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Abstract: In this study, we aimed to predict mechanical ventilation requirement and mortality using 

computational modeling of chest radiographs (CXRs) for coronavirus disease 2019 (COVID-19) pa-

tients. This two-center, retrospective study analyzed 530 deidentified CXRs from 515 COVID-19 

patients treated at Stony Brook University Hospital and Newark Beth Israel Medical Center between 

March and August 2020. Linear discriminant analysis (LDA), quadratic discriminant analysis 

(QDA), and random forest (RF) machine learning classifiers to predict mechanical ventilation re-

quirement and mortality were trained and evaluated using radiomic features extracted from pa-

tients’ CXRs. Deep learning (DL) approaches were also explored for the clinical outcome prediction 

task and a novel radiomic embedding framework was introduced. All results are compared against 

radiologist grading of CXRs (zone-wise expert severity scores). Radiomic classification models had 

mean area under the receiver operating characteristic curve (mAUCs) of 0.78 ± 0.05 (sensitivity = 

0.72 ± 0.07, specificity = 0.72 ± 0.06) and 0.78 ± 0.06 (sensitivity = 0.70 ± 0.09, specificity = 0.73 ± 0.09), 

compared with expert scores mAUCs of 0.75 ± 0.02 (sensitivity = 0.67 ± 0.08, specificity = 0.69 ± 0.07) 

and 0.79 ± 0.05 (sensitivity = 0.69 ± 0.08, specificity = 0.76 ± 0.08) for mechanical ventilation require-

ment and mortality prediction, respectively. Classifiers using both expert severity scores and radi-

omic features for mechanical ventilation (mAUC = 0.79 ± 0.04, sensitivity = 0.71 ± 0.06, specificity = 

0.71 ± 0.08) and mortality (mAUC = 0.83 ± 0.04, sensitivity = 0.79 ± 0.07, specificity = 0.74 ± 0.09) 

demonstrated improvement over either artificial intelligence or radiologist interpretation alone. 

Our results also suggest instances in which the inclusion of radiomic features in DL improves model 

predictions over DL alone. The models proposed in this study and the prognostic information they 

provide might aid physician decision making and efficient resource allocation during the COVID-

19 pandemic. 
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1. Introduction 

Coronavirus disease 2019 (COVID-19), an illness caused by novel severe acute res-

piratory syndrome coronavirus 2 (SARS-CoV-2), has spread rapidly across the world, 
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with over 200 million cases internationally and over 35 million cases in the United States 

as of 5 August 2021 [1]. Advanced cases of the disease can progress to acute respiratory 

distress syndrome requiring mechanical ventilation [2–7]. Thus far, over 4.2 million peo-

ple have died internationally [1]. The ability to identify patients that might progress to 

critical illness from initial clinical presentation can better guide clinical management strat-

egies and improve patient outcomes [2–4]. Several studies have demonstrated that radio-

logic imaging may be useful in this regard [2,7,8]. 

In the United States, chest radiographs (CXRs) are the primary imaging modality for 

the monitoring of COVID-19, and the American College of Radiology has recommended 

that computed chest tomography (CT) be reserved only for selected patients with limited 

specific clinical indications including severe disease [2,5,9]. However, CXRs have lower 

resolution than CT images and provide 2-Dimensional (2D) rather than 3D representa-

tions of the lungs. These features make CXRs more difficult to interpret than CTs. Early 

reports suggested that radiologist diagnosis of COVID-19 from CXR had a sensitivity of 

69%, compared to a sensitivity of up to 97% on CT [10,11]. Nevertheless, portable radiog-

raphy is the preferred and often the only available imaging modality in high-volume hos-

pital settings. 

Recent studies have qualitatively described the association of ground-glass opacities 

and lung consolidations with disease severity and progression on CXR and CT [2,5–

7,11,12]. Specifically, the presence of opacities in multiple lobes has been shown to predict 

severe illness, and several CXR scoring systems have been developed to assess disease 

severity based upon this premise [2,6,7]. Studies have also evaluated various clinical bi-

omarkers and comorbidities as predictors of disease progression, and there is some evi-

dence that imaging data might complement these models [4–6,13–16]. However, current 

studies to model clinical outcomes in COVID-19 primarily rely on less commonly used 

CTs or qualitative analysis of CXRs [2,4–6,10,12]. In this multi-site study, we utilized quan-

titative techniques to better evaluate the role of CXR in predicting patient outcomes.  

Computational radiology employs machine learning to interpret medical images. 

Two general approaches include deep learning (DL) and radiomic analysis [8,17]. DL 

makes use of neural networks to iteratively learn features from CXRs using convolution 

operations. Radiomic features are distinct, handcrafted attributes that can be directly re-

lated to the visual characteristics of an image. While recent studies have used these tech-

niques to study COVID-19, few have applied them to multi-institutional CXR cohorts 

[8,12,18–22]. 

In this study, we developed computational models to identify clinically actionable 

information from baseline CXRs taken from COVID-19 patients. A baseline CXR refers to 

any CXR taken on the first day for which CXR data exist for a patient treated for COVID-

19 infection. First, we developed a baseline model using radiologist assessment of CXR 

severity (zone-wise expert scores) to predict mechanical ventilation requirement and mor-

tality in order to determine the efficacy of machine learning approaches. We then em-

ployed machine learning classifiers to predict patient outcomes using computer-extracted 

radiomic features from baseline CXR. Our third experiment predicted mechanical venti-

lation requirement and mortality using DL of patient baseline CXRs. Fourth, we proposed 

a combined DL model using both processed CXRs and corresponding radiomic features 

to predict clinical outcomes. A novel synergistic approach utilizing radiomic-embedded 

maps for DL is presented and may provide new interpretations of predefined radiomic 

features. Figure 1 displays a general flowchart of experiments. 

