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Abstract: Preventing respiratory failure is crucial in a large proportion of COVID-19 patients infected
with SARS-CoV-2 virus pneumonia termed as Novel Coronavirus Pneumonia (NCP). Rapid diagnosis
and detection of high-risk patients for effective interventions have been shown to be troublesome.
Using a large, computed tomography (CT) database, we developed an artificial intelligence (AI)
parameter to diagnose NCP and distinguish it from other kinds of pneumonia and traditional
controls. The literature was studied and analyzed from diverse assets which include Scopus, Nature
medicine, IEEE, Google scholar, Wiley Library, and PubMed. The search terms used were ‘COVID-
19’, ‘AI’, ‘diagnosis’, and ‘prognosis’. To strengthen the overall performance of AI in COVID-19
diagnosis and prognosis, we segregated several components to perceive threats and opportunities,
as well as their inter-dependencies that affect the healthcare sector. This paper seeks to pick out the
crucial fulfillment of factors for AI with inside the healthcare sector in the Indian context. Using
critical literature review and experts’ opinion, a total of 11 factors affecting COVID-19 diagnosis and
prognosis were detected, and we eventually used an interpretive structural model (ISM) to build a
framework of interrelationships among the identified factors. Finally, the matrice d’impacts croisés
multiplication appliquée á un classment (MICMAC) analysis resulted the driving and dependence
powers of these identified factors. Our analysis will help healthcare stakeholders to realize the
requirements for successful implementation of AI.

Keywords: AI; COVID-19; diagnosis; interpretive structural modeling; healthcare

1. Introduction

This manuscript emphasizes potential areas of academic studies that are possible to
be impacted via COVID-19. The aim of this paper is to develop diagnostic and prognostic
models via Computed Tomography to deal with COVID-19 patients tormented by pneu-
monia and to come to be privy to the research regions associated with COVID-19 diagnosis
and prognosis. It may help enhance the information of this disorder and describe the
psychological effects of this pandemic and how these could trade as the ailment spreads.

The novel coronavirus, specifically SARS-CoV-2, emerged in December 2019 to cause
a respiratory sickness known as COVID-19, which has shown to be a difficult illness with
severity levels ranging from moderate to severe, as well as the risk of organ failure and
death. Around 213 countries and territories have been affected with a hard dependency
on 386,600 deaths worldwide [1,2]. COVID-19 has triggered a global health catastrophe
that has had a profound impact on how we perceive our global and everyday lives. Not
only does the cost of contagion and the different types of transmission endanger our sense
of entity, but the protection safeguards to cease the virus from spreading also necessitate
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social distancing by refraining from doing what is inherently human, which is to seek
solace in the ventures of others. According to the World Health Organization (WHO), the
most common result of elevated COVID-19 is severe pneumonia [3]. COVID-19 can be
fatal for people who develop symptoms in their lungs [4,5]. Doctors use imaging studies to
search for swelling, inflammation, or fluid inside the lungs to diagnose pneumonia. X-ray
or CT (computed tomography) scans is recommended to identify pneumonia [3,6].

AI plays a key role in drug repurposing. Bioinformatics is a powerful tool for acceler-
ating drug discovery. Given the current circumstances, applying bioinformatics methods
to solve the problem is critical [7]. AI approaches are increasingly being used in drug
discovery to solve previously tough problems such as predicting characteristics, creating
compounds, and optimizing synthetic routes. Tools such as binding simulations, protein
modeling, and computational chemistry are commonly employed in related fields; never-
theless, they should be used with caution because the conformational space is complicated
and entropic contributions from the surrounding solvent are significant. Various types
of AI are utilized to create compounds and models, which are then used for training and
supervised learning [8].

