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Abstract: Artificial intelligence (AI) has revolutionized the medical diagnostic process of various
diseases. Since the manual reading of capsule endoscopy videos is a time-intensive, error-prone
process, computerized algorithms have been introduced to automate this process. Over the past
decade, the evolution of convolutional neural network (CNN) enabled AI to detect multiple lesions
simultaneously with increasing accuracy and sensitivity. Difficulty in validating CNN performance
and unique characteristics of capsule endoscopy images make computer-aided reading systems in
capsule endoscopy still on a preclinical level. Although AI technology can be used as an auxiliary
second observer in capsule endoscopy, it is expected that in the near future, it will effectively reduce
the reading time and ultimately become an independent, integrated reading system.

Keywords: artificial intelligence; wireless capsule endoscopy; convolutional neural network; computer-
aided reading; small bowel imaging

1. Introduction

The application and utilization of artificial intelligence (AI) in healthcare have been
surprisingly fast. It is difficult for medical staff to properly acquire and analyze vast medical
information within a limited time. In addition, due to the rapidly evolving diagnostic
technology, its interpretation requires a higher degree of expertise than in the past.

Wireless capsule endoscopy (WCE) is expected to benefit the most among several
endoscopic examinations from the development of pattern recognition AI technology.
Reading a WCE case is a very tedious job, and the process is error-prone because it requires
a long time and expertise. With the development of deep learning technology, research in
this field is active, and it is very likely to be used in actual clinical practice in the future.
However, even given the last decade of research, it has not yet been incorporated into
real-world practice. This article provides state-of-the-art information about the current
status of the technology, including the most widely used convolutional neural networks.
Our article covers the historical evolution of CNN, binary classifications, automated classi-
fication of bowel cleansing, and novel real-time multi-lesion detecting systems that several
existing reviews and meta-analyses on capsule endoscopy have not yet covered. Indeed,
technological and regulatory hurdles that need to be overcome in the future are discussed.

2. The Rise of Artificial Intelligence

AI refers to artificially created intelligence, intelligence being a trait previously thought
to occur only in humans. The concept involves computer programs that perform functions
such as learning and problem-solving [1]. The method of enabling AI is called machine
learning (ML) [2].

Samuel et al. defined ML as “a programming computer to learn from experience that
should eventually eliminate the need for much of this detailed programming effort [1]”.

ML is roughly divided into supervised and unsupervised methods according to the
training method. Supervised learning is a method of learning by labeled data, that is, the
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correct answer. In contrast, unsupervised methods are a method for the automated cluster-
ing of similar data based on commonalities. Sometimes, unsupervised learning is used as a
primary method to identify appropriate features for subsequent supervised learning.

Among the ML methods, artificial neural networks (ANN) are a method inspired by
the neuroanatomy of the brain. McCulloch and Pitts first proposed this concept in 1943 [3].
Similar to neurons in our brain, each neuron is a computing unit, and all neurons are
connected, building a sophisticated network. After some time, a learning theory that could
activate synapses between certain neurons and also be selectively strengthened emerged.
Rosenblatt’s concept of perceptron devised a delta rule that modified the weight between
each synapse [4]. The perceptron concept was evolved to learn non-linear functions by
constructing multi-layered ANNs by Rumelhart and Hinton in 1986 [5]. A modernized
multiple-layer perceptron (MLP) designed with input and output layers at both ends,
which performed complex functions through numerous hidden layers between them,
became popular.

MLP dramatically increased the non-linearity of the process and motivated researchers
to solve every complex task. In 1980, Fukushima et al. proposed a pattern recognition
method that recombined the features of the input pattern, which led to the induction of a
convolutional neural network (CNN) [6]. In 2006, Hinton et al. named an MLP composed
of several hidden layers, a deep neural network (DNN), and the DNN learning method
was first called deep learning (DL) [7].

DL can be broadly classified into two categories. The first method is to pre-train the
weight values by an unsupervised learning algorithm and then fine-tune them by the
existing learning algorithm when the weight values get matured. The second method
alleviates the problem of mixing error signals by limiting the number of connections
between nodes in each layer. The former techniques include deep belief networks and a
stacked auto-encoder, and the latter method is the CNN (convolutional neural network).

