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Abstract: The current polythetic and operational criteria for major depression inevitably contribute
to the heterogeneity of depressive syndromes. The heterogeneity of depressive syndrome has
been criticized using the concept of language game in Wittgensteinian philosophy. Moreover, “a
symptom- or endophenotype-based approach, rather than a diagnosis-based approach, has been
proposed” as the “next-generation treatment for mental disorders” by Thomas Insel. Understanding
the heterogeneity renders promise for personalized medicine to treat cases of depressive syndrome, in
terms of both defining symptom clusters and selecting antidepressants. Machine learning algorithms
have emerged as a tool for personalized medicine by handling clinical big data that can be used as
predictors for subtype classification and treatment outcome prediction. The large clinical cohort data
from the Sequenced Treatment Alternatives to Relieve Depression (STAR*D), Combining Medications
to Enhance Depression Outcome (CO-MED), and the German Research Network on Depression
(GRND) have recently began to be acknowledged as useful sources for machine learning-based
depression research with regard to cost effectiveness and generalizability. In addition, noninvasive
biological tools such as functional and resting state magnetic resonance imaging techniques are
widely combined with machine learning methods to detect intrinsic endophenotypes of depression.
This review highlights recent studies that have used clinical cohort or brain imaging data and
have addressed machine learning-based approaches to defining symptom clusters and selecting
antidepressants. Potentially applicable suggestions to realize machine learning-based personalized
medicine for depressive syndrome are also provided herein.

Keywords: depressive syndrome; machine learning; personalized medicine; symptom clusters;
selecting antidepressants

1. Introduction

Depression is one of the most burdensome disorders worldwide, with a lifetime preva-
lence of approximately 20% of the global population [1]. Depression remission after the
first antidepressant trial is only 30% [2,3]. This low remission rate is partly because diagnos-
ing depression does not guarantee heterogeneous symptom subtypes [4]. Inevitably, the
concept that depression is characterized by symptomatic heterogeneity, such as atypical [5],
melancholic [6], and anxious [7] subtypes, has gained considerable attention. In addition,
it has been reported that the heterogeneity of depressive syndrome can theoretically re-
sult from the polythetic and operational criteria of major depression [8–12]. According
to the Diagnostic and Statistical Manual of Mental Disorders, fifth edition (DSM-5) [13], a
confirmed diagnosis of major depressive disorder requires both the presence of five or
more symptoms among, nine symptoms, including depressed mood, diminished interest
or pleasure, weight loss or gain, insomnia or hypersomnia, psychomotor retardation or
agitation, fatigue or loss of energy, feelings of worthlessness or excessive guilt, diminished
thinking ability or indecisiveness, recurrent thoughts of death or recurrent suicidal ideation,
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and the presence of either depressed mood or diminished interest or pleasure. Herein, the
subset of k draws from n distinguishable objects without replacement and without regard
to order that (nCk) can calculate from the theoretical number of different combinations
meeting the polythetic and operational criteria of major depressive disorder in DSM-5.
Thus, 227 different diagnostic symptom combinations were calculated that can fulfill the
DSM-5 diagnostic criteria for major depressive disorder [14–17]. In terms of psychiatric
taxonomy, the heterogeneity of depressive syndrome has been criticized by the concept of
a language game in Wittgensteinian philosophy [18]. Wittgenstein suggested the analogy
as follows [19]:

Consider for example the proceedings that we call games. I mean board-games, card-
games, ball-games, Olympic games, and so on. What is common to them all?—Don’t say:
“There must be something common, or they would not be called games”—but look and
see whether there is anything common to all.—For if you look at them you will not see
something that is common to all, but similarities, relationships, and a whole series of them
at that. To repeat: don’t think, but look!—the concept game is a concept with blurred
edges.—“But is a blurred concept a concept at all?”—Is an indistinct photograph a picture
of a person at all? Is it even always an advantage to replace an indistinct picture by a sharp
one? Isn’t the indistinct one often exactly what we need? (Wittgenstein, 2001).