AI is being used to help fight the viral pandemic that has overtaken the entire world
since the year 2020 began. The press and scientific community are echoing the high hopes
that data science and AI may be utilized to combat the coronavirus and “fill in the blanks”
left by science [9–11]. AI technology enables radiologists and physicians make faster
diagnosis. Importantly, our AI tool revealed crucial scientific markers that were linked to
the features of the Novel Coronavirus Pneumonia (NCP) disease. Our AI machine was
able to deliver accurate medical prognosis using medical data, allowing physicians to
focus on proper early medical control and spend resources correctly. Outbreaks result
in a significant increase in the number of people seeking medical help. To lessen the
strain on the health-care system, high-quality diagnosis and prognosis metrics have been
implemented. Prediction models, which use a few predictors (variables or features) to
assess the probability of infection or poor infection outcomes, may help the scientific team
screen patients while allocating limited healthcare resources. Prediction models have
already been developed and worked on, starting with rule-based scoring systems and
progressing to deep learning; however, the results are not rewarding enough [10,12]. A
layout of diagnostic and prognostic management in the context of the AI-based healthcare
sector is shown in Figure 1.
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The framework for the application of AI in diagnosis and prognosis is shown in
Figure 2. This paper is structured as follows: Section 2 entails the significance of diagnosis
and prognosis and how AI can tame the diagnosis and prognosis through CNN procedure.
Section 3 focuses on the proposed models to estimate the clinical diagnosis and prognosis.
Section 4 highlights the results and discussion. Section 5 discusses the managerial impli-
cations. Section 6 discusses the practical implications. Section 7 delves into the findings
based on the AI in COVID-19 diagnosis and prognosis.
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2. Related Work

This section is classified into four subsections. The first subsection presents the factors
related to COVID-19 diagnosis and prognosis. The second part focuses the application
of AI in healthcare and the third section entails the role of AI in diagnosis and prognosis.
Finally, subsection four implies the significance of statistical analysis of AI in healthcare.

2.1. Factors Related to COVID-19 Diagnosis and Prognosis

AI refers to the simulation of human intelligence in computers that are trained to think
and act like humans. The phrase can also refer to any computer that has features akin to
a human mind, such as learning and problem-solving abilities. An advanced technology
that is helpful to tackle the COVID-19 pandemic is AI. This technology helps to screen,
monitor, and forecast patients today and in the future. Early detection and diagnosis
of infection are the main applications of this AI. AI is used for medication and vaccine
production and workload reduction in health staff [6,13]. A Computerized Tomography
(CT) scan combines a series of X-ray images taken from different angles across the body to
create cross-sectional images (slices) of your bones, blood vessels, and soft tissues. X-rays
are less informative than CT scan images. Imaging may help to determine the severity
of the disease in patients with extreme symptoms. CT scans or X-rays can help assess
a patient care plan by using laboratory testing, detailed medical history, and a physical
examination [2,10,14].

NCP (Novel Coronavirus Pneumonia) is an inflammatory lung infection in small
airbags. It makes it difficult to breathe because their lungs gets filled with so much fluid
and pus. Significant shortness of breath, cough, fever, chest pain, chills, or weariness can
be present. The majority of people with COVID-19 have moderate to mild symptoms such
as cough, fever, and shortness of respiration. However, some people who capture new
coronaviruses develop extreme pneumonia. The pneumonia of COVID-19 is a dangerous
and deadly disease [3,15].

Medical advice suggests a positive test result can only be reported nearly a week after
exposure to COVID-19. Evidence shows that the experiment is generally less effective
within the three days of exposure, and the safest time to get checked is five to seven days
after you have been exposed. The advice is also to put the used mask fabric in a closed
bin and wash your hands immediately [13,16]. Contract data COVID-19 lists a set of
complications for ongoing clinical trials, including a higher probability of missing outcome
details. Trial experts should examine the management plans for missing facts and statistical
analysis, according to international standards on clinical studies, although there are no clear
suggestions. [10,17,18]. Physical examination, pneumonia is the most common severe type
of COVID-19 after the initial surgery. In these conditions, fever, cough, dyspnea, and chest
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imaging anomalies are recurrent [11,19]. The swift consultation by experts responds to the
request made in connection with a temperature, humidity, and possible seasonal reduction
and re-emergence of the SARS-CoV2 virus by the Office of the Science and Technology
Pacific (OSTP) [20,21].

In older people, the risk of serious COVID-19 disease is increased. In their 50s,
for instance, people are more at risk for serious illness than in their 40s. Similarly, in
general, persons in their 60s or 70s are more vulnerable than persons in their 50s to serious
disease [11,22]. Regarding gender, evidence from previous epidemics, such as the outbreak
in 2002–2003 of SARS coronavirus, suggests that both men and women are vulnerable
to the virus as well as to the infection due to gender and sexual factors [16,23]. When it
comes to body temperature, regardless of the outside temperature or weather, the average
human body temperature remains between 36.5 ◦C and 37 ◦C. Temperature screening
alone is not an efficient means to avoid the spread globally, as the infected person may be
in the incubation phase, may not express noticeable symptoms early in the course of the
disease, and may dissimulate fever using antipyretic agents. To ensure that a proper risk
assessment and future contact monitoring for incoming travelers is feasible, it is better to
provide prevention advice to passengers and to obtain health declarations at arrival with
contact information [15,23].