CNN models are being applied to image and medical data analysis in various areas.
Automated image recognition in medical imaging has been investigated in several medical
fields such as radiology, neurology, orthopedics, pathology, and gastroenterology.

3. Medical Imaging and CNN Model

Medical imaging, also known as diagnostic imaging, aids the physician in understand-
ing the complications in a human body and enables them to make better decisions. Medical
imaging is an extremely important element in medical practice today. It has allowed
clinicians to learn more about the human body than ever before.

CNN has brought major changes in diagnostic image analysis, especially in the field
of medical imaging. CNN can recognize patterns from images. Unlike previous machine
learning, the algorithm is also responsible for its image feature extraction and performs
the entire process up to image classification with a single model. With that characteristic,
CNN is referred to as an end-to-end model [8]. As long as there is a desired image and an
output to be classified, an algorithm with good performance can be easily implemented
without hand-crafted features. In addition, it has a structure that can be used as an essential
structure for detection and image segmentation beyond simple image classification, so it
has become an essential technology for DL in the modern medical field.

The CNN model consists of three steps (Figure 1): (1) feature extraction, (2) feature
dimension reduction, and (3) final classification. The first step, feature extraction, is
performed with convolutional layers. During convolution, the kernel, an image filter of a
certain size, scans the entire image, performs a weighted-sum operation, and delivers the
output value to the next layer. In this process, three hyperparameters (depth, stride, and
padding) are defined. Depth is how many kernels are used. Stride refers to the number
of pixels that the kernel moves each time a convolution operation is performed. Padding
is the application of a specific value to each edge of the input image so that the boundary
information of the original image can contribute equally to feature extraction. The next step
is called pooling, and it reduces the dimension of the feature. It does not utilize all features
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but selects only features that are effective for learning. The final step consists of MLP with
the feature map (Figure 2) presented through the previous two feature extraction processes
as input. This step is composed of fully connected layers, and the final classification
(output) of an image can be derived.
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Figure 2. CNN’s class activation map (CAM) in capsule endoscopy image reading. This visualized
feature map describes how the algorithm predicts each lesion. (A) Erosion with central depression
of the mucosa is highlighted as red. (B) Simultaneous detection of both erosion and prominent
vasculature.

4. Evolution of CNN

The winner of the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)
competition in 2012, the AlexNet structure [9], increased the recognition rate of computer
algorithms from 70% in the previous ten years to 85%. It was the first model to introduce a
divergence function called ReLU (rectified linear unit), which solved the problems of weight
adjustment due to the vanishing gradient issues during backpropagation for learning and
dropout. In this way, while accurately normalizing the feature map, the contrast for strong
features is increased. Afterward, GoogLeNet (2014) introduced the inception module
that extracts various features from one layer by applying several kernels to one layer [10].
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ResNet is the ILSVRC 2015 winning algorithm that surpassed human image recognition
ability for the first time [11] (Figure 3). This network structure is seven times more deep
than the previous GoogLeNet, so the learning performance is very sophisticated, and the
weights are updated to sensitively detect even small differences in the input information.
Recently, the Inception-ResNet v4 model maximized performance by combining with the
inception module of GoogLeNet and using residual blocks [12].
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5. State of the Art AI Studies in WCE

Since WCE was first introduced in 2001 [13], it has been a breakthrough in the di-
agnostic process of small intestine diseases. The average length of the small intestine in
adults is about 600 cm. The range that can be observed with an endoscope is only a small
part. There is no gold standard that anyone can agree on as a diagnostic tool for small
intestine lesions. Various diagnostic methods, from the conventional balloon endoscopy to
the recent motorized enteroscopy, are being used under the circumstances of each hospital.
Balloon enteroscopy has the advantage of performing tissue biopsy or endoscopic treat-
ment, but it requires a high degree of skill and much time. Recently, a motorized spiral
Enteroscopy (PowerSpiral, Olympus, Tokyo, Japan) has been presented, enabling deeper
exploration of the small bowel. Computed tomography (CT) enterography has limitations
such as the requirement for contrast injection, radiation exposure, poor sensitivity for small
tumors, and early inflammation. Magnetic resonance enterography (MR enterography) is a
promising alternative, but it is too expensive to be used for screening in many parts of the
world. In contrast, WCE has only a few contraindications, such as intestinal obstructions,
patients having difficulty swallowing, and children. WCE is a tiny camera that can be
swallowed and transmits consecutive captured images of digestive tract to a receiver. A
capsule can pass throughout the rectum naturally within 72 h, but it can sometimes take up
to weeks. It can sensitively recognize a lesion in a patient-friendly manner, so many clinical
guidelines have suggested using it for several indications, including unexplained obscure
gastrointestinal hemorrhage, small bowel Crohn’s disease, and small bowel neoplasms.

