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Abstract: The present work aims to identify the predictors of hemodynamic failure (HF) developed
during pediatric intensive care unit (PICU) stay testing a set of machine learning techniques (MLTs),
comparing their ability to predict the outcome of interest. The study involved patients admitted to
PICUs between 2010 and 2020. Data were extracted from the Italian Network of Pediatric Intensive
Care Units (TIPNet) registry. The algorithms considered were generalized linear model (GLM),
recursive partition tree (RPART), random forest (RF), neural networks models, and extreme gradient
boosting (XGB). Since the outcome is rare, upsampling and downsampling algorithms have been
applied for imbalance control. For each approach, the main performance measures were reported.
Among an overall sample of 29,494 subjects, only 399 developed HF during the PICU stay. The
median age was about two years, and the male gender was the most prevalent. The XGB algorithm
outperformed other MLTs in predicting HF development, with a median ROC measure of 0.780
(IQR 0.770–0.793). PIM 3, age, and base excess were found to be the strongest predictors of outcome.
The present work provides insights for the prediction of HF development during PICU stay using
machine-learning algorithms.

Keywords: machine learning techniques; hemodynamic failure; PICU; imbalance management;
outcome prediction

1. Introduction

Heart failure or hemodynamic failure (HF) in children is a rare progressive clinical
and pathophysiological syndrome caused by cardiovascular and non-cardiovascular abnor-
malities that result in signs and symptoms including edema, respiratory distress, growth
failure, and accompanied by circulatory, neurohormonal, and molecular dysregulation [1].
Causes, mechanisms, incidence, and prevalence of HF in children are more different from
those in the adult population. Primary or secondary HF diagnosis in children could
often be associated with congenital or vascular malformations or cardiomyopathies, in
lower prevalence with infective endocarditis, myocarditis, rheumatic fever, pneumonia,
anthracycline toxicity, and renal disorders [2]. In the last year, an increased rate of HF and
myocardial dysfunction requiring pediatric intensive care unit (PICU) admission seemed to
be largely spared due to the SARS-CoV−2 inflammatory multisystem syndrome [3]. Thus,
the prognosis for children with HF is poor, and many cases progress to requiring emergency
hospital management and need heart transplantation when drug therapy failed. However,
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in rare cases, pediatric HF could arise during hospitalization, especially in critically ill
patients with severe baseline conditions, leading to a further worsening of the patients’
clinical status. Due to the rarity of the phenomenon, to our best knowledge, there are no
studies about patients who developed HF during PICU stay.

Identifying patients at high risk of HF development would be helpful for clinicians
since they could focus on managing such patients to prevent this severe condition and the
potential worse outcome. However, as this condition could rarely arise during PICU stay, it
is necessary (i) to use large registries that collect a vast amount of clinical information about
PICU patients and (ii) to apply statistical methods that can both manage a high number of
considered variables and account for the significant imbalance between the groups (low
number of events vs. high number of non-events). Several methods have been employed
to develop prediction models and risk scores in patients with cardiovascular diseases, from
traditional statistical approaches to more advanced machine learning techniques (MLTs).
In the adult population with HF, machine learning algorithms create risk scores estimating
the likelihood of a heart failure diagnosis and the probability of outcomes such as all-cause
mortality, cardiac death, and hospitalization [4–7]. MLTs are also increasingly used for hard
outcome prediction in the clinical setting (e.g., in-hospital cardiac arrest) since they present
several advantages over traditional methods and show promising performance and better
power than existing prediction systems [8,9]. They help extricate complex relationships
between covariates and outcome of interest, even though a low number of events have
occurred with respect to the many variables to be tested.

Since no studies explore the issue of HF development in pediatric patients during the
ICU length of stay, and since the overall prevalence of HF in the pediatric population has
been reported to be 0.1% [2], the outcome to be estimated could be particularly imbalanced
when compared with total ICU admissions. If this happens, in training an MLT model
for risk stratification purposes, it could be biased for patients without HF (majority class)
due to the imbalance in data and eventually increasing Type II errors. In such cases, MLT
methods should be accompanied by imbalance management procedures to prevent them
from becoming a null model, i.e., systematically tending to make incorrect predictions
about the least represented HF class (minority class) [10].