There is growing uunderlying disease evidence for the increased risk of death due
to COVID-19 in people with established chronic conditions or affected immune systems
due to disability. Elderly people and those with underlying medical disorders such as
cardiovascular disease, diabetes, chronic respiratory illness, and cancer are more likely to
develop the disease [17,24].

2.2. Past Studies Regarding the Application of AI in Healthcare

The objective of AI is to emulate cognitive abilities. The increasing quality of health-
care data, combined with the rapid advancement of analysis methodologies, is causing a
paradigm shift in healthcare. AI may be used on a variety of healthcare data sets (structured
and unstructured). Popular AI methodologies include structured data machine learning
methods such as the classic support vector machine and neural network, as well as un-
structured data deep learning and natural language processing [25,26]. Cancer, neurology,
and cardiology are three major illness areas that use AI techniques. In certain areas of
healthcare, professionals can use AI to help them make better healthcare decisions, and it
may even be able to replace human judgments (e.g., radiology). The rapid development
of big data analytic methodologies, as well as the rising availability of healthcare data,
has made recent effective uses of AI in healthcare possible. When used in conjunction
with the right clinical questions, substantial results can be achieved systems can reveal
therapeutically important information hidden in large amounts of data, allowing clinicians
to make better decisions [9,13,27].

CNN (Convolutional Neural Network) is a deep neural network type, most frequently
used for the analysis of visual imagery. Nanoparticles and deep neural networks are
used to detect viruses [20,28]. Radiologists employ medical imaging to diagnose and
treat illnesses. Chest X-rays are now commonly acknowledged as the first-line imaging
technology, with chest CT reserved for the most severely ill patients or when chest X-rays
and clinical presentation are inconclusive [6,29].

AI systems must be “trained” utilizing data generated by clinical activities such as
screening, diagnosis, and therapy assignment in order to understand similar groups of
subjects, relationships between subject features, and desired outcomes. Demographics,
medical notes, electronic records from medical equipment, physical examinations, clinical
laboratory tests, and photographs are just some of the types of clinical data [30].

Physical examination reports and clinical laboratory findings are the other two key
data sources. They differ from imaging, genetic, and electrocardiography (EP) data in
that they contain a large amount of unstructured narrative content, such as clinical notes,
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that is difficult to interpret [16,31]. As a result, AI applications focused on converting
unstructured data into machine-readable electronic medical records (EMR).

There are two types of AI devices available. The first category includes machine
learning (ML) approaches for analyzing structured data such as imaging, genomics, and
EP data. Machine learning algorithms are used in medical applications to classify people’s
characteristics and predict disease consequences. Natural language processing (NLP)
technologies, on the other hand, extract information from unstructured data sources like
clinical notes and medical journals to supplement and augment organized medical data.
Machine learning techniques are used to convert texts into machine-readable structured
data that can subsequently be studied [32,33].

2.3. AI in Diagnosis and Prognosis

The diagnosis is the medical name for the patient’s illness based on its symptoms. The
initial step in the diagnostic process is to gather information about the patient’s medical
history. The patient is next subjected to a scientific evaluation. Prognosis is a term used to
describe the methodical assessment of an illness’s anticipated progression and outcome.
The study is based on statistics from the average course of an effective disease, the patient’s
physical and mental state, any associated diseases (if any), the prescribed medications, and
case-specific circumstances. The full analysis covers the expected duration, outcome, and
outline of the disease’s spread [9,11,34].

The maximum probable disease that is in all likelihood to occur through COVID-
19 is pneumonia. Many COVID-19 sufferers infected by using the SARS-Cov-2 virus
increase pneumonia and swiftly develop respiratory failure. Eventually, they may increase
multiorgan failure [35]. A COVID-19 prognosis is confirmed via an advantageous molecular
PCR (polymerase chain reaction) check. CT (computed tomography) [13,36] has to function
as a crucial tool in the analysis process. It has the fastest turnaround time than a molecular
diagnostic test and offers more specified info related to pathology. It proves to be a higher
qualitative measurement of the lesion (vicinity of the lung tissue) and the seriousness of
the lung volume inclusion may furthermore have prognostic involvement [10,14,37].

