmolytic effects. The (S)-enantiomer
has been claimed to exhibit higher [42,53] or similar [54–56] spasmolytic action when
compared with the (R)-enantiomer. On the other hand, all studies underlined the lower
antimuscarinic activity of the (S)-enantiomer when compared with the (R)-enantiomer,
thus explaining the better tolerability of former [51,54,57]. However, up to now, those
characteristics did not justify the marketing of any single enantiomer.

5. Formulations and Brand Names

Usually, physicians prescribe 5 to 20 mg of oxybutynin daily for the treatment of
overactive bladder. Tablets of Ditropan® were approved by the U.S. Food and Drug
Administration (FDA, Silver Spring, MD, USA) on 16 July 1975. Ditropan® syrup was
FDA-approved on 29 November 1979.

As mentioned earlier, oxybutynin is rapidly converted into N-desethyloxybutynin
upon gastric and hepatic metabolism and that first metabolite could be responsible for
the well-known dry mouth side-effect. Therefore, it is not surprising that the original
formulations of the racemic drug have successfully evolved to extended-release systems
and transdermal administrations.
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The Ditropan XL® tablet (FDA-approved on 16 December 1998), an extended-release
formulation of the drug, was commercialized by Janssen Pharmaceuticals Inc. (Raritan,
NJ, USA). It consisted of a core containing a layer of the drug and excipients and a second
layer made of osmotic agents. The drug layer was surrounded by a drilled semipermeable
membrane enabling controlled entry of water and release of oxybutynin [58].

Ditropan® and Ditropan XL® have now given way to more than 200 generics [59].
The first transdermal formulations of oxybutynin were the Oxytrol® patches marketed

by Allergan USA Inc. (Madison, NJ, USA), further to the FDA approval published on 26
February 2003. Oxytrol® patches, which should be applied on the abdomen, hip, or buttock,
are diffusion-controlled delivery systems (5.7 × 7.6 cm2) dispensing 3.9 mg of oxybutynin
per day [60]. The product was approved on 15 June 2004 by the European Medicines Agency
(EMA) under the brand name Kentera® (Teva B.V., Haarlem, The Netherlands) [61].

Gelnique® is a 10% oxybutynin gel available in sachets of 1 g. It was FDA-approved
on 27 January 2009 and is manufactured by Allergan USA Inc. [62]. On 8 December 2011,
FDA approved a 3% oxybutynin gel supplied in a metered-dose pump dispenser, sold by
Antares Pharma Inc. (Ewing, NJ, USA) [63]. A gel preparation of a nanosuspension of
oxybutynin is currently under study in order to minimize skin irritation and improve the
permeation efficiency [64].

Advantages, efficacy, and safety of the transdermal administration of oxybutynin were
the subject of several clinical trials discussed in the works of Cohn [65] and Vozmediano-
Chicharro [52]. The original pharmacokinetic parameters for different oral and transdermal
formulations can be found in the study of Kennelly [51]. Roughly [42], the oxybutynin
tablet (5 mg PO bid-qid) achieved a maximum concentration in serum of 12 ng/mL within
1 h with a half-life time of 2–3 h, whereas the extended-release formulation (5–30 mg PO
qd) enabled the concentration to reach a maximum of 4 ng/mL within 5 h and exhibited
a half-life time of 13 h. Few differences between the pharmacokinetic parameters of each
enantiomer, when orally administered as the racemate, have been detected [66]. Table 2
summarizes the maximum plasma concentrations of the enantiomers of oxybutynin and
desethyloxybutynin, at steady state, after administration of Ditropan® [50] and Ditropan
XL® [58] in children aged 5–15.

Table 2. Maximum plasma concentrations of the enantiomers of oxybutynin and desethyloxybutynin,
at steady state, after administration of Ditropan® and Ditropan XL® in children aged 5–15.

Cmax in ng/mL (tmax in h)

Oxybutynin
Tablets a

Oxybutynin
Syrup a

Oxybutynin
Extended-Release b

(R)-oxybutynin 6.1 ± 3.2 (1) 5.7 ± 6.2 (1) 0.7 ± 0.4 (1)
(S)-oxybutynin 10.1 ± 7.5 (1) 7.3 ± 7.3 (1) 1.3 ± 0.8 (1)
(R)-desethyloxybutynin 55.4 ± 17.9 (1) 54.2 ± 34.0 (1) 7.8 ± 3.7 (1)
(S)-desethyloxybutynin 28.2 ± 10.0 (1) 27.8 ± 20.7 (1) 4.2 ± 2.3 (1)

a: data normalized to an equivalent of Ditropan® tablets 5 mg BID or TID [50]; b: data normalized to an equivalent
of Ditropan XL® 5 mg daily [58].

Other alternatives enabling a decrease in the plasma concentration of N-desethyloxybutynin,
and consequently to reduce side-effects, have been studied and include rectal, intravesical,
as well as vaginal administrations.