Related Work 

Machine learning methods have been applied extensively to the study of COVID-19, 

analyzing both clinical variables and medical images for disease diagnosis and prognosis 

[3,8,12–15,18–21,23,24]. In the domain of computational radiology, many studies have fo-

cused primarily on CT image analysis, though further work is now being performed on 
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CXRs [19,20,24]. However, few studies attempt to predict COVID-19 patient clinical out-

comes using CXRs, and the public datasets often studied have been critiqued for poten-

tially biasing results [8,19,23]. Below, we perform a brief survey of related and relevant 

works.  

First, several scoring systems based upon radiologist interpretation have been pro-

posed for the grading of COVID-19 severity using CXRs. Balbi et al. have described their 

own proposed Brixia score and measurements of diseased lung involvement and their 

correlation with mortality in COVID-19 patients [6]. Similarly, Toussie et al. and Shen et 

al. have proposed CXR scoring systems that they have shown to correlate significantly 

with various outcomes including survival, hospitalization, and intubation [2,22].  

In general, DL has been widely used in the field of natural and medical image anal-

ysis. In this work, we employed both ResNet and U-Net DL architectures, modifying them 

for our particular use cases [25,26]. ResNet has been previously applied to a variety of 

classification tasks using medical images, and U-Net is the commonly widely utilized DL 

architecture for medical image segmentation [27,28]. The use of these architectures is com-

monplace for medical image classification and segmentation tasks and has historically 

performed well for numerous tasks.  

Computational approaches have also been employed to predict clinical courses for 

COVID-19 patients. Vaid et al. utilized clinical variables including measurements of in-

flammation, biomarkers, and other lab values to predict COVID-19 mortality with an 

AUC of up to 0.84 [3]. Chassagnon et al. utilized a U-Net segmentation pipeline, followed 

by radiomic feature extraction, using CT data in order to predict long-term survival, with 

an AUC of up to 0.86 [20]. Studying CXRs, Ferreira Jr. et al. validated the relationship 

between several radiomic features and COVID-19 diagnosis and prognosis in a small co-

hort of 49 COVID-19 positive patients [29]. Kwon et al. utilized DL in combination with 

clinical variables to achieve AUCs of up to 0.88 and 0.82 for intubation and mortality pre-

diction, respectively [24]. 

Our method combined aspects of each of these approaches to provide a robust, inter-

pretable method for clinical outcome prediction in the context of COVID-19. We analyzed 

CXRs, a more frequently used modality when compared with CT. Furthermore, our study 

contained a large dataset of images taken from multiple institutions; the inherent varia-

bility in intensity distribution between these datasets demonstrates the robustness of our 

model on CXRs obtained under different conditions. We also compared radiomic and DL 

approaches for outcome prediction, investigating their relative benefits for different pre-

diction tasks.  
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Figure 1. Study pipeline. Visualized here is the schema for the experiments performed in this study. Experiment 1 demon-

strated the use of radiologist expert scoring of CXRs for clinical outcome prediction. In Experiment 2, we extracted prede-

fined radiomic features from segmented CXRs and input them into machine learning models such as linear discriminant 

analysis, quadratic discriminant analysis, and random forest classifiers. Experiment 3 used a CNN deep learning model 

to predict COVID-19 patient outcomes using segmented CXRs as inputs. In Experiment 4, we investigated two separate 

methods (P4 and P5) of integrating radiomic features with segmented CXRs for DL analysis. 

2. Materials and Methods 

2.1. Cohort Description 

In this two-center, IRB-approved study, anonymized frontal CXRs were obtained 

from patients suspected of COVID-19 on presentation at Stony Brook University Hospital 

(SBUH) and Newark Beth Israel Medical Center (NBIMC) between March and June 2020 

(Figure 2). A total of 559 baseline CXRs for 538 patients at SBUH were analyzed. For this 

study, 17 CXRs of pediatric patients or with poor image quality taken from 16 patients 

were discarded. A total of 174 baseline CXRs from 174 patients were included from 

NBIMC. Of these, 5 CXRs were discarded due to indistinguishable lung fields. We con-

sidered all CXRs taken on the first day for which CXR data exist for a patient as baseline 

CXRs. Hence, a patient may have multiple baseline CXRs, though these would all be taken 

on the same day.  

In total, 711 CXRs taken from 691 patients (363 males and 328 females) were analyzed 

in this study. The mean age of patients studied was 56 years old (median = 57 years, stand-

ard deviation = 17.774 years, Table 1). COVID-19 positivity was tested for each patient via 

reverse transcriptase–polymerase chain reaction (RT-PCR). In total, 530 CXRs from 515 

patients who tested positive for COVID-19 (Table 2) and 181 CXRs from 176 patients 

found not to be infected with COVID-19 at SBUH were analyzed. CXRs taken from 

COVID-19 positive patients were used in outcome prediction experiments, whereas those 

from both COVID-19 positive and negative patients were used to build lung and artifact 

segmentation models. Of the 530 CXRs from positive patients, 217 baseline CXRs were 

taken for 205 patients that later required mechanical ventilation. A total of 164 CXRs were 
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from 158 patients who later died from the disease. Representative CXR images are dis-

played in Figure 3.  

 

 

Figure 2. Summary of patient inclusion and exclusion criteria: (a) displays criteria for SBUH and (b) displays criteria for 

NBIMC. Ineligibility criteria included pediatric patients, existing intubation status prior to CXR acquisition, poor image 

orientation, or indistinguishable lung fields on CXR. 

Table 1. Total patient demographics table. 