By generating an AI parameter utilizing both clinical data and CT characteristics, an
accurate clinical prognostic model is established, allowing physicians to devise strategies
for early tracking and care of these patients. The COVID-19 diagnostic parameter is a
combination of lung lesion segmentation and diagnosis analysis [38]. The respiratory
organ lesions taken are manually annotated identification is confirmed by PCR check and
quantified respiratory organ lesions are confirmed via CT scans. To recognize the patterns
of interstitial lung disease (ILD), the CNN (Convolutional neural network) model came
into action [39]. It is regarded as a deep learning technique with the ability to differentiate
between certain respiratory organ parenchyma image patches and non-lung parenchyma
image patches. CNNs represent a significant advancement in image recognition. CNN is
employed in the study of visual imagery [40,41].

The procedure of CNN is as follows:

• It begins with inserting an image.
• A function map is created by administering particular filters to it.
• To increase non-linearity, ReLU (Rectified Linear Unit) feature is used.
• Each feature map is carried out by a pooling layer.
• The pooled images are flattened into one prolonged vector.
• The vector is exerted into a completely related artificial neural network.
• The very last layer offers the “voting” of the classes. Processes the competencies via

the community.
• The training is done via forwarding propagation and back-propagation for a certain

period. The practice continues until a well-defined neural network with illustrated
weights and function detectors is achieved.

The CT scans are segmented into 32 patches for segmentation, and each voxel is
victimized for the primary aim of entering into the practiced CNN. Each patch is labeled



Diagnostics 2021, 11, 1604 6 of 15

with a 1 or 0, denoting lung parenchyma (LP) or non-lung parenchyma (NLP), at the
same time (NLP). To reap the segmentation impacts of lung parenchyma, the hollow amid
the platter volume is eventually packed [28]. Therefore, the early analysis for planning,
monitoring, and remedy to establish the reference for longitudinal follow-ups can be
carried out by an explicit CT-based AI system [29,42].

A COVID-19 diagnostic tool, the CT scan is used in China to observe affected people
having fever and suspected contamination via CT lung scan as a medium of AI to examine
infection in patients and require clinical imaging. Lesions within the lungs of NCP patients
are perceptible from those resulting from bacteria. The chest CT scans can identify the
difference. For example, shards of glass or reticular lines in the opaque lesions that look like
abnormal paving tiles resemble the cloudy lesion motifs that occur across the peripheries
of both lungs. Bacterial pneumonia lesions are generally concentrated in a single lung.
They do not resemble shards of glass [20,43].

2.4. Significance of Statistical Analysis of AI in Healthcare

There are several studies presenting the statistical analysis of AI in healthcare. The
significance of AI has been measured by perceived benefits with perceived risks using
structural equation modeling [44]. The technological concern has occupied more weightage
in perceived risk. Similarly, a survey report has emphasized three aspects of AI such
as technological implementation, policy setting, and economic impact measurement by
statistical survey [45]. As per the analysis of WHO, 70% countries of the globe have
pointed out the lack of integration is the principal barrier to AI [46]. A real-time analysis
of digital technologies in healthcare has been focused on early detection and diagnosis of
diseases [47].

3. Methodology
3.1. Significance of ISM Methodology

ISM is a process for identifying and summarising linkages between several com-
ponents that form a problem or issue. It is an interactive technique for building the
interrelationships between the elements of a complicated system that incorporates expert
input [48,49]. The advantages of ISM include that it requires fewer specialists than other
methods such as the Delphi method and structural equation modelling, and it produces
a structured model from unstructured and ambiguous raw data. ISM transforms an un-
structured and ambiguous model into a well-defined, structured model [50]. It emphasises
the components’ direct and indirect relationships and provides a clear picture of the prob-
lem [51]. It also emphasises both the long-term and short-term aspects of a problem [48].
ISM combines the opinions of professionals with their in-depth knowledge in the most
efficient manner possible. As a result, this practical technique can provide a quick manage-
rial perspective [52]. The interdependencies of the elements affecting the AI in healthcare
sector during COVID-19 are highlighted in this study. As a result, ISM is an appropriate
instrument for this task.