The interpretation and diagnosis of WCE images highly depend upon the human
reader’s ability and require a time-consuming process. The CE for one case contains
approximately 8–10 h of video, and about 50,000 to 70,000 pictures are obtained, in which
only one or two lesions of interest may exist. As a result of the limitations of human
concentration, the possibility of significant oversight is inevitable. To our knowledge, WCE
readings have a significant miss rate of 5.9% for vascular lesions, 0.5% for ulcers, and 18.9%
for neoplasms [14].
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Due to the low consistency of the reading between physicians, WCE has been an ideal
target of the AI system to assist physicians in identifying distinct lesions and areas of inter-
est more easily [15]. Various commercial ML systems [16,17] have been commercialized,
including Quick-View [18] (Medtronic, Minneapolis, USA), the suspected blood indica-
tor [19] (Medtronic), and ExpressView [20] (Intromedic, Seoul, South Korea). However,
they have little impact on reading and have not yet reached the stage of providing reliable
classifications due to insufficient accuracy [21]. Here, we introduce CNN-based AI studies
of various lesions that can be diagnosed by WCE (Table 1, Table 2).

Table 1. Research fields of deep learning-based methods for capsule endoscopy.

Gastrointestinal Hemorrhage (Bleeding)

Angioectasia
Erosion and ulcer (inflammation)

Celiac disease
Polyp and tumor

Capsule localization
Automated calculation of bowel preparation quality

Binary classification
Multiple lesion detection

5.1. Gastrointestinal Hemorrhage

The field of greatest interest in the early stage of research was automatic hemorrhage
detection. It was first implemented using CNN (AlexNet) in 2016 by Xiao et al. [22]. They
used 8200 training images and showed a sensitivity of 99.2% and a positive predictive
value of 99.9%. Li et al. reported the results of a study comparing the performance and
computational complexity of four CNN architectures (LeNet, AlexNet, GoogLeNet, and
VGG-Net) in hemorrhage detection [23]. AlexNet seemed the most efficient system in
terms of performance and computational complexity (sensitivity 98.9%). In addition, they
reported that the performance related to images with low luminance or contrast was slightly
poorer, and bubbles were highly susceptible to being falsely recognized as a hemorrhage.
Other architectures such as MobileNet have been validated for bleeding image recognizing,
resulting in comparable outcomes in spite of accuracy, recall, and F1 score [24].

5.2. Angioectasia

Angioectasia is a focal accumulation of dilated vessels in the mucosa and submucosa
of the intestinal wall that may cause small intestinal bleeding. Leenhardt et al. reported
the computer-aided detection of angioectasia (sensitivity 100%, specificity 96%) trained
with 600 images in 2019 [25]. Since then, Tsuboi et al. showed a result of 98.8% sensitivity
and specificity of 98.4% with a larger training image set and a richer validation image set
(10,488 images) with a mixture of high-quality and imperfect images [26].

5.3. Erosion and Ulcers

Most WCE procedures are conducted to diagnose suspected Crohn’s disease of the
small intestine, which is a disease that causes chronic inflammation and ulcerative changes
in the intestinal mucosa. Therefore, much of AI research has been focused on this topic.
However, the visual subtlety of ulcers makes them harder to discriminate from normal
tissue than frankly red or actively bleeding lesions. Fan et al. achieved a sensitivity of 96.8%
and specificity of 93.67% with AI training with 3250 ulcer and 4910 erosion images, which
was the first use of DL to detect erosions and ulcers [27]. Aoki et al. conducted training
and validation on a larger scale [28], and Wang et al. improved the efficiency of small
ulcer detection through the so-called “second-glance detection framework” using multiple
separate CNNs [29]. Another study by Aoki et al. quantified the clinical usefulness of
the AI system by comparing its use with the standard clinical setting (manual reading),
showing that their AI system reduced reading time (3.1 vs. 12.2 min) without reducing the
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detection rate (87% vs. 84%) while providing both classification confidence and a bounding
box of the lesion area [30]. Recently, training and validation using 17,640 normal and
lesion images of 49 patients with Crohn’s disease showed a high accuracy of 96.7% [31].
Interestingly, the median time required to obtain this impressive result was only 3.5 min
per single small bowel case, which is only 10–25% of the manual reading time.