 Stony Brook University Hospital Patients (n = 522) Newark Beth Israel Medical Center Patients (n = 169) 

Sex 267 (175 COVID-19+) male 255 (171 COVID-19+) female 96 male 73 female 

Age 
55 ± 18.630 (p = 0.0989 *) 

57 ± 16.969 (COVID-19+, p = 0.1170 *) 
59 ± 14.256 (p = 0.6821 *) 
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* p-values for age difference between sexes using a Wilcoxon rank-sum test. 

Table 2. COVID-19 positive patient outcome table. 

Age  
Number of COVID-19 

Positive Patients 

Number Requiring Mechanical 

Ventilation 
Number Deceased 

18–19 

(n = 1) 

Male 1 0 0 

Female 0 0 0 

20–29 

(n = 22) 

Male 11 1 1 

Female 11 4 2 

30–39 

(n = 47) 

Male 29 8 4 

Female 18 4 2 

40–49 

(n = 75) 

Male 42 11 5 

Female 33 9 4 

50–59 

(n = 130) 

Male 64 24 17 

Female 66 30 13 

60–69 

(n = 108) 

Male 60 33 24 

Female 48 27 18 

70–79 

(n = 79) 

Male 41 24 20 

Female 38 17 19 

80+  

(n = 53) 

Male 23 6 11 

Female 30 7 18 

Total 

(n = 515) 

Male 271 107 82 

Female 244 98 76 
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Figure 3. Representative CXRs and segmentation results. Displayed here are baseline CXRs taken from patients that later 

(a) required mechanical ventilation, (b) did not require ventilation, (c) survived the disease, and (d) did not survive. 

2.2. Image Preprocessing 

2.2.1. Lung and Artifact Segmentation 

A segmentation pipeline was developed to avoid learning of features unrelated to 

lung fields. In order to segment lungs and artifacts from CXR images, two residual U-Net 

DL models were employed [26,30]. Both network architectures were augmented using 

multiscale image inputs for better intermediate feature representations with deep super-

vision (Figure 4) [31]. Lung fields and artifacts such as EKG leads, pacemakers, and other 

non-anatomical objects were first manually segmented for a dataset of 100 CXRs, exclud-

ing heart shadows. These segmentations were used to train the two networks, one for lung 

segmentation and the other for artifact segmentation. A focal Tversky loss function to pe-

nalize false positive predictions was employed (alpha = 0.3, gamma = 1.0) [32]. This was 

to avoid misidentification of high-intensity objects as lungs and to mitigate misclassifica-

tion of lungs as unwanted artifacts. The trained models were then used to generate lung 

and artifact masks for the remaining 611 CXRs. Each of these masks was manually re-

viewed and errors in segmentation, if any, were corrected. 

  

a b 

c d 
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(a) (b) 

 

Figure 4. Network architecture for lung and image artifact segmentation: (a) visualizes our multiscale input residual U-

Net architecture. (b) displays an example residual block. 

2.2.2. Average Histogram Matching (HM) 

It should be noted that CXRs from the two institutions, SBUH and NBIMC, fall within 

two distinct data domains differing in pixel intensity distribution. To mitigate image dif-

ferences, an average histogram matching (HM) was employed (Figure 5). A total of 80 

CXR images were chosen randomly from the SBUH dataset to create an average cumula-

tive distribution. Every CXR from both SBUH and NBIMC was then mapped to this aver-

age cumulative function using an HM approach, bringing all CXRs into the same intensity 

range [33].  

For both ventilation and mortality classification, models were trained and evaluated 

in a cross-validation setting. To this end, 217 ventilation-positive and 300 ventilation-neg-

ative CXRs were used for ventilation classification, whereas 164 CXRs from deceased pa-

tients and 357 CXRs from recovered patients were used for mortality classification. For 

each iteration of cross-validation evaluation, folds were chosen such that training and test-

ing folds each contained an equal number of positive and negative samples. 

2.3. Experiment 1: Outcome Classification Using Radiologist Severity Scores 

In order to develop a clinical baseline model, we adopted a previously described CXR 

scoring system for COVID-19 patients [7]. Scoring of CXRs was performed by radiology 

residents (G.S., R.G., S.A., N.S., C.M., and J.P.). Any ambiguous scores were further con-

firmed by one of two attending radiologists (J.G. and A.G.). For each lung, a severity score 

of 0, 1, or 2 was assigned to each of three lung zones: lower, middle, and upper (Figure 6), 

with a maximum possible score of 12 for both lungs combined. A score of 0 was assigned 

to lung zones with no radiographic findings, a score of 1 was assigned to zones with the 

presence of ground-glass opacities, and a score of 2 was assigned to zones with consoli-

dative opacities with or without air bronchograms. The formulation of this system and 

the assignment of different scores to 6 lung zones is in line with other described COVID-

19 CXR scoring systems [2,6]. Once these scores were assigned for each CXR, a multiple 

logistic regression model was developed to predict mechanical ventilation requirement 

and mortality based upon these zone-wise expert scores. This approach was evaluated in 

a cross-validation setting and served as a human-based comparison for the machine learn-

ing models discussed below.  
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Figure 5. Results of histogram matching. Displayed are the results of HM preprocessing on CXR 

images from SBUH and NBIMC. 

