
diagnostics

Review

Multiparametric MRI and Radiomics in Prostate Cancer:
A Review of the Current Literature

Federico Midiri 1,*, Federica Vernuccio 1 , Pierpaolo Purpura 2 , Pierpaolo Alongi 3 and
Tommaso Vincenzo Bartolotta 1,2

����������
�������

Citation: Midiri, F.; Vernuccio, F.;

Purpura, P.; Alongi, P.; Bartolotta, T.V.

Multiparametric MRI and Radiomics

in Prostate Cancer: A Review of the

Current Literature. Diagnostics 2021,

11, 1829. https://doi.org/10.3390/

diagnostics11101829

Academic Editor: Henning Reis

Received: 3 September 2021

Accepted: 27 September 2021

Published: 3 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Section of Radiology—BiND, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy;
federicavernuccio@gmail.com (F.V.); tommasovincenzo.bartolotta@unipa.it (T.V.B.)

2 Department of Radiology, Fondazione Istituto “Giuseppe Giglio”, Ct.da Pietrapollastra, Via Pisciotto, Cefalù,
90015 Palermo, Italy; pierpaolopurpura@gmail.com

3 Nuclear Medicine Unit, Fondazione Istituto “Giuseppe Giglio”, Ct.da Pietrapollastra, Via Pisciotto, Cefalù,
90015 Palermo, Italy; alongi.pierpaolo@gmail.com

* Correspondence: federico.midiri@hotmail.com

Abstract: Prostate cancer (PCa) represents the fourth most common cancer and the fifth leading
cause of cancer death of men worldwide. Multiparametric MRI (mp-MRI) has high sensitivity and
specificity in the detection of PCa, and it is currently the most widely used imaging technique for
tumor localization and cancer staging. mp-MRI plays a key role in risk stratification of naïve patients,
in active surveillance for low-risk patients, and in monitoring recurrence after definitive therapy.
Radiomics is an emerging and promising tool which allows a quantitative tumor evaluation from
radiological images via conversion of digital images into mineable high-dimensional data. The
purpose of radiomics is to increase the features available to detect PCa, to avoid unnecessary biopsies,
to define tumor aggressiveness, and to monitor post-treatment recurrence of PCa. The integration
of radiomics data, including different imaging modalities (such as PET-CT) and other clinical and
histopathological data, could improve the prediction of tumor aggressiveness as well as guide clinical
decisions and patient management. The purpose of this review is to describe the current research
applications of radiomics in PCa on MR images.

Keywords: radiomics; magnetic resonance imaging; prostate; cancer; PI-RADS; Gleason score

1. Introduction

Prostate cancer (PCa) is the fourth most commonly diagnosed cancer and the fifth
leading cause of cancer death among men worldwide [1]. PCa more frequently (80%)
originates in the peripheral zone (PZ) and less commonly (15%) in the transitional zone (TZ),
while the central zone (CZ) location of PCa is rare [2]. Albeit less common, PCa in the TZ
contributes to morbidity and mortality because of confounding changes in this region due
to benign prostatic hyperplasia, which is found in up to 25% of TZ cancers [2]. Transrectal
ultrasound (TRUS) is a cost-effective and easily available imaging modality, but with
limited sensitivity and specificity ranging between 40% and 50% for detection of PCa [3].
Multiparametric MRI (mp-MRI) has gained popularity as a noninvasive imaging technique
for detection of clinically significant PCa and biopsy guidance. mpMRI may overcome
many of the shortcomings of the combination of PSA and TRUS alone, achieving accurate
tumor detection with sensitivity of 72% and specificity of 81% [4–6]. It is also increasingly
used in patients undergoing active surveillance to monitor recurrence in patients after
radiotherapy (RT) or androgen deprivation therapy (ADT). The MRI diagnostic system
for prostatic lesions is known as Prostate Imaging-Reporting and Data System (PI-RADS),
and the latest version (v2.1) was published in 2019 [5]. This system evaluates the relative
likelihood of the existence of a clinically significant prostate cancer ranging from PI-RADS
1 “clinically significant disease is highly unlikely to be present” to PI-RADS 5 “clinically
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significant cancer is highly likely to be present” (Figure 1). The PI-RADS scoring system
has high sensitivity and specificity, but still there are many lesions that are categorized as
PI-RADS 3 (Figure 2) or PI-RADS 4 which means that these lesions carry a moderate to high
risk of being or becoming clinically significant prostate cancer but cannot be diagnosed as
such, and biopsy may be needed [6,7].
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Figure 2. A 55-year old man with a PI-RADS 3 lesion in the left anterior segment of PZ of the midg-
land, moderately hypointense on T2-weighted images (a), hyperintense on DWI, and hypointense on
ADC images (b,c).