It is also proposed that cases of depressive syndrome are conceptually related by the
“family resemblance” rather than the “essence.” Thus, it is concluded that the heterogeneity
of depressive syndrome is consistent with Wittgensteinian’s analogy [18]. Thus, the nomen-
clature of depressive syndrome can be consistent not with the categorical approach, but the
dimensional approach, in the context of the heterogeneity of major depressive disorder [14].
Furthermore, based on the theoretical construct change from chemical imbalance to dys-
functional circuitry, the symptom-based approach, but not the diagnosis-based approach,
has been emphasized by Thomas Insel in his work on the next generation of treatments for
mental disorders [20]. Along with the heterogeneity concept, the therapeutic approach also
shifts toward selecting antidepressants according to specific symptom clusters [21]. Each
cluster of depression symptoms may be thought to react to specific antidepressants, thus
potentially improving the current low remission rates. The theorem supporting depression
heterogeneity has not generated notable clinical utility in that theory-driven classification
of symptom clusters and subsequent antidepressant selection have only produced low
accuracies in treatment outcome predictions [22]. However, the clinical utility of the depres-
sion heterogeneity concept in diagnostics and therapeutics is increasingly acknowledged
with the use of data-driven machine learning approaches.

Machine learning approaches can be more beneficial in the study of depression com-
pared with traditional methods. Factor analysis, for instance, may generate complicated
combinations of heterogeneous symptoms within specific dimensions [23]. These analytic
approaches also can be vulnerable to experimenter bias in that a researcher has to choose
the number of components or clusters in data, as such in k means clustering method [24].
Hierarchical clustering, a type of machine learning method, is an easy-to-implement, de-
terministic approach in which each of the symptoms is assigned to a single cluster even
without predetermining the desired number of clusters.

Clinical expertise in diagnostics and therapeutics currently progresses in accordance
with the advent of machine learning algorithms for handling clinical big data [25]. The
machine learning approach allows clinicians to consider that clinical data can be a useful
source of predictors for the classification of depressive symptom clusters and selection of
antidepressants. Thus, data-driven approaches, rather than clinician-based, diagnostics,
and therapeutic approaches, are now incorporated into depression research to disentangle
the questions as to what subtypes of depression exist, and how these subtypes react to
different antidepressants. However, from a cautious perspective, clinical expertise can
still be a keystone in machine learning-based diagnostics and therapeutics in depression,
as clinical knowledge and experience are inevitable not only for choosing clinical data
input to algorithms but also for interpreting the algorithm prediction outcomes. The next
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generation of machine learning-based depression practice might be dependent on the
degree to which clinical expertise is fully incorporated into unmanned learning approaches
to future precision medicine [26]. Thus, clinicians are required to not only be updated of the
latest findings from the machine learning-based depression research but also yield clinical
expertise-based perspectives for the learning algorithms in terms of better translation of
the machine learning findings to clinical applications.

This review is not intended to be systematic or comprehensive for all relevant studies,
but rather narrative for emphasizing predominant papers which seem of practical interest
for readership. In particular, this review focuses on the studies in which machine learning-
based prediction models for treatment outcome in depression were built in large clinical
cohorts with several hundreds of subjects, including the Sequenced Treatment Alternatives
to Relieve Depression (STAR*D) [27], Combining Medications to Enhance Depression
Outcome (CO-MED) [3], and German Research Network on Depression (GRND) [28]. These
cohorts encompass accessible clinical data that offer benefits such as cost-effectiveness,
compared to the genetics and imaging data, and interchangeable usability of variable
characteristics between cohorts for the algorithm outcome validations, in part guaranteeing
generalizability. This review also provides suggestions for advancing machine learning-
based depression research for better symptom classification and antidepressant selection.