In the first phase, we identified the critical factors affecting the diagnosis and prognosis
of COVID-19; we reviewed the past literature and sought 20 expert opinions. The 20 experts
included 15 medical doctors with at least 10 years of experience in a related field and
working in the esteemed hospitals, and 5 experts who are working as chief medical officers
in reputed companies that work in the field of medical image analysis using AI. Next,
Interpretive Structural Modeling (ISM) was used to build a standard model of associations
among critical factors, and MICMAC analysis was performed to categorize the factors.
A total of 11 factors were taken which are responsible for the COVID-19 diagnosis and
prognosis as shown in Table 1. The flowchart of the solution methodology is mentioned in
Figure 3. Table 2 lists the ISM steps.
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Table 1. Factors responsible for the COVID-19 diagnosis and Prognosis.

Factors Name Notation

F1 Early detection of NCP EDN

F2 Age AG

F3 Artificial Intelligence AI

F4 Accurate detection of NCP ADN

F5 Diagnosis analysis DA

F6 Diagnosis phenotyping DP

F7 Contract data CD

F8 Pre-existing condition PEC

F9 Prognosis Analysis PA

F10 Combine spend CS

F11 Gender GE
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Table 2. ISM steps.

Sl. No STEPS FOCUS

1 Establishment of a structural
self-interaction matrix (SSIM)

Define pairwise relationships among identified
critical dimensions of AI in healthcare sector

2 Create a reachability matrix Determining driving & dependent powers

3 Level Partitioning Define structural levels (factor level partitioning)

4 ISM Modelling Develop an ISM model using reachability matrix
& level partitioning

5 MICMAC analysis

Classify critical dimensions of AI in healthcare
sector into four categories (drivers, dependence,

autonomous factors, and linked factors) via
MICMAC analysis.

3.2. The ISM Methodology

Steps of ISM methodology are as follows:

Step 1: Development of a structural self-interaction matrix (SSIM);
Step 2: Construction of a reachability matrix;
Step 3: Level partitions;
Step 4: Classification of factors; and
Step 5: Formation of Interpretive Structural Modeling (ISM).

3.3. Development of Structural Self-Interaction Matrix (SSIM)

The relationship between different critical factors of COVID-19 used for the diagnosis
are given by four symbols. This shows the direction of causality between the parameters x
and y (in this case x y):

(1) V: x leads to y.
(2) A: y leads to x.
(3) X: x and y are related or lead to one another.
(4) O: the x and y parameters are independent.

The SSIM is constructed based on the relationship. SSIM is shown in Table 3.

Table 3. Structural self-interaction matrix.

EDN AG AI ADN DA DP CD PEC PA CS GE

EDN A A V V A A A V A A

AG V V V V V O V V O

AI V V A V V V V A

ADN A A A V A A A

DA A A V O A A

DP V V V V A

CD V V O A

PEC V V O

PA A A

CS A

GE
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3.4. Construction of Reachability Matrix

The structural self-interaction matrix (SSIM) was turned into a binary matrix termed
reachability by inserting 1 and 0 for V, A, X, and O. The following rules govern the
substitution of 1 and 0:

Rule 1: If the SSIM entry for (x, y) is V, the reachability matrix entry for (x, y) is 1 and the
(y, x) entry is 0.
Rule 2: If the SSIM entry for (x, y) is A, the reachability matrix entry for (x, y) is 0 and the
(y, x) entry is 1.
Rule 3: If the SSIM’s (x, y) entry is X, the reachability matrix’s (x, y) entry will be 1 as well,
as will the (y, x) entry
Rule 4: If the SSIM’s (x, y) entry is O, the reachability matrix’s (x, y) entry will be 0 as well,
as will the (y, x) entry.

The reachability matrix is shown in Table 4.

Table 4. Reachability matrix.