 

Figure 6. Zone-wise expert scores for CXRs. The numbers displayed are examples of zone-wise ex-

pert scores obtained for COVID-19 patients who (a) did not require mechanical ventilation and re-

covered, (b) required mechanical ventilation and recovered, and (c,d) required mechanical ventila-

tion and are deceased. 
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2.4. Experiment 2: Outcome Classification Using Radiomic Features 

Radiomic features were extracted from CXRs for clinical outcome prediction in order 

to provide interpretable insights into which textural features might be most predictive of 

mortality and mechanical ventilation. In total, 143 radiomic features from the Haralick, 

Gabor, Laws energy, histogram of gradients, and grey intensity feature families were com-

puted for each baseline CXR [34–37]. Features were extracted solely from segmented lung 

fields, excluding artifacts. Descriptions of various radiomic features can be found in Table 

3. Each of these features has been previously studied in medical applications including in 

the study of COVID-19 [29,34–37]. In this study, we performed an exploratory analysis of 

these various well-studied radiomic features in order to determine their relative value in 

predicting clinical outcomes for COVID-19 patients. For each radiomic feature, statistics 

including measures of median, skewness, standard deviation, and kurtosis were calcu-

lated. These statistics and clinical factors including expert scores and patient age/sex were 

used for classifier construction.  

For prediction of future mechanical ventilation requirement and mortality, random 

forest (RF), linear discriminant analysis (LDA), and quadratic discriminant analysis 

(QDA) classifiers were trained and cross-validated on radiomic features from baseline 

CXRs [38,39]. For each of 50 iterations in a 5-fold cross-validation setting, feature reduc-

tion among radiomic and clinical features was performed on the training set using a Wil-

coxon rank-sum test, Student’s t-test, or a maximum relevance minimum redundancy ap-

proach [40]. Highly correlated features (Pearson correlation threshold = 0.9) were removed 

to reduce redundancy. Ablation studies were performed to assess the relative perfor-

mance of radiomic classification with and without HM and with and without clinical fea-

tures.  

Table 3. Selected predictive radiomic feature descriptions. 

Radiomic Feature 

Family 

Features Used for Clinical Outcome 

Prediction 
Description 

Laws Energy 

L5E5, E5S5, W5E5, L5E5, W5R5, S5E5, 

R5E5, W5W5, S5E5, S5W5, S5L5, L5S5, 

E3S3, R5R5 

Combinations of these filters at different window 

sizes (3 × 3, 5 × 5) enable identification of various 

qualitative patterns such as waves, ripples, 

edges, and spots.  

Gabor Wavelet 

θ = 1.571 λ = 1.786, θ = 0.785 λ = 1.276, θ = 

1.963 λ = 1.276, θ = 1.178 λ = 1.786, θ = 

1.178 λ = 0.765 

Computes oriented textures via changes in direc-

tion and scale to capture microarchitectures in 

lung regions. Each descriptor quantifies response 

to a given Gabor filter at a specific wavelength 

(λ) and orientation (θ)  

Haralick Entropy, Correlation, Information 

Features are extracted from the grey level co-oc-

currence matrix (GLCM) of an image. Measures 

various characteristics regarding local disorder, 

homogeneity, and heterogeneity. 

Gradient X, Y, Diagonal 
Measures changes in intensity values within an 

image in different directions. 

Grey Standard Deviation, Mean Standard measures of intensity information.  

2.5. Experiment 3: Outcome Classification Using Convolutional Neural Networks  

Convolutional neural networks (CNNs) were employed to predict future mechanical 

ventilation requirement and patient mortality from baseline CXRs. Additional prepro-

cessing steps for DL included automatic cropping of CXRs to a tight boundary around the 

lungs, resizing input images to 224 × 224 pixels, and the application of min–max normal-

ization to rescale image intensity values between 0 and 1.  

For each classification experiment a ResNet-50 pretrained on ImageNet was utilized 

[25]. Data augmentation techniques such as flipping, rotation, and translation were used 

to reduce overfitting. The fully connected (FC) layer of each architecture was replaced by 

a custom layer with an input size of 512 by 1 (no clinical variables included) or 520 by 1 

(expert scores and patient age/sex included) and output size of 2 by 1 to match our desired 
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binary classification scheme. The FC layer was trained without the use of pretrained 

weights. Dropout layers with a probability of 0.1 were included after FC layers to improve 

the generalizability of classification. For each model, a binary cross-entropy loss function 

and an Adam optimizer with a learning rate of 0.00001 were used for network training 

[41]. The learning rate was decreased by a factor of 0.01 after each 10th epoch. Models 

were trained and evaluated in a cross-validation setting in which new training, validation, 

and testing splits were chosen for each of five iterations.  

Class activation maps (CAMs) were also generated using network outputs prior to 

the global average pooling layer in the ResNet-50 architecture. These CAMs enable a de-

gree of visualization of a network’s “attention” in making predictions, thereby providing 

a soft validation of the prognostically relevant regions as determined by the network. 

In addition, t-distributed stochastic neighbor embedding (t-SNE) was used to visual-

ize features extracted using ResNet-50 models for mortality and mechanical ventilation 

predictions using network outputs prior to the final FC layer [42].  

2.6. Experiment 4: Outcome Classification Using Convolutional Neural Networks and Radiomic-

Map Embedding 

DL of radiomic and imaging features was explored using two different approaches. 

2.6.1. Feed-Forward Concatenation of Radiomic Features 

In this approach, the features used for classifier development in Experiment 2 were 

first normalized to within a range of 0 to 1 before being concatenated to the output of the 

upsampling layer of the ResNet-50 architecture used in Experiment 3. The following feed-

forward layer was then modified to contain 512 + n neurons, where n is the number of 

chosen radiomic features for the desired classification problem. If clinical data including 

expert scores and patient age/sex were also included, the number of neurons was instead 

520 + n. In this experiment, model weights for the initial image feature extractor layers 

were used from Experiment 3, whereas the weights for the altered feed-forward layer 

were randomly initialized. The entire model was then trained. This process was identical 

for both mechanical ventilation and mortality prediction.  