5.4. Celiac Disease

Computer-aided quantitative analysis of the existence and degree of celiac disease by
a CNN-based DL model achieved 100% sensitivity and specificity for the external testing
set [32]. It is found that the diagnostic probability of AI was also correlated to the severity
level of small bowel mucosal lesions. However, the number of WCE cases used for training
(11) and testing (10) was relatively small; it is believed that this algorithm should be used
as a preliminary screening tool to select patients who need a following small bowel biopsy.

5.5. Polyps and Tumors

For detecting polyps and tumors, Yuan et al. introduced a stacked sparse autoencoder-
based unsupervised approach, detecting polyps while also classifying normal images into
turbid, bubble, and clear subtypes [33]. They achieved a sensitivity as high as 95.5% and
a specificity of 98.5%. Saito et al. trained CNN using 5360 images with erosions and
ulceration and validated it on 17,507 independent test set images (7507 protruding lesions
with 10,000 normal images) [34]. According to each subtype (polyps, nodules, epithelial
tumors, submucosal tumors, and venous structures), the reported sensitivity ranged from
86.5 to 95.8%.

5.6. Capsule Localization

The ability of AI to estimate the location of detected small bowel lesions is required
for following a therapeutic approach. Conventionally, the reader records the passage time
from the duodenum to the cecum and indirectly estimates the location using how long the
lesion image was displayed after it passed the duodenum, but it lacks accuracy. Several
ML approaches have been tried to overcome this problem since 2008 but have not been
successful [35–38]. An in vitro study of WCE with unsupervised CNN measured both
the traveled distance and the size of the detected lesions [39]. Although this was not a
study applied within the human gastrointestinal tract, using an unaltered capsule in an
artificial bowel showed a mean error of less than 0.01 cm in 20 cm of travel, showing
the potential for this technology. There are opinions that several additional sensors (dual
cameras, gyroscope, accelerometer, and magnetometer) should be introduced for capsule
localization [40]. This can be solved only when the structural design of the capsule becomes
more compact than the present design.

5.7. Automated Calculation of Bowel Preparation Quality

As the diagnostic yield of WCE highly depends upon the bowel preparation quality
of passively obtained images, effective bowel cleansing is essential for qualified WCE
examination. Accordingly, computed cleansing scores using the intensity of a tissue color
bar (PillCam, Medtronic, Minneapolis, USA) or the map view (MiroCam, Intromedic,
Seoul, South Korea) have also been developed. However, color intensity itself does not
fully represent the cleanness of the entire WCE bowel on video. Therefore, Nam et al.
developed a novel CNN-based (InceptionResnetV2) scoring system that calculates more
objective, automated cleansing scores for small bowel preparation [41]. Such an AI system
will enable a more objective assessment of the quality of WCE.

5.8. Binary Classification

Classifying the captured lesions in a binary manner (significant vs. insignificant) has
attracted attention since it can diminish the workload of manual reading by sensitively
selecting only the possible pathologic images that require manual reading. This system
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may be put into real-world practice faster than multi-lesion detection algorithms. Park et al.
developed a practical Inception-ResNet based model that can detect various lesions and
summarize WCE images binarily according to clinical significance [42]. By AI-assisted
reading, lesion detection rates were improved (In experts; 34.3–73.0%; p = 0.029, In trainees;
24.7–53.1%; p = 0.029) while dramatically shortening the reading time (1621 vs. 746 min).
Lui et al. used WCE images of the esophagus, stomach, and large intestine as well as the
small intestine to classify anatomical landmarks and mucosal abnormalities in a binary
way [43]. This binary system showed a sensitivity of 99.5% and a specificity of 98.5% in the
small bowel.