Our study aims to identify predictors of new-onset HF during PICU stay testing a set
of MLTs, comparing their ability to predict the outcome of interest by considering the main
imbalance management techniques [11].

2. Materials and Methods
2.1. Data Source and Study Population

PICU admission data were extracted from the Italian Network of Pediatric Intensive
Care Units (TIPNet) registry. TIPNet is a research network involving more than 20 Italian
PICUs. We included patients admitted to 23 Italian PICUs in the period between 1 January
2010 and 31 December 2020. Only patients aged less than 18 years and for whom congenital
heart disease or cardiovascular insufficiency was not the reason for PICU admission were
considered. Data about clinical characteristics at admission were extracted and considered
for the analyses, particularly those used for PIM 3 score calculation [12]. The outcome
was represented by the development of hemodynamic failure (HF) during the PICU
stay. All definitions of clinical conditions used in the present study are in relation to
the need for admission in a pediatric intensive care setting and are specified in Table S1
(Supplementary Materials).

Data are collected using a standardized electronic sheet (REDCap-platform, REDCap,
TN, USA) [13] and anonymized at the moment of data extraction. All investigations were
carried out following the Declaration of Helsinki. This study is part of a multiple research
program based on TIPNet Registry, approved on 23 May 2014 by the Ethic Committee of
Milano Area C—Niguarda Cà Granda Hospital (protocol number 269-052014).
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2.2. Machine Learning Techniques

We constructed predictive models for hemodynamic failure during the PICU stay
using the following approaches: generalized linear model (GLM), recursive partition
tree (RPART), random forest (RF), neural networks models, and extreme gradient boost-
ing (XGB).

• Generalized linear models (GLM) are frequently used to analyze binary data. We
specified a complementary log-log link (clog log) given that an asymmetric link
function is more appropriate when imbalanced data are analyzed [14]. We compared
the GLM (clog log) model with machine learning techniques (MLTs) to see whether
the ML approaches can deliver more remarkable results.

• RPART can be used for classification and regression tasks. Breiman proposed the
classification and regression tree (CART), the best-known methodology for construct-
ing decision trees (DT) [15]. The basic goal of a DT is to repeatedly decompose data
into smaller subsets using a set of splitting rules until a specific stopping criterion
is encountered. The key advantage of this method is that the tree structure is easily
interpretable; however, this algorithm is prone to over-fitting [16].

• Random forest is a supervised ensemble learning method that builds a collection
of decision trees obtained via bootstrap aggregation, resulting in a forest of trees to
predict the outcome of interest. The RF model turns out to be less interpretable than
DT but improves the robustness of predictions [17].

• In its simplest form, the neural network model is composed of an input layer, a hidden
layer, and an output layer (three layers of neurons which are connected). The features
extracted by the model represent the input layer and are used to predict an output.
The nodes displayed in the input layer communicate with each node in the hidden
layer, which is connected to an output layer. The purpose is to compute a weighted
sum based on ‘neurons’ importance and to provide an output [18].

• A single-hidden-layer neural network (NNET) representing the simplest form of the
neural network, in which there is only one layer of input nodes that send weighted in-
puts to a subsequent layer of receiving nodes has been considered for the computation.

• XGB is a decision-tree-based ensemble machine learning algorithm that can be used for
classification or regression problems, increasing model accuracy. XGB uses a gradient
boosting framework; the idea is to build trees sequentially in such a way as to ensure
that the errors of the previous three are reduced; on the contrary, RF combines results
at the end of the process training independently each classifier [19].

2.3. Imbalance Control and Missing Data Imputation Techniques

Since the outcome of interest is an infrequent event, a crucial numerical imbalance
between the two groups is expected to be observed. Therefore, two different techniques for
imbalance control have been applied: the downsampling and upsampling methods [20].
The downsampling technique (also called decimation), reduces the sampling rate of the
most represented group [21]. The method randomly subset all the classes in the training set
so that their class frequencies match the least prevalent (minority) class. A random sample
of the majority class, having the same size as the minority class, has been performed and
the procedure has been repeated within the resampling.

Conversely, the upsampling technique (or interpolation) increases the sampling rate
of the less represented group. The procedure randomly samples (with replacement) the
minority class to be the same size as the majority class [22].