2.6.2. Radiomic-Embedded Feature Maps 

Radiomic features from Experiment 2 were used to create radiomic-embedded fea-

ture maps for each CXR. t-SNE (random state = 1) was employed to perform feature re-

duction and to convert radiomic data to a 2D representation [42]. To assess the predictive 

capability of a model trained using both radiomic-embedded feature maps and CXR im-

ages as inputs, the same general procedure employed in Experiment 3 was used. A key 

difference was a change in the first input convolution filter of the ResNet-50 architecture 

to receive a 2-channel CXR and radiomic-embedded map input rather than a 3-channel 

input. All other network configurations are identical to those described in Experiment 2. 

Dataset splits of each of these classifiers were identical to those detailed in Experiment 2. 

3. Results 

Results for Experiments 1, 2, 3, and 4 are summarized in Table 4, Table 5, Table 6 and 

Table 7 and are reported as mean ± 95% confidence interval based on fivefold cross-vali-

dation results. 

Table 4. Expert scores clinical outcome prediction results. 

Classification Type Sensitivity Specificity AUC 

Ventilation Requirement 0.67 ± 0.08 0.69 ± 0.07 0.75 ± 0.02 

Mortality 0.69 ± 0.08 0.76 ± 0.08 0.79 ± 0.05 
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Table 5. Radiomics clinical outcome prediction results. 

Classification Type Image Adjustment Clinical Features Sensitivity Specificity AUC 

Ventilation 

Requirement 

Unadjusted 

None 0.64 ± 0.07 0.67 ± 0.07 0.72 ± 0.05 

Expert Scores, 

patient age and sex 
0.67 ± 0.08 0.73 ± 0.07 0.77 ± 0.05 

Histogram Matching 

None 0.72 ± 0.07 0.72 ± 0.06 0.78 ± 0.05 

Expert Scores, 

patient age and sex 
0.71 ± 0.06 0.71 ± 0.08 0.79 ± 0.04 

Mortality 

Unadjusted 

None 0.72 ± 0.09 0.72 ± 0.08 0.77 ± 0.05 

Expert Scores, 

patient age and sex 
0.79 ± 0.07 0.74 ± 0.09 0.83 ± 0.04 

Histogram Matching 

None 0.70 ± 0.09 0.73 ± 0.09 0.78 ± 0.06 

Expert Scores, 

patient age and sex 
0.77 ± 0.08 0.71 ± 0.09 0.80 ± 0.06 

Bold text indicates highest metrics obtained. 

Table 6. Deep learning clinical outcome prediction results. 

  

Ventilation Requirement Mortality 

Unadjusted 
Histogram 

Matching 
Unadjusted 

Histogram 

Matching 

Sensitivity 

CXR 0.55 ± 0.09 0.64 ± 0.09 0.56 ± 0.15 0.59 ± 0.13 

CLC 0.63 ± 0.08 0.61 ± 0.01 0.58 ± 0.17 0.67 ± 0.09 

REM 0.54 ± 0.08 0.68 ± 0.05 0.66 ± 0.07 0.64 ± 0.07 

REM CLC 0.58 ± 0.09 0.62 ± 0.08 0.61 ± 0.14 0.77 ± 0.07 

RAD 0.63 ± 0.06 0.66 ± 0.04 0.58 ± 0.12 0.59 ± 0.12 

RAD CLC 0.62 ± 0.07 0.67 ± 0.07 0.59 ± 0.07 0.69 ± 0.08 

Specificity 

CXR 0.72 ± 0.08 0.73 ± 0.07 0.72 ± 0.07 0.74 ± 0.04 

CLC 0.66 ± 0.08 0.76 ± 0.05 0.65 ± 0.06 0.71 ± 0.09 

REM 0.59 ± 0.05 0.63 ± 0.02 0.58 ± 0.08 0.73 ± 0.07 

REM CLC 0.65 ± 0.07 0.68 ± 0.06 0.63 ± 0.08 0.60 ± 0.09 

RAD 0.69 ± 0.06 0.75 ± 0.06 0.67 ± 0.03 0.76 ± 0.03 

RAD CLC 0.69 ± 0.06 0.78 ± 0.05 0.71 ± 0.02 0.67 ± 0.03 

AUC 

CXR 0.70 ± 0.07 0.75 ± 0.02 0.72 ± 0.07 0.75 ± 0.04 

CLC 0.69 ± 0.03 0.77 ± 0.02 0.70 ± 0.07 0.74 ± 0.04 

REM 0.61 ± 0.03 0.71 ± 0.02 0.67 ± 0.04 0.76 ± 0.04 

REM CLC 0.64 ± 0.02 0.72 ± 0.02 0.68 ± 0.02 0.77 ± 0.01 

RAD 0.70 ± 0.03 0.77 ± 0.03 0.69 ± 0.07 0.74 ± 0.06 

RAD CLC 0.72 ± 0.02 0.78 ± 0.02 0.71 ± 0.04 0.75 ± 0.07 
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All columns used preprocessed patient CXRs as inputs to DL networks in addition to: CLC―clinical features including 

patient age and sex; REM―radiomic-embedded feature maps; RAD―concatenation of radiomic features to DL feature 

outputs. Bold text indicates highest metrics obtained. 

Table 7. Top 10 features used in radiomic classifiers. 

Classificatio

n Type 

Image 

Adjustment 

Clinical 

Features 
Radiomic Features 

Ventilation 

Requirement 

Unadjusted 

None 

1. Laws L5E5   2. Gabor XY θ = 1.571 λ = 1.786   3. Gradient 

Diagonal   4. Laws E5S5   5. Laws W5E5  6. Laws L5E5   7. 

Laws W5R5   8. Laws S5E5   9. Haralick Entropy Ws7  10. 