Although still not commercially available, suppositories of oxybutynin were the
subject of several clinical trials, the first report appearing in 1998 [67]. The daily dose was
similar to that used in oral administration and varied between 5 and 20 mg. Suppositories
administered in the study of Winkler [67] contained 5 mg of oxybutynin for 1.25 g of fat. It
is noteworthy that the topic remains of interest, since suppositories loaded with oxybutynin
microparticles were recently described and evaluated by Bedse et al. [68].

Intravesical solutions were initially obtained by dissolving oxybutynin tablets (5 mg)
in distilled water (10 mL) and were instilled in the bladder by means of a catheter twice
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a day [69]. Discomfort associated with such a daily treatment led to the development of
a delivery system (UROS™, Situs Corp., San Diego, CA, USA) constituted by a reservoir
allowing the release of the drug over the period of a month that can be removed by
cystoscopy [70,71]. The device saw, however, little success. Improved systems of instillation
still attract attention, as evidenced by the recent patent literature [72,73].

Intravaginal gels containing oxybutynin [74,75] have been the subject of several in vivo
studies on an animal model (rabbits), but to the best of our knowledge, there has been no
clinical trial involving such gels. A preliminary determination of the efficacy of an insert
releasing oxybutynin in the vagina of rabbits was performed by the group of Levin in
2000 [76]. Other vaginal rings have been designed and some were successfully evaluated
in humans but still not commercialized [77–79].

Intravesical and intravaginal drug delivery systems for the treatment of bladder
diseases have been reviewed by Cerea [80] and Srikrishna [81], respectively.

6. Repositioning Opportunities

To date, 69 registered clinical trials can be retrieved in the database [82] of the U.S.
National Library of Medicine, when using “oxybutynin” as a search term. The majority of
them (50 trials) are studies on the safety and/or efficacy of oxybutynin for the treatment
of dysregulations of bladder activity and, anecdotally (one trial; NCT03877289), for the
treatment of cystitis in children. A Phase 2 trial analyzed the effects of a combination of oxy-
butynin and desloratadine (41; Figure 4) in cases of seasonal allergic rhinitis (NCT00816972;
started in 2005) and another Phase 2 trial studied the potential of a combination of oxybu-
tynin and clonidine (42; Figure 4) in reducing excessive salivation (sialorrhea) in patients
with Parkinson’s disease (NCT01370811; started in 2011).
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As detailed below, the remaining trials provided repositioning opportunities for the
management of hyperhidrosis (nine trials, but one, NCT02099695, has been withdrawn)
and hot flashes (four trials). More recently, there was an increase in interest for the use of
oxybutynin in combination (see Section 6.3) as a pharmacotherapy for obstructive sleep
apnea (four trials).

6.1. Hyperhidrosis

Hyperhidrosis [83–85] is the term used to define an excessive sweating without any
link with a normal response of the body to heat or effort. Armpits, soles of the feet,
palms of the hands, and face are the body regions that are the most frequently affected
by hyperhidrosis. Because stimulation of cholinergic receptors on eccrine sweat glands
is responsible for perspiration, hyperfunctioning of those glands could be controlled by
the use of anticholinergic agents [86]. That approach has been evaluated in the absence of
sympathetomy or after such a surgical intervention.

The first registered clinical trial dedicated to the efficacy of oxybutynin in the treatment
of axillary hyperhidrosis was launched in Brazil in 2007 (NCT01118429). Positive results
were published in 2011 [87] since the authors claimed that “more than 80% of the patients
experienced an improvement in axillary hyperhidrosis. . . . The side effects were minor, dry
mouth being the most frequent (73.5%)”.
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Among the other clinical trials, let us mention one Phase 3 trial (NCT01855256),
which started in 2013, and one Phase 4 trial (NCT01310712), which started in 2010 [88]).
Today, oxybutynin may be prescribed by physicians for the treatment of hyperhidrosis
(e.g., [89–93]).

6.2. Hot Flashes (Vasomotor Symptoms)

Hot flashes are sudden episodes of sensation of excessive heat of the body, often
accompanied by uncontrolled sweating and the appearance of red blotches on the face,
the chest, and the neck [94–96]. Those episodes can be associated, at least in part, with a
decrease in the level of estrogen and they involve numerous neurotransmitters, among
which are norepinephrine, serotonin, and acetylcholine. Frequent in healthy peri- and post-
menopausal women, vasomotor symptoms are also observed in patients under hormone
suppression therapies, among which are women having been diagnosed with some breast
cancers and men under treatment for prostate cancer [97,98].