5.9. Multiple Lesion Detection

Implementing an algorithm with a high level of accuracy for detecting multiple
lesions is the ultimate goal of AI research. It requires a very large and balanced training
dataset and detailed pinpoint annotations. Ding et al. collected 108 WCE cases from
77 medical centers [44]. They labeled and annotated over 158,000 images as normal and
one of 10 abnormal categories (inflammation, ulcer, polyp, lymphangiectasia, bleeding,
vascular disease, protruding lesion, lymphatic follicular hyperplasia, diverticulum, and
parasites). In the performance comparison between the CNN and gastroenterologists using
the validation images, the algorithm overpowered humans (sensitivity 99.88% vs. 74.57%,
p < 0.001). The median time taken for the process was only 5.9 min, which was very short
compared to the average manual reading time of 96.6 min. This result represents the
potential of AI models for multiple lesion detection.

Table 2. State of the art deep learning-based methods for wireless capsule endoscopy.

Study (Year) Class CNN Model
No. of

Training/Validation
Images

Accuracy Sensitivity/
Specificity

Xiao et al. (2016) [22] Hemorrhage CNN 8200/1800 No info. 99.2/No info.

Li et al. (2017) [23] Hemorrhage

LeNet
AlexNet

GoogLeNet
VGGNet

9672/2418 100.0 98.9/No info.

Leenhardt et al. (2019) [25] Angioectasia CNN 600/600 No info. 100/96

Tsuboi et al. (2020) [26] Angioectasia SSD * 2237/488 No info. 98.8/98.4

Fan et al. (2018) [27] Erosion and ulcer AlexNet For ulcers: 4400/3850
For erosions: 5920/6990 95.2 96.8/94.8

Aoki et al. (2019) [28] Erosion and ulcer SSD * 5360/10,440 90.8 88.2/90.9

Klang et al. (2020) [31] Crohn’s disease CNN 14,112/3528 96.7 96.8/96.6

Yuan et al. (2017) [33] Polyps SSAE # 4000/No info. 98.0 95.5/98.5

Saito et al. (2020) [34] Polyps SSD * 5360/17,507 No info. 86.5/No info.

Ding et al. (2019) [44] Multiple lesions ResNet 158,235/113,268,334 No info. 99.8 +/100 +

SSD *, Single Shot MultiBox Detector; # SSAE, Stacked Sparse Autoencoder. + results of human CNN-based auxiliary reading.

6. Evaluating Clinical Performance of an Algorithm

Before using an AI algorithm on a patient, it is necessary to sufficiently validate how
accurate it is and how helpful it is to clinical outcomes. Diagnostic errors may delay treat-
ment for patients, resulting in serious harm to patients. In addition, the use of software that
does not improve patient’s treatment outcome only increases unnecessary medical expense.

The development process of artificial intelligence algorithms consists of three stages:
training, tuning, and testing. Among them, the tuning step is an optimization process
that adjusts the algorithm’s hyperparameters, and it is not related to clinical validation.
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However, it is sometimes described as ‘validation’ in few papers, so caution is needed
when reading.

Complex AI algorithms such as deep learning have a high degree of dependence on
training data, so their accuracy is very high in the learning data. However, the accuracy is
relatively low in the data not used for learning. This phenomenon is called ‘overfitting’,
and various ‘regularization’ methods are used to reduce such problems. However, these
methods also have limitations, so it is important to evaluate the performance using separate
independent data not used for training and tuning, which is called ‘external validation’.

Ideal data for external validation has the following conditions: (1) representing the
target clinical scenario/patients in real-world practice without remarkable bias, (2) collect-
ing from multiple institutions other than those that contributed the training data, and (3)
collecting prospectively. Without external validation, it cannot be generalized to actual
clinical practice. There were many cases in which accuracy in the preclinical study was
excellent and was difficult to use in real-world practice [45,46]. According to meta-analysis
of 516 papers reporting the accuracy of machine learning algorithms, only 6% of studies
evaluated the accuracy using external validation [47]. This shows that we need more
attention and effort to verify the accuracy of the AI algorithm properly.