Haralick Correlation Ws7 

Expert 

Scores, 

Patient 

Age and 

Sex 

1. ES Lower Left   2. Age   3. ES Middle Left   4. Sex 5. ES 

Middle Right   6. Laws W5E5   7. Laws W5R5   8. Laws E5S5 

9. Gradient Diagonal   10. ES Lower Right   11. Laws R5E5 

12. Laws E5E5   13. Laws E3S3   14. Laws R5W5   15. Laws 

W5W5   16. Laws S5E5   17. Laws S5W5   18. Laws S5L5   19. 

Gradient dy 

Histogram 

Matching 

None 1. Gradient Y   2. Laws E5S5   3. Laws L5S5 

Expert 

Scores, 

Patient 

Age and 

Sex 

1. Laws E3S3   2. LawsR5R5   3. ES Middle Right   4. ES Lower 

Right   5. Gabor XY θ = 0.785 λ = 1.276   6. ES Middle Left   7. 

ES Lower Left   8. Gabor XY θ = 1.963 λ = 1.276   9. Grey 

Standard Deviation 10. Laws L5S5   11. Gabor XY θ = 1.178 λ = 

1.786   12. Haralick Entropy Ws3   13. Gradient Sobel Y   14. 

Gabor XY θ = 1.178 λ = 0.765   15. Haralick Information Ws5 

Mortality 

Unadjusted 

None 1. Haralick Correlation Ws5 

Expert 

Scores, 

Patient 

Age and 

Sex 

1. Age   2. Haralick Correlation Ws5   3. ES Middle Right   4. ES 

Lower Left 

Histogram 

Matching 

None 
1. Laws R5E5   2. Gradient Y   3. Laws E3S3   4. Haralick 

Entropy Ws 5 

Expert 

Scores, 

Patient 

Age and 

Sex 

1. Age   2. ES Lower Left   3. ES Middle Right   4. Laws R5E5   

5. ES Upper Right6. ES Lower Right   7. Gradient Y   8. Gradient 

Sobel YX   9. Laws E3 S3   10. Gradient dx   11. Haralick 

Entropy 

3.1. Experiment 1: Outcome Classification Using Radiologist Severity Scores 

For Experiment 1, expert scores predicted mechanical ventilation, with a mean cross-

validated AUC (mAUC) of 0.75, a specificity of 69%, and a sensitivity of 67%. Expert scores 

were able to predict mortality with an mAUC of 0.79, a specificity of 76%, and a sensitivity 

of 69%. The distribution of zone-wise export scores among patients in each clinical out-

come class is shown in Figure 7a,b. Figure 7c,d visualizes distributions of total expert 

scores among patients in each clinical outcome class. The distribution of expert scores 

within each lung region along with the distribution of total expert scores was statistically 

significant between patients requiring mechanical ventilation, compared with those who 
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did not, as well as between deceased and recovered patients. Correlations between zone-

wise expert scores for each lung region and clinical outcomes/variables are shown in Fig-

ure 7e. Total severity score (the sum of scores from all lung regions) correlated most 

strongly with both future ventilation requirement (0.44) and mortality (0.40), respectively. 

These correlations were stronger than correlations for individual lung zones with clinical 

outcomes and for patient age or sex with clinical outcomes. 

3.2. Experiment 2: Outcome Classification Using Radiomic Features 

For Experiment 2, a machine learning classifier trained to predict the need for me-

chanical ventilation using radiomic features extracted from non-HM-adjusted images 

yielded an mAUC of 0.72, a specificity of 67%, and a sensitivity of 64%. Using radiomic 

features from HM-adjusted images achieved an mAUC of 0.78, a specificity of 72%, and a 

sensitivity of 72% for mechanical ventilation prediction. A machine learning classifier 

used to predict mortality in COVID-19 positive patients using radiomic features from non-

HM-adjusted images had an mAUC of 0.77, a specificity of 72%, and a sensitivity of 72%. 

Using radiomic features from HM-adjusted images resulted in an mAUC of 0.78, a speci-

ficity of 73%, and a sensitivity of 70% for mortality prediction. The inclusion of zone-wise 

expert scores and patient age and sex improved both mechanical ventilation and mortality 

prediction when combined with radiomic features to yield an mAUC of 0.79, specificity 

of 71%, and sensitivity of 71% for mechanical ventilation prediction and an mAUC of 0.83, 

specificity of 74%, and sensitivity of 79% for mortality prediction.  

The top features for radiomic outcome classification are listed in Table 7. Please see 

Table 3 for detailed descriptions of these features. Among the most discriminating radio-

mic features identified for predicting mechanical ventilation requirement and mortality 

were the Laws E5S5 energy and Haralick correlation features, respectively (Figure 8). The 

Laws E5S5 filter is a composite edge and spot detection filter, whereas the Haralick corre-

lation measures the similarity of a pixel to its neighbors using a grey-level co-occurrence 

matrix. 
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Figure 7. Zone-wise expert scores distribution: (a) and (b) depict the proportion of patients whose CXRs had lung zone 

scores of 0, 1, and 2 in each pictured population; (c) and (d) visualize the distribution of total zone-wise scores assigned to 
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CXRs for patients in each population; (e) displays correlations between zone-wise severity scores and clinical outcomes. 

Asterisks denote statistical significance at the level of p = 0.01 as determined by a Pearson’s correlation coefficient. 

 

Figure 8. Radiomic feature distribution. Visualized are the relative effects of HM on the distribution of highly discrimina-

tive features for ventilation requirement and mortality prediction. (a,b) visualize the distribution of the skewness of the 

Laws E5S5 radiomic feature for ventilated and non-ventilated patients before (a) and after (b) HM. (c,d) display the dis-

tribution of the variance of the Haralick Correlation for alive and deceased patients before (c) and after (d) HM. 