2.4. Missing Data Imputation

The missing values’ imputations were performed by using a multivariate imputa-
tion by chained equations method (MICE). The method is based on a fully conditional
specification, where a separate model imputes each incomplete variable. In addition, the
predictive mean matching method has been considered for imputing numeric data; the
logistic regression imputation for binary data, the polytomous regression imputation for
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unordered categorical data and the proportional odds model for ordinal variables [23].
Five imputations have been considered.

2.5. Model Training and Validation

The models were tuned within 100 bootstrap resampling iterations. A random search
procedure was considered to identify the tuning parameters. This method sets up a grid of
hyperparameter values and selects random combinations to train the model and score [24].

The model performances (ROC, accuracy, F statistics, sensitivity, and specificity) were
computed within resamples and adjusted for over-optimism to internally validate the
performance adjusting for overfitting [25]. The optimism adjusted bootstrap technique is
as follows:

1. Fit a model on the whole data set.
2. Calculate the apparent performance of this model corresponding to the error that the

model demonstrates on the original dataset.
3. Create 100 bootstrap resamples.
4. For every bootstrap resample, fit the model on that resample, calculate the apparent

performance for this model on the bootstrap resample it was trained on, and find the
apparent performance on the original dataset.

5. Calculate the optimism by performing the difference between the apparent per-
formance obtained within the bootstrap resample and the apparent performance
obtained on the original dataset.

6. Calculate the average optimism from all of the bootstrap samples.
7. The final performance is achieved by computing the difference between the original

data apparent performance and the optimism measure [26].

2.6. Statistical Analysis

Descriptive statistics were reported as I quartile/median/III quartile for continu-
ous variables and percentages (absolute numbers) for categorical variables. In addition,
Wilcoxon-type tests were performed for the continuous variables and the Pearson chi-
square test, or Fisher exact test, whichever is appropriate, for the categorical variables.

Sensitivity, specificity, accuracy, and the receiving operative characteristic curve (ROC)
measures, with interquartile ranges (IQR), were used for model comparison and per-
formance assessment. For the most promising MLT, the variable importance plot was
reported together with the ROC curve and the median-balanced accuracy measure within
the resampling.

The present analyses were performed using R Statistical Software 4.1.0 (Vienna, Aus-
tria) [27] with the rms [28], caret [29], and xgboost [30] packages.

3. Results

A sample of 31,453 subjects admitted to PICUs in the period between 1 January 2010
and 31 December 2020 was considered. Among these, 1959 were excluded: 251 were
affected by congenital heart disease, 1262 had cardiovascular insufficiency at admission,
and 446 presented both conditions. A final sample of 29,494 subjects was selected and,
among these, only 399 developed hemodynamic failure during the PICU stay. Table 1
presents the subjects’ baseline characteristics according to the outcome development.

Overall, the median age of the subjects enrolled was about 2 years. The prevalence of
the male gender was found to be higher than the female one (57% in the sample overall),
even though it was found to be higher in subjects who did not develop hemodynamic
failure during PICU stay (57% vs. 51%; p-value 0.020). Subjects who developed HF were
significantly more likely to suffer from previous comorbidities, to be admitted with medical
diagnosis, and to present organ failure at admission (p-value < 0.001), but less likely to
be born for less than 7 days (p-value < 0.001). The prevalence of respiratory failure was
found to be higher than for others. Furthermore, in subjects who developed the outcome,
the elective admissions and those for surgery’s recovery were observed as significantly
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less (p-value < 0.001), but cases were more likely to be ventilated in the first hour after
admission and presented a higher PIM 3 score (p-value < 0.001). No significant differences
were detected in drug sedation conditions, in base excess values, and the prevalence of
very high-risk or high-risk diagnoses.

Table 1. Subjects’ baseline characteristics according to outcome development (HF). Data are I quartile/median/III quartile
for continuous variables and percentages (absolute numbers) for categorical ones.