Amid various drugs prescribed to decrease the frequency and/or intensity of hot
flashes [99], antimuscarinic agents, including oxybutynin, had been patented as early as
2007 [100]. The inventor (K.D. LaGuardia) had been involved in the first registered clinical
trial (Phase 2) on the subject, entitled “The effect of extended-release oxybutynin chloride
on vasomotor symptoms in healthy post-menopausal women” (NCT00990886; started in
2004). Results were published in a conference paper in 2007 [101] and in a manuscript
much later [102]. More recently, a Phase 3 trial (NCT02961790; started in 2016) successfully
evaluated the efficacy of lower doses of oxybutynin in the management of hot flashes in
women under hormonotherapy or not [103]. Further to those promising results, oxybutynin,
even if not FDA-approved for that application, is suggested as an alternative medication
by some oncologists and gynecologists [104–106]. Two more trials are still recruiting, one
(Phase 2) for the study of the efficacy of oxybutynin in men treated for prostate cancer
(NCT04600336; started in 2021). The second (Phase 3) will compare oxybutynin and
paroxetine (43; Figure 5), an antidepressant, in women with hormone-dependent breast
cancer (NCT05637671; started in 2022).
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6.3. Obstructive Sleep Apnea

Reduction in the activity of the upper airway dilator muscles is a normal phenomenon
during sleep. However, in the situation of obstructive sleep apnea, the reduction reaches
such an extent that it obstructs the flow of air into the lungs and temporarily blocks
breathing, perturbing oxygenation of the blood.

The possibility of restoring the activity of pharyngeal muscles under the influence of a
noradrenergic agent [107] and an antimuscarinic agent [108] had been highlighted years
ago. However, it is only recently that combinations of such drugs [109–111] emerged as
a challenging opportunity for the treatment of obstructive sleep apnea. More specifically,
the combination of oxybutynin and atomoxetine (44, Figure 6) was the subject of two
Phase 2 registered clinical trials, which started in 2016 (NCT02908529; [110]) and 2020
(NCT04115878). Two other Phase 2 trials (NCT05550246; NCT05944965) should start in the
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second half of 2023, as part of the Sleep Disorders Research Program of the Brigham and
Women’s Hospital at Boston (Boston, MA, USA).
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Two additional Phase 2 trials, sponsored by Apnimed (Cambridge, MA, USA), can be
retrieved in the database [82] of the U.S. National Library of Medicine, but, surprisingly,
they did not appear with the search term “oxybutynin”. In one trial (NCT 04445688), a
combination of oxybutynin (5 mg) and atomoxetine (80 mg) was defined under the code
name AD036. The conclusion of the evaluation was that “AD036 significantly improved
obstructive sleep apnea severity in patients with moderate pharyngeal collapsibility. Atom-
oxetine may account for the majority of improvement in obstructive sleep apnea severity,
while the addition of oxybutynin may mitigate the disruptive effect of atomoxetine on
sleep and further improve ventilation” [112]. Soon after, the company sponsored another
Phase 2 trial (NCT04631107) with the combination of the (R)-enantiomer of oxybutynin
and atomoxetine, in poorly defined proportions and under the code name AD109. In
the published results [10], it was intriguingly reported that “the current study is with
aroxybutynin (AD109), a new enantiomerically pure form of oxybutynin. . .”. Anyway, the
authors concluded that “this study provides additional support that a pharmacological
intervention for obstructive sleep apnea, namely the combination of atomoxetine and
aroxybutynin, offers promising results. Additional development of this compound and
others is warranted”.

7. Conclusions

Oxybutynin improves bladder control in cases of incontinence and excessive urination
frequency by blocking M3 muscarinic receptors on the detrusor muscle. The drug, also
named 4-diethylamino-2-butynyl 2-cyclohexyl-2-hydroxy-2-phenylacetate, possesses a
chiral center and is commercialized under the form of the racemate. Its synthesis requires
three key reactions, namely (i) a Grignard reaction; (ii) a Mannich reaction; and (iii) an
esterification or a transesterification in order to bound an acidic segment containing the
chiral center and the chain containing the triple bond. Despite the fact that enantiomerically
pure isomers are not in clinical use, there was, in the years 2000–2010, a marked interest
in the preparation of (S)-oxybutynin and more specifically in the design of protocols
yielding essential intermediates required to afford it, namely (S)-2-cyclohexyl-2-hydroxy-2-
phenylacetic acid and analogs. Very recently, the (R)-enantiomer of oxybutynin attracted
attention because of a potential efficacy, in combination with atomoxetine, in the treatment
of obstructive sleep apnea.

In the gut and the liver, oxybutynin is rapidly converted into the active N-desethyloxybutynin
metabolite, which is thought to be responsible for the most frequent dry mouth side-effect
observed when taking the drug. That observation gave rise to intense efforts in order to
find a means of bypassing the first metabolic step. That led to successful and extensively
prescribed extended-release and transdermal formulations, among other things.

A number of clinical trials also indicated that oxybutynin could help manage hyper-
hidrosis, hot flashes, and, in combination with atomoxetine, obstructive sleep apnea. This
represents a new hope to ease the daily life of many persons, and among them patients
under hormonotherapy.
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