3.3. Experiment 3: Outcome Classification Using Convolutional Neural Networks 

In Experiment 3, a ResNet-50 model trained solely using non-HM-adjusted CXRs to 

predict future mechanical ventilation requirement had an mAUC of 0.70, a specificity of 

72%, and a sensitivity of 55% on cross-validation. Using HM-adjusted images as input for 

DL resulted in improved mechanical ventilation requirement prediction with an mAUC 

of 0.75, a specificity of 73%, and a sensitivity of 64%. A ResNet-50 model trained using 

non-HM-adjusted CXRs to predict mortality yielded an mAUC of 0.72, a specificity of 

72%, and a sensitivity of 56%. Using HM-adjusted images for DL training resulted in im-

proved mortality prediction with an mAUC of 0.75, a specificity of 74%, and a sensitivity 

of 59%.  

3.4. Experiment 4: Outcome Classification Using Convolutional Neural Networks and Radiomic-

Map Embedding 

For Experiment 4, we found that the inclusion of radiomic features improved DL 

prediction of both mechanical ventilation and mortality. DL models trained using radio-

mic-embedded feature maps improved the prediction of mortality over DL of CXRs alone 

but did not increase performance when predicting mechanical ventilation requirement. 

Using feed-forward concatenation of radiomic features to DL features, our model ob-
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tained an mAUC of 0.77, a specificity of 75%, and a sensitivity of 66% for mechanical ven-

tilation requirement prediction. Using radiomic-embedded features a DL model produced 

an mAUC of 0.74. a specificity of 76%, and a sensitivity of 59% for mortality prediction. 

The inclusion of clinical features including expert scores and patient age/sex improved 

predictions for mechanical ventilation requirement with an mAUC of 0.78, a specificity of 

78%, and a sensitivity of 67%. For mortality prediction, the inclusion of clinical features 

improved model predictions to obtain an mAUC of 0.77, a specificity of 60%, and a sensi-

tivity of 77%. Ultimately, the inclusion of radiomic features improved DL prediction of 

clinical outcomes (Table 6).  

For DL experiments, representative CAMs are shown in Figure 9. An expert reader 

(J.G, 15 years of experience) noted that for CXRs from patients that required mechanical 

ventilation, CAM maximal signal intensity was shown to correlate with areas of dense 

infiltrates. For selected CXRs for patients who did not require mechanical ventilation, 

CXRs appeared to demonstrate no focal consolidation or infiltrates. The maximal CAM 

signal for these CXRs was observed in left middle lung zones, predominantly along the 

perihilar region. For all CAMs generated, network activations were shown to be most sig-

nificantly located within lung fields. t-SNE feature reduction for deep features is also vis-

ualized in Figure 9. Clustering for features from patients that did and did not require me-

chanical ventilation was observed. 

 

Figure 9. t-SNE and CAM visualization of DL predictions: (a) displays t-SNE clustering of DL network outputs for venti-

lation prediction; (b–d) demonstrate no focal consolidation or infiltrates. CAMs show maximal signal intensity in the left 

middle lung zone predominantly along the perihilar region; (e) shows no focal consolidation or infiltrates. CAM shows 

maximal signal intensity in the right mid to lower lung zone; (f) demonstrates diffuse patchy infiltrates bilaterally, pre-

dominantly in the mid to lower lung zones. CAM shows the highest signal intensities in the right mid to lower lung zones 

in areas of dense infiltrates. Additionally, noted is slightly increased CAM activity in the left lower lobe around the areas 

of dense infiltrates; (g) demonstrates diffuse patchy infiltrates bilaterally. CAM shows the highest signal intensities in the 

right lower and left upper lung zones around areas of slightly dense infiltrates; (h) shows diffuse infiltrates bilaterally 

with relative sparing of the right upper lobe. CAM shows the highest signal intensities in the right mid and left mid to 

lower lung zones in areas of dense infiltrates; (i) demonstrates diffuse bilateral reticular opacities with interlobular septal 

thickening along with superimposed dense infiltrates predominantly in the lower lobes. CAM shows the highest signal 

intensity in the right lower lung zone around areas of dense infiltrates. CXR interpretation performed by J.G. (15 years of 

experience). 
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4. Discussion 

In this work, we presented models for baseline CXR analysis demonstrating high 

sensitivities for future mechanical ventilation requirement (71%) and mortality (79%) pre-

diction. These models outperform expert score-based classification that yields sensitivities 

of 67% and 69% for mechanical ventilation requirement and mortality, respectively. These 

results highlight the value that quantitative modeling of CXRs can have for the prognostic 

prediction of COVID-19. Previous non-imaging models have been proposed with high 

sensitivities for various clinical outcomes using biomarkers such as serum lactate dehy-

drogenase, lymphocyte counts, and coagulation factors in the setting of COVID-19 [4,13–

15]. We demonstrated that these models might be complemented by imaging-based ap-

proaches. The ability to discern actionable prognostic information from baseline CXR has 

significant implications for decision making and triage in the COVID-pandemic, espe-

cially in high-volume hospital settings. Determining which patients might progress to se-

vere disease would enable healthcare providers to make informed decisions regarding 

treatments. Furthermore, the ubiquitous nature of CXR in the management of COVID-19 

makes a quantitative predictor of outcomes using the modality a convenient and useful 

tool for physicians.  

Previous studies have applied DL to the analysis of COVID-19 CXRs [8,18,19,23]. 

However, at least one study has reported potential deficiencies in these approaches, in-

cluding insufficiencies in a commonly used public dataset, neglecting to segment lung 

fields, and a failure to account for large differences between disparate public datasets [23]. 