Characteristics N No HF (N = 29,095) HF (N = 399) Combined (N = 29,494) p-Value

Age (days) 29,494 133/754/2766 132/881/2874 133/755/2768 0.402
Gender: Male 29,494 57% (16,559) 51% (204) 57% (16,763) 0.020

Female 43% (12,536) 49% (195) 43% (12,731)
Newborn: Yes 29,485 6% (1665) 2% (7) 6% (1672) <0.001

No 94% (27,421) 98% (392) 94% (27,813)
Comorbidity: Yes 27,931 45% (12,451) 59% (235) 45% (12,686) <0.001

No 55% (15,081) 41% (164) 55% (15,245)
Home medical aids: Yes 26,153 7% (1886) 5% (20) 7% (1906) 0.114

No 93% (23,883) 95% (364) 93% (24,247)
Admission type: Surgical 27,921 45% (12,322) 17% (68) 44% (12,390) <0.001

Medical 50% (13,771) 76% (304) 50% (14,075)
Trauma 5% (1429) 7% (27) 5% (1456)

Organ failure at admission: Yes 27,458 58% (15,759) 87% (349) 59% (16,108) <0.001
No 42% (11,300) 13% (50) 41% (11,350)

Respiratory failure (at admission):
Yes 29,494 48% (14,010) 76% (305) 49% (14,315) <0.001

No 52% (15,085) 24% (94) 51% (15,179)
Neurologic failure (at admission):

Yes 29,494 9% (2538) 19% (77) 9% (2615) <0.001

No 91% (26,557) 81% (322) 91% (26,879)
Renal failure (at admission): Yes 29,494 3% (823) 12% (47) 3% (870) <0.001

No 97% (28,272) 88% (352) 97% (28,624)
Drug sedation: Yes 27,454 32% (8686) 31% (124) 32% (8810) 0.663

No 68% (18,369) 69% (275) 68% (18,644)
Ventilation in the first hour: Yes 26,393 48% (12,378) 66% (252) 48% (12,630) <0.001

No 52% (13,636) 34% (127) 52% (13,763)
Base excess 26,368 −3.0/0.0/0.0 −4.7/0.0/1.2 −3.0/0.0/0.0 0.143

Elective admission: Yes 26,390 44% (11,351) 19% (71) 43% (11,422) <0.001
No 56% (14,660) 81% (308) 57% (14,968)

Recovery from a procedure: Yes 26,394 47% (12,159) 28% (108) 46% (12,267) <0.001
No 53% (13,855) 72% (272) 54% (14,127)

PIM 3 26,280 0.28/0.77/2.20 1.02/3.25/8.12 0.28/0.79/2.27 <0.001
Very high/high risk diagnosis: Yes 29,494 89% (25,764) 88% (351) 89% (26,115) 0.717

No 11% (3331) 12% (48) 11% (3379)

Abbreviations: HF, hemodynamic failure; PIM, Pediatric Index of Mortality.

3.1. MLTs Performance

Table 2 describes the different MLTs’ performances, using the original sample distribu-
tion or the two methods for imbalance control (downsampling and upsampling). Those
algorithms and techniques were also applied to the original data without imputation of
missing ones.

Compared to the other sampling method, downsampling shows a better performance.
After the imputation of missing data, random forest and XGB algorithms outperformed the
other MLTs in predicting the development of HF during PICU stay (Table 2 and Figure 1).
In particular, XGB presented a better ROC measure (median 0.780, IQR 0.770–0.793), and,
looking at the values of sensitivity and specificity, it provided a better balance than the
other techniques between these two measures.
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Table 2. Comparison of the performance of the MLT algorithms (after missing data imputation). Measures are reported as I
quartile/median/III quartile.

Technique Sampling Method Sensitivity Specificity Accuracy ROC

GLM
Original sampling 1/1/1 0/0/0 0.985/0.986/0.987 0.756/0.769/0.782

Downsampling 0.672/0.690/0.705 0.651/0.681/0.714 0.672/0.690/0.703 0.745/0.756/0.771
Upsampling 0.659/0.671/0.675 0.688/0.699/0.735 0.659/0.671/0.675 0.761/0.769/0.776

RPART
Original sampling 0.997/0.998/0.999 0/0.0123/0.020 0.984/0.985/0.986 0.608/0.643/0.709