2. Data-Driven Classification of Symptom Clusters in Depression

Depression is viewed as a heterogeneous mental construct [8]. Machine learning-
based analysis underlines the benefits of addressing symptom heterogeneity by subject
stratification and the application of data-driven therapeutic responses instead of summed
scores of clinical scales. Although previous studies have suggested a conventional clin-
ician experience-based (theory-driven) classification of depression subtypes, the efforts
resulted in poor predictive values for therapeutic outcomes for different antidepressants.
For instance, Uher et al. [21] suggested three types of depression, including melancholic,
atypical, and anxious features, for which therapeutic outcomes were evaluated with escitalo-
pram and nortriptyline. However, this clinician-driven approach to grouping depression
subtypes resulted in low to modest accuracy in the prediction of therapeutic outcomes.
Likewise, a similar study using clinician-driven classification of depression subtypes also
showed only low prediction accuracies, thus limiting clinical utility [22]. After these tri-
als, the science of big data was incorporated into depression research, supporting the
advantages of data-driven phenotypes. Indeed, a recent review suggested evidence for the
considerable prognostic value of data-driven depression subtype classification [29]. These
research trends are rooted in discovering clinical signatures of predictions for response of
specific symptoms to specific antidepressants, and thus require established clinical data
with a large number of depressive subjects. Indeed, with the increased accessibility of large
databases, multivariate models exploiting clinical data have been introduced to psychiatric
research in recent years [25]. The cohort data consisted of sociodemographic (sex and age),
diagnostic (scale scores), and therapeutic variables (antidepressant classes), which can be
assumed to be useful candidate predictors for the classification of depression subtypes.
In particular, the STAR*D database in the US and the GRND and Group for Studies of
Resistant Depression (GSRD) databases in Europe have facilitated progress in predicting
therapeutic outcomes at each patient level [30–32]. Even though there are approaches of
integrating more comprehensive data, including pharmacogenomics [33], in elucidating the
machine learning-based study of depression, this may be beyond the scope of the review.
Herein, we highlight some findings from representative studies that used clinical cohort
data and machine learning-based approaches to classify depression subtypes.

3. Machine Learning-Based Symptom Clustering of Depression

Machine learning algorithms based on clinical data suggest clinical patterns for three to
four subtypes of depression according to different studies. For instance, Kautzky et al. [34]
examined 1079 patients with acute depression from a longitudinal multicenter study, con-
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ducted by the GRND. The researchers attempted to demonstrate the interplay between
clinical and sociodemographic variables and their predictive influence on therapeutic
outcomes. Hierarchical symptom clustering resulted in three subtypes of depression: emo-
tional, anxious, and sleep- and appetite-related symptoms. Similarly, Chekroud et al. [35]
used patient-reported data from the STAR*D trial (n = 4039) and applied hierarchical
clustering to the Hamilton Depression Rating Scale (HAM-D) [36] and Quick Inventory of
Depression Symptomatology Self-Report (QIDS-SR) items [37], thereby suggesting three
clusters including “core emotional,” “atypical,” and “sleep” subtypes. Interestingly, the
“emotional type” resembles the traditional melancholic subtype of depression, support-
ing the converging of data-driven classification of subtypes with theory-driven symptom
grouping [38]. Furthermore, the symptom clustering findings from these studies are consis-
tent with symptom-specific therapeutic responses. Whereas response rates for the clusters,
including the “emotional” and “vegetative function” types, were comparable to the total
HAM-D response rate, the rate for the anxiety cluster was significantly lower at 48.5% [34],
indicating poor therapeutic response for anxious depression [39]. The poor response might
be associated with the treatment side effects that manifest within the anxious cluster and
can negatively impact any therapeutic effects on other symptoms. This mechanism was is
in line with recent analyses of SSRI response [40]. Taken together, the recent clinical cohort
studies resulted in similar symptom clusters that were driven by machine learning algo-
rithms and agreed with clinical experience. Machine learning-based symptom clustering is
presented in Table 1.

Table 1. Data-driven symptom clustering of depression from clinical cohorts with over 500 depressed patients.

Cluster Subtyping Based on Relevant Phenotype Statistical Method Cohort Study

Core emotional QIDS-SR Energy/fatigability STAR*D (n = 4017) Chekroud et al. [35]
HAM-D Concentration/decision making Hierarchical clustering CO-MED (n = 640) Kautzky et al. [34]

Loss of interest GRND (n = 1079)
Mood (sadness) GSRD (n = 1568)
Worthlessness

Sleep QIDS-SR Sleep-onset insomnia Hierarchical clustering STARD*D (n = 4017) Chekroud et al. [35]
HAM-D Mid-nocturnal insomnia CO-MED (n = 640) Kautzky et al. [34]

Early-morning insomnia GRND (n = 1079) -
GSRD (n = 1568)

Atypical QIDS-SR Psychomotor agitation Hierarchical clustering STARD*D (n = 4017) Chekroud et al. [35]
HAM-D Psychomotor retardation CO-MED (n = 640)

Suicidal ideation
Hypersomnia

Hypochondriasis

Somatic/anxious HAM-D Psychomotor agitation Hierarchical clustering GRND (n = 1079) Kautzky et al. [34]
Anxiety somatic GSRD (n = 1568)
Anxiety psychic