F. No F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 Driving

F1 1 0 0 1 1 0 0 0 1 0 0 4

F2 1 1 1 1 1 1 1 0 1 1 0 9

F3 1 0 1 1 1 0 1 0 1 1 0 7

F4 0 0 0 1 0 0 0 0 0 0 0 1

F5 0 0 0 1 1 0 0 0 0 0 0 2

F6 1 0 1 1 1 1 1 0 1 1 0 8

F7 1 0 0 1 1 0 1 0 1 0 0 5

F8 1 0 1 1 1 1 1 1 1 1 0 9

F9 0 0 0 1 0 0 0 0 1 0 0 2

F10 1 0 0 1 1 0 0 0 1 1 0 5

F11 1 0 1 1 1 1 1 0 1 1 1 9

Dependance 8 1 5 11 9 4 6 1 9 6 1

3.5. Carrying out Level Partitions

The reachability set and antecedent set for each factor are derived from the final
reachability matrix. The reachability set contains other elements that may help achieve the
element as well as the element itself, whereas the antecedent set includes other elements
that may help achieve the element as well as the element itself. The intersection of these
sets is then calculated for all elements. The top-level element in the hierarchy would not
assist in achieving any element above their own, and the top-level element in the ISM
hierarchy is the one with the same reachability and intersection sets. When the hierarchy’s
top-level element is discovered, it is separated from other components, and the next level
of elements is discovered using the same method. The digraph and final model are made
by identified models. Level partitions are shown in Table 5.
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Table 5. Carrying out level partitions.

Factor No Reachability Set Antecedent Set Intersection Set Level

1 1,4,5,9 1,2,3,6,7,8,10,11 1 Third

2 1,2,3,4,5,6,7,9,10 2 2 Seventh

3 1,3,4,5,7,9,10 2,3,6,8,11 3 Fifth

4 4 1,2,3,4,5,6,7,8,9,10,11 4 First

5 4,5 1,2,3,5,6,7,8,10,11 5 Second

6 1,3,4,5,6,7,9,10 2,6,8,11 6 Sixth

7 1,4,5,7,9 2,3,6,7,8,11 7 Fourth

8 1,3,4,5,6,7,8,9,10 8 8 Seventh

9 4,9 1,2,3,6,7,8,9,10,11 9 Second

10 1,4,5,9,10 2,3,6,8,10,11 10 Fourth

11 1,3,4,5,6,7,9,10,11 11 11 Seventh

3.6. Classification of Factors

On the basis of driving strength and dependability, the factors influencing the COVID-
19 verdict are divided into four categories. These factors are relatively separated from the
system, with which they have only a few weak links:

C1: Autonomous factors: low driving force and low reliance.
C2: Dependent aspects include a lack of driving power and a high level of reliance.
C3: Significant driving power and strong reliance are linkage factors.
C4: Self-contained factors with high driving power and little reliance.

Figure 4 shows the driving and dependence power of the critical factors
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3.7. Formation of the Interpretive Structural Model

The ISM is constructed from the final reachability matrix’s vertices or nodes, as well
as the lines of edges. An arrow pointing from x to y depicts the relationship between the
variables x and y.

A digraph or directed graph is the name given to this type of graph. The directed-
graph is finally turned into ISM when the transitiveness is eliminated as shown in Figure 5.
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4. Result and Discussion

There is not a single autonomous variable. These show up as the weak driver and
weak dependent in most cases. Other system variables are unaffected by these variables.
There are no autonomous factors discovered, and the system appears to be somewhat
detached. There are only a few links in this, and none of the other variables are affected.
Recognizing the factors that influence the early diagnosis of new diseases. We can observe
from the digraph that there are no linking variables with a high driving force and a high
degree of dependence. These variables are volatile because any changes they undergo will
undoubtedly have an impact on others. As a result, there is no reason to believe that any
of the variables included in this study are unstable. Independent variables are variables
that have a high driving power and will assist companies in achieving their goals. Because
the driving variables have a more strategic direction, performance can be improved by
continuously enhancing them.

(1) There are no autonomous factors, and they appear as a weak driver and weak
dependent. These variables have no effect on other variables and have only a few
weak linkages.

(2) The contract data, combined data, early detection of NCP, diagnosis analysis,
prognosis analysis, and accurate detection are the six factors categorized under weak
drivers and strongly dependent, called the dependent category. They are the highest-
ranking members of the ISM. These factors, which are categorized as dependent factors,
constitute the goal of any company.

(3) Linkage variables have a high driving force as well as a high degree of reliance.
These variables are volatile because any changes they undergo will undoubtedly have an
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impact on others. As a result, there is no reason to assume that any of the variables used in
this study are volatile.

(4) Age, pre-existing conditions, gender, digital phenotyping, and AI are five elements
that are grouped together as drivers. These components are classified as independent
variables since they are at the bottom of the model and have a strong driving force that
helps companies achieve their goals. Because the driving variables have a more strategic
direction, performance can be improved by continuously enhancing them.