Most significantly, there has been some suggestion that a few studies on a large multi-

institutional public dataset may have produced models that learn to distinguish between 

data taken from different institutions rather than distinguishing meaningful differences 

in underlying pathology [23]. Nevertheless, new evaluation methods and improvements 

in data quality might improve experiments performed on these public datasets [43]. Pre-

vious studies have also not explicitly accounted for foreign objects in lung fields, which 

can obscure pathological findings. Here, we further presented a method for dataset ho-

mogenization between two separate institutions using HM, addressing any potential dis-

crimination between datasets by our models. Furthermore, we developed a unique CXR 

preprocessing pipeline to segment lungs and artifacts.  

Radiomic features can provide insight into what characteristics of a patient’s CXR are 

significant in making clinical predictions and can be more informative to a physician than 

exclusively DL approaches. From our results, it can be observed that radiomic features 

play an interesting role in outcome prediction for COVID-19. A small subset of radiomic 

features was shown to be effective in predicting outcome for both mechanical ventilation 

requirement (3 features) and mortality (1 feature). Radiomic feature classification of future 

mechanical ventilation requirement improved with HM while also reducing the number 

of features required for accurate outcome prediction (10 vs. 3 features). Interestingly, the 

opposite effect was observed for mortality prediction; the number of features needed for 

outcome prediction increased following HM (one vs. four features). For ventilation pre-

diction, classifier performances improved following HM, whereas HM slightly worsened 

mortality prediction performance. Laws energy filters appear to be important in making 

mechanical ventilation requirement predictions, and Figure 8 demonstrates the observed 

improvement in Laws E5S5 feature discrimination between classes following HM. For 

mortality prediction, Laws energy filters are also selected as discriminatory features fol-

lowing HM. However, the performance of these features in predicting mortality is not as 

strong as the use of Haralick features prior to HM. Notably, the Haralick correlation fea-

ture does not seem to be “improved” by HM and becomes less valuable in class discrimi-

nation for mortality prediction (Figure 8). The variable effect of postprocessing techniques 

on different radiomic feature families warrants further exploration in future experiments. 

Here, we showed that two different feature families (Haralick and Laws energy) might 

have unique roles in predicting different clinical outcomes and might be variably affected 

by HM.  
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In this work, we also explored the relative value of two methods of radiomic feature 

inclusion in deep learning: radiomic feature embedding and feed-forward concatenation 

of radiomic features. Notably, the inclusion of radiomic features improved DL predictions 

for both clinical outcome tasks. For mechanical ventilation requirement prediction, feed-

forward radiomic feature concatenation was superior to radiomic feature appending. The 

opposite was observed for mortality prediction. This again indicates that different ma-

chine learning approaches and selective model invocation may be required for different 

clinical prediction tasks. We also found that HM uniformly improves DL prediction of 

clinical outcomes.  

We also demonstrated that radiomic and DL analysis of CXRs can achieve competi-

tive or superior results in predicting clinical outcomes when compared with expert scor-

ing of CXR severity. This is of particular significance in high-volume or low-resource 

healthcare settings where expert annotations may be harder to obtain. Moreover, the com-

bination of DL and radiomic approaches with zone-wise expert scoring of CXRs performs 

even more accurately in the outcome prediction task, indicating that the two might be 

applied synergistically to further improve predictions. Furthermore, our models have 

demonstrated validity on a multi-institutional dataset and might provide a more con-

sistent method of CXR evaluation than human scoring.  

There are certain limitations in our work. First, we used baseline CXRs that are likely 

to be nonuniform in the interval between COVID-19 infection and image acquisition. 

While this is representative of the clinical reality that patients receive baseline CXRs at 

varying time points in their disease course, future studies might build improved time-to-

event prediction models using data with a more uniform temporal distribution. It is also 

important to note that the two clinical outcomes studied in this work are neither inde-

pendent nor mutually exclusive; generally, a patient requiring mechanical ventilation is 

more likely to succumb to their disease than one that does not. Furthermore, a limited 

number of clinical features were studied, and our models might benefit from including 

co-morbidities such as a history of cancer, chronic obstructive pulmonary disease, hyper-

tension, etc. Other studies have previously validated the utility of measures such as these 

in predicting COVID-19 progression and clinical outcomes [3,16]. Additionally, in this 

study, we did not control for code status among patients, which might influence results. 

For instance, a patient’s disease might progress to an emergent situation requiring me-

chanical ventilation, but the patient might have a standing order to not initiate such a 

procedure [22]. Future experiments might attempt to control this confounding variable if 

these data are made readily available. Finally, additional validation is necessary to 

demonstrate the robustness of classification models in the broader context of COVID-19 

treatment in other hospitals and locations.  

This work, along with several other recent studies, established the value of compu-

tational analysis of CXRs in order to study clinical outcomes in COVID-19 [2,21,22,24,44]. 

In most cases, these studies analyze CXRs taken at a single time point, although modeling 

of sequential CXR data might enable an improved analysis of the temporal evolution of 

COVID-19, as observed on imaging data. 

5. Conclusions 

In summary, we presented a complete pipeline for computational evaluation of CXR 

in COVID-19 patients. Both radiomic and DL classification models enable us to predict 

mechanical ventilation requirement and mortality from baseline CXRs. Each of these ap-

proaches outperforms or performs competitively with predictions made using expert se-

verity assessment of CXRs, indicating the potential for increased efficacy and efficiency in 

modeling COVID-19 outcomes using machine learning approaches. Furthermore, we 

demonstrated the improvement that a novel radiomic embedding approach has on DL 

predictions of COVID-19 outcomes. The ability to make early predictions of disease out-

comes may aid in triage, clinical decision making, and efficient hospital resource alloca-

tion as the COVID-19 pandemic progresses. 
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