Somatic symptoms
Genital symptoms
Hypochondriasis

Appetite/weight HAM-D Appetite Hierarchical clustering GRND (n = 1079) Kautzky et al. [34]
Weight changes GSRD (n = 1568)

Symptom classification using machine learning algorithms should be conducted from
the perspective of clinical experience and conventional theories [38]. Although symptom
clustering is performed using learning algorithms without researcher intervention, the
ratification of the resulting items is entirely based on researcher experience and knowledge.
For instance, Chekroud et al. and Kautzky et al. similarly applied hierarchical clustering
methods and named several resulting items “emotional clusters.” Both “core emotional
clusters” include symptoms related to mood, energy, concentration, interest, and self-
worth [41–43]. However, the emotional cluster by Kautzky et al. also included suicidality,
whereas that by Chekroud et al. did not. In clinical practice, suicidality can occasionally be
interpreted as an atypical feature of depression, rather than as a core emotional component,
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and may differ between atypical and other types of depression, according to previous
analyses [44]. Other studies, however, have suggested that suicidality risk can be enhanced
by the presence of anhedonia, which is regarded as a core emotional component [45,46].
The characteristics of suicidality congruent with emotional components are also supported
by factorial analysis using HAM-D [47]. As the conventional concept of atypical depres-
sion involves hyperphagia and hypersomnia, further ratification of atypical clusters is
required to adopt clinical scales such as QIDS-SR, rather than HAM-D, which does not
assess the excess of vegetative symptoms. Meanwhile, contrary to the analysis results of
Chekroud et al., anxiety symptoms were not included in the core emotional cluster but
rather suggested to produce a separate cluster, along with psychomotor agitation, loss of
sleep, and appetite. Independent appetite loss was also suggested in a previous factorial
analysis [47]. The anxious cluster may be corroborated by studies that used GRND and
GSRD subjects that recently established an anxious subtype of depression, in which anx-
iety symptoms were associated with somatic symptoms and generally poor therapeutic
outcomes [39]. Taken together, data-driven symptom clustering can be further interpreted
based on clinical experiences and ratified using the clinical consensus.

4. Exploring Prediction Model for Treatment Outcomes

In pharmacotherapy, personalized medicine holds promise in the treatment of de-
pression, a heterogeneous disorder [48] for which no single antidepressant is identically
effective, and for which numerous patients are given several treatments before a correct
regimen is identified. At a population level, large-scale clinical trials, such as STAR*D and
CO-MED, have shown that approximately 30% of patients achieve symptomatic remission
for a given treatment [2,3]. However, personalized medicine shifts emphasis away from
remission rates and treatment efficacy at the population level and attempts to identify the
specific drug that is the best candidate for 30% of patients. For example, although general
remission rates for all drugs were similar (48–52%), the analysis by Chekroud et al., which
aimed to prospectively predict therapeutic outcomes, was more diverse (51–65%) [35].
Evidently, the development of generally effective antidepressants is crucial for public
health. Until then, the application of pioneering statistical methods to choose the best drug
candidate for each patient may offer an interim solution [49–51]. These findings are the
first step in the era of personalized medicine for psychiatry. However, the performances
are apparently inadequate in comparison with other areas of medicine.

Some representative studies have investigated methods to build prediction models
for estimating antidepressant responses. Kautzky et al. [52] demonstrated that a random
forest model for therapeutic response accurately identified 25% of melancholia respon-
ders by using three SNPs and clinical variables. Patel et al. showed that an alternating
decision tree model estimated therapeutic response with an accuracy of 89% using age,
structural imaging, and mini-mental status examination scores [53]. Chekroud et al. [35]
demonstrated that a machine learning model forecasted remission with 59% accuracy using
25 clinical variables. Iniesta et al. [54] also showed that regularized regression models using
demographic variables predict therapeutic response with clinically meaningful accuracy.
Maciukiewicz et al. [55] recently reported that a support vector machine model predicted
therapeutic response with 52% accuracy using SNPs. More precise prediction models, with
accuracies of approximately 70%, have also been suggested for antidepressant therapeutic
outcomes from large-scale clinical databases, including the GSRD and GRND in Europe,
and the STAR*D cohorts in the US [30–32,56,57]. Table 2 describes some representative
studies that have addressed the prediction of treatment response in depression.
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Table 2. Prediction models for treatment response in depression.