The result shows that the short-term factors i.e., age, sex, and pre-existing condition
are the key factors and has a hold on more driving power for other factors to achieve the
the long-term goal i.e., accurate detection of NCP.

The analysis of ISM result illustrates that early detection of NCP (EDN) depends on
combined speed (CS) with contract data (CD) which is governed by AI and validates the
outcome of past researcher’s work [44,47]. Similarly, the technological implementation
through diagnosis and prognosis analysis helps to achieve the accurate detection of NCP
(ADN) and it supports the previous research [45]. The result of ISM points out that a lack
of integration among AI, CD, and CS results in a lack of EDN to achieve ADN in the long
term, which confirms the analysis derived previously [46].

5. Managerial Implications

Regulators, governments, healthcare industry executives, and consumers will be able
to understand the essential aspects that affect AI in the healthcare sector as a result of our
research. Managers and decision-makers should concentrate on the ISM model’s inputs
and outputs. A literature review and expert opinions were used to form the inputs. The
outputs identify interdependencies as well as the importance of various aspects in the
short and long run. In numerous industries, the model will be deployed and assessed
in a cross-sectional approach. The outcomes will stimulate managers’ curiosity, and they
should plan the resources necessary for successful execution. Managers must conduct
workshops and training on AI and its benefits to their employees. Existing educational
institutions and specific training schools may be involved. Managers must be vigilant
when sharing knowledge to avoid losing a competitive advantage. With technological
advancements, there is a significant possibility for using this data to analyze healthcare.
Knowledge of technical aspects will be useful during organizational preparation. All
firms must now implement cutting-edge AI technologies [7,53]. Smart contracts, privacy,
and data security are among its essential features, and switching to new (better) future
platforms is simple. Existing open-source platforms are prohibitively expensive when
used as proprietary infrastructure. AI technology should be implemented immediately, as
early adoption of the technology will give us a massive head start. The use of AI detects
the presence of patterns and correlations, resulting in predictive analytics for enhancing
healthcare delivery [8,18,44].

6. Practical Implications

To secure the privacy of healthcare data, healthcare decision-makers must use AI.
This level of anonymity facilitates the use of AI and federated learning, which improves
organizational efficiency. In the era of coronavirus disease in 2019, AI can better predict
infection and is applicable globally. As data digitization advances, so does the demand
for privacy, as well as the desire for societal improvement. The requisite systems can be
built on edge of AI technology. Researchers, developers, scientists, healthcare experts, and
policymakers must strike a balance between the need to innovate and measures to ensure
that AI’s societal and economic benefits are widely distributed. The innovations emerging
from AI will radically impact society for the better in the next decades if humanity embraces
AI with a more inquisitive mind [27,45,46].
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7. Conclusions and Future Work

COVID-19 diagnostic and prognostic models are accessible and seem to show incred-
ible top-notch performance. These models provide: (1) improved remedy consistency
and selection making by developing useful algorithms; (2) proper treatment regimens; (3)
the destiny direction of the disease and its reappearance; (4) digital approaches used to
provide treatment at an early stage. Additional diagnostic checks are going to be useful to
ultimately halt the pandemic, restrict the economic damage from lockdowns, and avoid a
rebound as soon as the restriction is relaxed. The whole situation makes a case for extensive
diagnostic testing of the populace to permit people to come back to figure out situations
that they may no longer be infectious. They conjointly require extra arbitrarily sampled
tests to boost our estimates of the share of the population with the virus that lives well.

The value of AI comes into play with the aid of decreasing the weight of clinicians in
a situation along with the current COVID-19 trends. Therefore, these AI models can serve
as worthwhile yet accessible parameters to combat COVID-19 diagnosis and prognosis.
The consequences display that the accurate detection of NCP (ADN) is being monitored,
initially through the short-term factors, i.e., age, gender, and pre-existing conditions. The
primarily hierarchy- based ISM further defines both the long-time period and short-time
period factors. In the future, the research can be extended with more factors to find more
clarity in the relationship, and the study of latent variables will add causal relationship
among them.

Furthermore, the proposed ISM version serves as a good guiding principle for im-
proving the overall performance of the diagnosis and prognosis of COVID-19 with the
integration of AI. The paper provides an interpretive structural model to widen the skeleton
of the complex interactions and significance amongst identified critical elements.
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