Downsampling 0.672/0.715/0.725 0.566/0.596/0.669 0.673/0.714/0.723 0.704/0.719/0.724
Upsampling 0.940/0.943/0.946 0.171/0.194/0.218 0.930/0.933/0.936 0.559/0.568/0.580

NNET
Original sampling 0.999/0.999/1 0/0/0 0.985/0.986/0.986 0.711/0.722/0.741

Downsampling 0.585/0.625/0.685 0.690/0.762/0.791 0.588/0.627/0.685 0.694/0.720/0.745
Upsampling 0.638/0.669/0.700 0.675/0.717/0.757 0.639/0.670/0.700 0.715/0.725/0.742

RF
Original sampling 1/1/1 0/0/0 0.986/0.986/0.987 0.739/0.748/0.757

Downsampling 0.756/0.763/0.771 0.587/0.623/0.640 0.754/0.761/0.768 0.757/0.769/0.776
Upsampling 0.999/1/1 0/0.007/0.014 0.985/0.985/0.986 0.731/0.739/0.744

XGB
Original sampling 1/1/1 0/0/0.006 0.986/0.986/0.987 0.750/0.758/0.769

Downsampling 0.689/0.696/0.714 0.673/0.713/0.750 0.689/0.695/0.714 0.770/0.780/0.793
Upsampling 0.962/0.964/0.966 0.156/0.171/0.180 0.952/0.953/0.954 0.718/0.723/0.733

Abbreviations: GLM, generalized linear models; RPART, recursive partition tree; NNET, neural networks; RF, random forest; XGB, extreme
gradient boosting; ROC, receiving operative characteristic.

Figure 1. Comparison of the performance of the MLT algorithms. (Panel A) presents the ROC. (Panel B) presents the
F-score measure.

Similar results were obtained considering only complete case data (Table S2, Supple-
mentary Materials).

3.2. Variable Importance in Predicting the Outcome According to the Random Forest Model

Since random forest was found to be one of the two MLTs with the best performance, it
was chosen to identify the predictors of in-PICU HF development. Figure 2 reports the plots
of the variable importance measures according to the mean decrease accuracy. PIM 3 score
and age, together with base excess, were found to be the strongest predictors of in-PICU
HF development (Figure 2). Conversely, organ failure at admission, comorbidities and
previous medical aids use, admission type, and the presence of very high-risk or high-risk
diagnosis were found to provide only a small contribution in predicting the outcome.
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Figure 2. Random forest’s variable importance plot (Panel A) and ROC curve on the random forest predictions (Panel B).

A sensitivity analysis was performed reporting the variable importance measures
across methods (Figure S3, Supplementary Materials). The importance measures agree
across the best performing MLTs (RF and XGB) and NNET. Moreover, The PIM 3 is ranked
across the first three leading predictors for all the considered MLTs.

4. Discussion

The present study aimed to compare the performance, in terms of accuracy level, of
different MLTs in predicting HF development during PICU stay in patients enrolled in
the TIPNet registry. Using the downsampling approach to control data imbalance, RF
and XGB techniques were found to have the best performance in predicting the outcome.
The average accuracy, sensitivity, and specificity of RF were 76.1%, 76.3%, and 62.3%, and
69.5%, 69.6%, and 71.3% for XGB. The ROC measures were 0.77 and 0.78, respectively.

From the clinical point of view, MLTs represent a promising opportunity to develop
models able to predict hospital admissions/readmissions of HF patients [7] and hard in-
hospital outcomes such as cardiac arrest, death, and the development of new severe clinical
conditions. Churpek et al. conducted a multicenter study using machine learning methods
for predicting clinical deterioration in the wards, including cardiac arrest, ICU transfer, and
death. They reported that at 24 h before the occurrence, the RF and XGB models achieved
the most accurate prediction, with AUCs of 0.80 and 0.79, respectively [31]. More recently,
Yun et al. compared different machine learning algorithms’ abilities to predict in-hospital
death of critically ill patients admitted to the surgical intensive care unit. They found that
the decision tree showed higher classification results (AUC = 0.96) [32]. Moreover, Wu
et al. found that the XGB algorithm was the most accurate compared to the other seven
algorithms and showed promising discrimination for detecting in-hospital cardiac arrest,
reporting accuracy of 88.9%, sensitivity of 73%, and F1 score of 80% [9].