Study Feature Sample Size Statistical Method Prediction Accuracy on
Treatment Response

Kautzky et al. [52] three SNPs and
clinical variables

225 depressed patients
from GSRD Random forest model 25% of melancholia

Patel et al. [53]
age, structual imaging, and

mini-mental status
examination scores

33 late-life depression
patients and 35 non-

depressed individuals

Linear and non-linear
decision tree model 89%

Iniesta et al. [54] clinical and
demographic variables 793 depressed patients Regularized regression model 72%

Chekroud et al. [35] 25 clinical variables 4039 depressed patients
from STAR*D

Mixed-effects
regression analysis 59%

Maciukiewicz et al. [55] SNPs 186 MDD patients Supporter vector
machine model 52%

Kautzky et al. [30] 48 clinical, sociodemographic,
and psychosocial predictors

400 training samples and
80 test samples Random forest model 85%

Michael et al. [31]

HAMD-21 baseline score,
episode length < 24 months

and fewer previous
hospitalizations

1014 naturalistically treated
inpatients

Logistic regression and
third-CART analyses 72%

Perlis et al. [32] Clinical or
sociodemographic variables

4039 depressed patients
from STAR*D Logistic regression model 71%

Kautzky et al. [34] 88 clinical predictors 1079 GRND samples Random forest model 85%

The success of these models depends on their ability to be generalized. In general,
there are two important precautions. First, all variable selection and model building should
occur in the direction of ensuring validity. A vital challenge for prediction is determining
the variables to be used. For example, Kautzky et al. [52] used a random forest procedure
to identify 88 predictors that distinguish patients with unfavorable therapeutic outcomes
from those with favorable outcomes, considering the number of interaction effects be-
tween predictive variables. Chekroud et al. adopted a penalized logistic regression with
advantages: coefficients of correlated predictors are minimized toward each other, and
uninformative features are uninvolved from the model [58,59]. They used the method to
identify 25 predictive variables. Second, the way the model is trained on a large antide-
pressant cohort would be performed in other clinical trial cohorts with other treatment
protocols, with different recruitment criteria and distributions of symptoms. An external
validation analysis, for instance, showed that a citalopram model, trained in the STAR*D
cohort, accurately predicted outcomes for the escitalopram treatment group of CO-MED.
The model also showed significant prediction accuracy in the escitalopram-bupropion
group, but not in the combination group of venlafaxine-mirtazapine [35]. This result
shows that the model may generalize to an independent cohort sample and represent some
caveats of therapeutic specificity. The finding that the model poorly predicts response
to the venlafaxine-mirtazapine group indicates that the model does not predict a broad
therapeutic response, nor does it predict equivalently for all treatment subgroups of CO-
MED. The use of wholly independent validation cohorts also showed that although some
predictors could still yield comparable model performance in the STAR*D escitalopram
cohort, the model does not generalize to the escitalopram group of an independent clinical
cohort, emphasizing the importance of external validation.

Further, statistical (and biomarker) approaches showed a performance above chance
to be clinically usable. In STAR*D analyses, an accuracy of 53.13% would have surpassed
the chance accuracy of 51.3% regarding the sample size, by the conventional statistics of
p value < 0.05. The model by Chekroud et al. achieved an accuracy of 64.6%, outperforming
this benchmark significantly. However, clinical experience-based predictions of who would
respond to which therapeutics are generally poor [60]. Similarly, in a pilot sample of
psychiatrists, the average accuracy of the 23 clinicians in predicting therapeutic outcomes
for 26 STAR*D patients was 49.4%, given that the chance prediction was 53.9% [57]. These
findings suggest that machine learning approaches can be a useful tool for predicting
therapeutic outcomes with clinically meaningful accuracy.
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5. Antidepressant Selection Specific to Symptom Clusters

Predicting who will respond to which treatment is a major challenge in personalized
medicine. Machine learning algorithms are available tools for predicting differential
responses to various antidepressants. The current research attempts to measure the extent
of the differential predictive power of the algorithm approach for distinct medications.
These efforts reflect the distinctive neural mechanisms probed in large-scale clinical cohort
studies and heterogeneity in the underlying neurobiology of depression among the patients
who entered the studies. Here, we address a recent representative study that explored
antidepressant treatment outcomes according to each symptom cluster.