There are questions about which AI systems should be trusted more or less, and per-
forming a comprehensive uncertainty quantification and trustworthiness is a very difficult
process [48]. Well-known performance indicators for AI algorithms are accuracy, sensi-
tivity, specificity, positive predictive value, negative predictive value, receiver operating
characteristic curve, and precision–recall curve. These may be representative metrics, but
they are still not perfect. Developing a format that can quantify the uncertainty of artificial
intelligence that considers both the dataset and the trustworthiness of the inner algorithmic
workings would be one of many future challenges.

7. Going beyond the Limits of Current Technology

Many studies have compared DL performance with existing handcrafted ML perfor-
mance, and most studies in the field of WCE showed that DL outperformed ML [27,49].
This was because DL is an end-to-end learning system. In the case of ML, its limitations
are obvious because it classifies with only manually selected features. However, in DL, the
computing system itself performs feature selection for optimal results. This characteristic of
DL is sometimes called a black box [50]. However, the need for a sufficiently large database
is one of the limitations of DL-based approaches. While studying motility movement
classification in WCE, Segui et al. reported that the accuracy improved only by 3% when
the training data size increased ten-fold [49]. A well-known generative model is a gener-
ative adversarial network (GAN) that can collect a large amount of learning data. GAN
is a structure first proposed by Ian Goodfellow in 2014 and shows great achievements in
generating images, voices, and natural language [51]. For example, when there is a problem
for a DL model to classify a dog or a cat by looking at a certain photo, the conventional
algorithm has been taught to classify two groups by showing real dogs and cats. However,
the trained model is very likely to make judgments based on only some characteristics
of dogs and cats (e.g., pointed ears of cats, tails of dogs). However, suppose a model can
generate pictures of dogs and cats rather than a simple classification model. In that case, it
is believed that it better understands dogs and cats than the existing classification models.
In the same vein as Richard Feynman said, “What I cannot create, I do not understand.”,
generative models are very important. GAN is expected to be actively used to prepare data
necessary for learning in a situation where it is difficult to collect a large amount of medical
data required for AI learning due to the Data Security and Personal Information Protection
Act. However, since the data used to train the generative model may also have serious
weaknesses, it is essential to verify how generalizable it is in actual clinical situations.

An increasing number of CNN studies for WCE are being published not only in
biocomputational but also in clinical journals. Studies from the biocomputational field are
more prone to biases such as selection bias because important clinical information such as
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exclusion criteria is missing. As yet, studies that offer a solution to multiple gastrointestinal
abnormalities are scarce. Most studies are limited to detecting a single type of lesion, which
is insufficient for clinical practice. In addition, most studies extracted well-selected still
images rather than using full-length videos. For images with low luminance, shaky, or
low-image contrast, the problem of performance yield degradation is inevitable with the
current technology. Overfitting is another crucial issue for DL. Although several approaches
are used to mitigate overfitting such as cost function regularity, data augmentation, and
relevant data selection, it remains an important problem for practical use [52]. Therefore,
to overcome this, it is necessary to make an effort to build a large public dataset [53] and
review and improve regulation policy suitable for proper investigations in each country.
In addition, data imbalance with very few pathologic images during training needs to be
addressed. In medical applications including classification of real-world capsule endoscopy
videos, class imbalance is a common problem arising from the imbalance of positive and
negative classes. If this phenomenon is serious from the training stage, the developed
algorithm may run into problems with low recall of classes with small distributions. As a
result, the program may perform well on the training set but underperform in predicting
new unseen cases. This inherent limitation due to the nature of WCE in the small bowel
calls for data augmentation technologies such as flip, crop, rotation, and blurring to be
actively utilized. In addition, several sampling techniques including under sampling,
up(over) sampling, and combined sampling have been introduced.

Additionally, current research based on retrospective studies is also prone to a high
risk of investigator-induced bias. Future prospective multicenter CNN research on WCE is
mandatory for real-world validation.

8. Conclusions

AI technology in WCE is still in a research phase that can only be experimentally used
as an auxiliary second-observer in WCE. However, as image recognition architecture is
evolving very fast, it is expected that shortly, it can effectively reduce the reader’s time,
increase reading accuracy, and ultimately become a system that can independently achieve
image reading. Prospective, multidisciplinary, multicenter WCE research is needed for
clinical use in patient diagnosis.
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