To the best of our knowledge, there is no similar evidence on the pediatric population
with HF, even if MLTs have also been primarily used in developing predictive models in
critically ill children. For example, several studies used MLTs for early mortality prediction,
the development of sepsis, or the need for pediatric intensive care unit transfer for newly
hospitalized children [33–35]. However, no studies have investigated the development of a
severe condition such as HF in patients admitted to PICU. This can certainly be justified by
the fact that it is a sporadic event. In fact, in our cohort of almost 30,000 subjects, only 1.3%
showed this outcome.

The present work showed an outperformance of random forest and XGB models com-
pared to the other algorithms tested after a downsampling procedure for imbalance control.
Comparing MLTs in predicting hard outcomes in adult ICUs setting (e.g., in-hospital mor-
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tality) is under debate but remains under-addressed in the pediatric ICU environment.
However, the results agree with the literature concerning the mortality outcome prediction
via MLT models in the ICU setting [36]. For example, the gradient boosting (GB) model
showed the highest ROC (0.79 (0.77–0.80)) for the 30-day mortality prediction in mechan-
ically ventilated patients, followed by the random forest model (0.78 (0.76–0.80)). Other
studies conducted to predict the ICU mortality outcome in COVID−19 patients confirmed
that the random forest model, followed by the GB predictive tool, outperformed the other
MLTs [37]. Furthermore, the XGB model performs better, in comparison with the other
MLTs, in predicting the adverse outcome of critically ill influenza patients admitted to the
ICU [38]. Generally, the random forest, GB, and XGB methods are demonstrated to make
more accurate predictions than an individual MLT model since they are ensemble methods
combining the predictions from multiple learners [16].

Most medical datasets are not balanced in their class labels [39]. In addition, the
greater part of MLTs tends not to perform well in predicting the minority underrepresented
classes without adopting imbalance management procedures [40]. The most common
methods to handle imbalance are based on downsampling and upsampling algorithms [41].
This research revealed that the downsampling method handles the imbalance between
classes more successfully than the upsampling one, achieving a more real trade-off between
predictive sensitivity and specificity. Moreover, these findings agree with the literature
indicating a more effective performance for the downsampling procedure compared to the
upsampling [41].

On the other hand, the upsampling methods may involve more computational time
efforts during the training procedure and are more prone to overfitting issues [40]. The
downsampling procedure outperforms the upsampling in terms of computational efforts
and memory storage [41]. Moreover, Drummond and Holte [42] demonstrated that the
downsampling procedures yield a better minority class prediction performance in compar-
ison with the upsampling procedure.

Interestingly, the variables found to contribute to in-hospital mortality were PIM 3
score and age. At the same time, the organ failures, comorbidities, and admission types
played a minor role in the HF development prediction. However, it is worth pointing
out that it is difficult to compare results from the literature since this outcome has never
been explored before. Notably, we found that the most important variables in the random
forest model have also been shown to be important predictors in prior research in pediatric
settings [12]. Recently, Lee et al. developed a machine learning model for predicting
pediatric mortality in the early stages of intensive care unit admission and compared it
with PIM 3 score [33]. Interestingly, they found that the random forest model performed
better than PIM 3 score in predicting mortality. Furthermore, as in our results, base excess
was among the more significant clinical variables associated with the outcome. However,
in the present study, laboratory data and instrumental parameters have not been used in
prediction models, but it would be interesting to explore a different set of baseline variables
for predicting such an outcome.

Since the number of subjects experiencing the outcome is very limited, the main
limitation of the present study lies in the fact that it is difficult to fragment and specify more
effectively the subjects’ characteristics. Moreover, the quality of care might change during
the study period; therefore, results may not be generalized for patients in more recent years.
However, on the other hand, using an extensive multicenter database allowed us to still
be able to capture the phenomenon, which otherwise would have been impossible using
monocentric data.

5. Conclusions

Present findings suggest that MLTs may be a promising opportunity to predict HF
development in pediatric patients during ICU stay by exploiting baseline information
collected by a multicenter registry. However, further research is needed to improve their
accuracy level and to better evaluate their usefulness in clinical practice.
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