Chekroud et al. [35] used a citalopram-treated STAR*D cohort (n = 1962) with the
aim of identifying differential response trajectories from three symptom clusters based
on QIDS-SR scores. The unsupervised clustering approach yielded core emotional, atyp-
ical, and sleep/insomnia clusters among the citalopram STAR*D cohort. The CO-MED
(n = 640) cohort was independently adopted as a test sample for the mixed-effects regres-
sion analysis. The CO-MED cohort included three subgroups of escitalopram (n = 151),
escitalopram-bupropion (n = 134), and venlafaxine-mirtazapine (n = 140). Core emotional
symptoms were predicted with significantly above-chance performance in the escitalopram
and venlafaxine-mirtazapine groups. Sleep symptoms were predicted above chance for
the escitalopram-bupropion group. These findings may translate into clinical applications.
Escitalopram alone or a venlafaxine-mirtazapine combination may be beneficial for the core
emotional symptoms related to energy/fatigability, concentration/decision-making, inter-
est loss, sad mood, and feelings of worthlessness. Escitalopram-bupropion combination
may have a beneficial impact on symptoms related to sleep onset insomnia, midnoctur-
nal insomnia, and termination insomnia. In other words, no antidepressant was equally
effective for all three symptom clusters, and for each symptom cluster, there were signifi-
cant differences in treatment efficacy between drugs. In general, antidepressants worked
best in treating the core emotional and sleep symptoms and showed less effectiveness in
treating atypical symptoms. The extent of these differences suggests that selection of the
best antidepressant for a given symptom allows for more benefit than that gained by the
application of an active compound versus a placebo. Taken together, therapeutic outcomes
at the symptom cluster level remain predictable using the machine learning algorithm of
self-reported patient data.

These findings may help guide future research on personalized medicines for antide-
pressant selection. The finding by Chekroud et al.—better trajectories for core emotional
symptoms with citalopram—is consistent with the findings of the genome-based therapeu-
tic drugs for depression (GENDEP) study where symptom dimensions of cognition and
mood were significantly better with escitalopram than with nortriptyline [23]. Whereas
large-scale comparative studies of combined severity demonstrated modest differences
between antidepressant classes [61,62], the results by Chekroud et al., at the symptom
cluster level, indicate considerable differences between medications both within and across
antidepressant classes.

Future clinical research should determine whether these clusters can be generalized
to other clinical cohorts and reflect good candidates for a true depressive symptom struc-
ture [63,64]. The cluster structures by Chekroud et al. resemble those of other scales in other
large samples of patients [61,65–67], although a recent review insisted that the argument is
still ongoing [63]. These findings are largely consistent with those of Chekroud et al. in
terms of independent sleep symptoms and core emotional symptoms, including sad mood,
anhedonia, and self-worthlessness. However, the use of many different rating scales for
depression impedes direct comparisons between cohorts [64].

6. Brain Imaging Techniques and Machine Learning in Depression

Machine learning algorithms are wildly applicable to diverse data of patients for eluci-
dation of the complex nature of depression. In particular, in addition to the aforementioned
clinical cohort data, there has been growing attention toward using brain imaging methods
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to detect endophenotypes of depression that can be clinically significant and feasible for
translation to diagnosis [53,68]. Brain MRIs are one of the most widely used techniques that
help identify the potential biological markers of depression. Importantly, MRI techniques
with machine learning algorithms can produce a classification with brain networks and
prediction of treatment response in depression. First, some representative studies adopted
graph theory approaches [69–72] to detect defective functional and structural brain net-
works of depressed patients. Gong et al. [73] enumerated diverse brain network features,
such as alterations in regional and connectivity patterns of different MRI modalities for
depression, which include the regional betweenness and degree centrality in structural
MRI, region-of-interest-based analysis in functional MRI, and white matter structural
connectivity in the diffusion tensor image. Zeng et al. [74] examined the whole-brain func-
tional connectivity at resting state to distinguish the depressed patients from the controls,
which yielded 100% sensitivity. The most discriminant functional connectivity was found
within or across the affective network, default mode network, and visual cortical areas,
which seem to play a critical role in the neuromechanism of depression. Second, other
representative studies sought to find alterations in brain network activity at resting state
as potential endophenotypes for prediction of therapeutic outcomes. Drysdale et al. [75]
suggested that four different patterns of fronto-striatal and limbic functional connectivity
be defined as depression biomarkers from functional MRI analyses. The biomarkers were
also related to distinctive profiles of clinical symptoms. For instance, biomarker 1 was
associated with severe fatigue and anhedonia, and showed best response to repetitive
transcranial magnetic stimulation. Redlich et al. [76] examined whether changes in gray
matter volume predict response to electroconvulsive therapy. Support vector regression
was accompanied with univariate analysis of the Hamilton Depression Rating Scale score,
which successfully predicted the response to electroconvulsive therapy and reduction in
HDRS. Jiang et al. [77] predicted remission after electroconvulsive therapy using the gray
matter of depressed patients, in which six different gray matter networks were suggested
as predictors of response to electroconvulsive therapy. Thus, the connectome-based en-
dophenotypes may yield novel opportunities to define the diagnosis of depression and
improve therapeutic response.

7. Future Research into Treatment Selection Models

We address the major steps involved in building antidepressant selection models from
a clinical database that involves values, for each patient, on variables that represent clinical
and demographic characteristics, therapeutics applied to the patient, and observed out-
comes from the therapeutics. Understanding the sequential steps is crucial for interpreting
and evaluating the utility of findings from the antidepressant selection studies.

The first step was to establish candidate predictor variables. Appropriate candidate
predictor variables are those that are acquired prior to the treatment assignment and
that credibility could be related to outcome, either generally or differentially between
treatments. If a previous study has suggested that a variable can predict an outcome,
then it should be involved as a potential predictor variable. However, as the literature
on predictors of psychiatric disorders is still relatively scarce, considering other putative
variables is recommended.

Variables should be free of significant missingness, and systematic missingness should
be examined to ensure the appropriateness of imputation [78]. Variables should also
show considerable variability. For instance, it does not make sense to involve sex if 90%
of the sample is male. Selecting variables used for prediction is reliant on situations in
which predictors exhibit high collinearity. Therefore, it is plausible to test the covariance
structure of the putative predictors and take measures to reduce the high collinearity [78].
Other suggestions for identifying putative predictors include addressing outliers, making
categorical variables binary, and converting variables for hypothetical reasons or handling
highly skewed distributions.
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Once putative predictor variables were selected, the next step was to construct the
prediction model. This is typically a two-step procedure that includes variable selection and
model specifications. Many different variable selection approaches have been suggested for
treatment selection, all of which attempt to identify which variables, among the putative
predictors, contribute significantly to the prediction outcome. Gillan and Whelan [79]
presented an outstanding discussion of data-driven versus theory-driven approaches to
model specifications. Typical approaches depend on parametric regression models [80] that
select only variables with statistically significant contributions to the outcome. Another
approach includes penalties with the goal of limiting the number of selected variables [81].
Others utilize bootstrapping processes that help maximize the generalizability of the mod-
els [58,82,83]. Progress in statistical modeling has led to feature selection methods, which
are largely based on machine learning algorithms that can compliantly model and identify
predictors, even with higher-order interactions [84]. Gillan and Whelan [79] provided an
in-depth discussion of the merits of machine learning in the field of psychiatric disorders.

8. Conclusions

Research into depression is complicated by patient heterogeneity, which has motivated
the search for homogeneous symptom clusters via data-driven computational approaches
to identify predictor signatures in a cohort database. Along with the availability of clinical
cohort data that are cost-effective and generalizable, machine learning algorithms enable
symptom grouping and antidepressant selection. In particular, antidepressant selection in
depression aims to help each patient receive the treatment, among the available options,
which are most likely to yield a beneficial outcome for them. Symptom clusters putatively
include core emotional, anxious, sleep/appetite, and atypical types, which seem congruent
with the theory-driven grouping of depression, underlining that data-driven classification
can agree with theory-driven approaches. Treatment outcomes differ in distinct antidepres-
sant classes according to symptom clusters, although this pioneering finding should be
replicated in other cohorts in the future. In addition, machine learning is a flexible plat-
form to which brain imaging data can also be subjected to yield favorable performance in
classification and therapeutics prediction in depression. Machine learning-based symptom
clustering and antidepressant selection may be the first step in facilitating personalized
medicine for better diagnostics and therapeutics for depression.
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