In the last decade, there has been increasing interest in the quantitative analysis of
imaging data. Radiomics is a relatively novel process of medicine designed to extract a
large number of quantitative features from radiological images, offering a cost-effective and
high-throughput approach to medical imaging data analysis using advanced mathematical
algorithms, which could lead to accurate tumor detection and aid personalized cancer
treatment [8,9]. Radiomics and artificial intelligence (AI) cover a wide variety of subfields
and techniques. Machine learning is the subfield of AI where the algorithm is applied to a
set of data and to knowledge about these data; radiologists can select and encode features
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that appear distinctive in the data, and the statistical techniques are used to organize the
data on the basis of these features. Then, the system can learn from the training data and
apply what it has learned to make a prediction (e.g., for differential diagnosis between
benign or malignant lesions) [10]. Representation learning is a type of machine learning
where the algorithm learns on its own the best features to classify the provided data. Deep
learning is a type of representation learning where the algorithm learns a composition of
features that reflect a hierarchy of structures in the data. This system is able to discriminate
the compositional nature of images starting from simple features (intensity, edges, and
textures) to elaborate more complex features such as shapes, lesions, or organs [11]. Thus,
these systems are important in the use of radiomics in medical images because they allow
collapsing clusters of big datasets into a few representative features and creating classifier
models through database mining. In the last few years, deep learning has been applied to
prostate cancer with promising results, although it is not yet used in the clinical routine.

The aim of this narrative review was to describe the current and potential radiomics
applications for prostate cancer on mpMRI. For this purpose, we first describe the different
steps of radiomic analysis, and then we provide a summary of the literature on radiomic
analysis for prostate cancer.

2. Radiomics Analysis

Radiomic analysis requires different steps, including segmentation, image processing,
feature extraction, feature development, and development of a predictive model (Table 1)
(Figure 3).

Table 1. Summary of main steps for radiomics analysis.

Step Number Type of Process Description of the Step

1 Segmentation Manual, automatic, or semiautomatic segmentation of
the images to define the region or volume of interest

2 Image processing Processing of images to increase reproducibility

3 Feature extraction Feature descriptors are used to quantify characteristics
of the gray levels within the region or volume of interest

4 Feature selection Selection of the most useful features and exclusion of
nonreproducible features to create a statistical model

5 Development of
predictive model

Development of a classifier with different machine
learning algorithms
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Figure 3. Workflow of radiomics for prostate cancer in a simulated study on T2-weighted images using
a prototype research software Radiomics, version 1.0.9 (Siemens Healthineers, Forchheim, Germany).

2.1. Step 1—Segmentation

The first step is image segmentation of the region of interest (ROI) in two dimensions
(2D) or of the volume of interest (VOI) in three dimensions (3D), defining the area in which
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radiomic features will be calculated. Image segmentation can be manual or semi-automatic
(usually with manual correction), but this method is considered time-consuming and
does not allow a reproducible analysis of the radiomic derived features for its intrinsic
intra-observer variability [12]. Although there is still no universal segmentation algorithm
for all image applications, the best option is automated image segmentation using atlas-
based and model-based methods that avoid intra- and inter-observer variation [13]. These
methods work well for relatively homogeneous lesions, but show the need for intensive
user correction for inhomogeneous lesions, such as lesions including air voxels as one
example. Haaburger et al. [14] proposed a neural network architecture that generates
plausible segmentation after separate training using default parameters as provided in the
reference implementation.

2.2. Step 2—Image Processing

The second step is image processing, and it represents the attempt to homogenize im-
ages with respect to pixel spacing, gray-level intensities, and bins of gray-level histogram.
This step consists of interpolation to isotropic voxel spacing to increase reproducibility be-
tween different datasets, intensity outlier filtering (normalization) to remove pixels/voxels
that fall outside of a specified range of gray-level, and discretization of image intensities,
which consists of grouping the original values according to specific range intervals [12].

2.3. Step 3—Feature Extraction

The third step is the extraction of radiomic features. Since many different ways and for-
mulas exist to calculate those features, adherence to the Image Biomarker Standardization
Initiative (IBSI) is recommended [15].

Features extracted from diagnostic images are classified into two groups. The first
group includes the so-called “semantic features”, represented by radiologic features com-
monly used to describe lesions such as shape, location, vascularity, and necrosis. The
second group includes the so-called “agnostic features” that analyze lesion heterogene-
ity through quantitative descriptors which are subdivided in turn into first-, second-, or
higher-order statistical outputs [8]. The distribution of individual voxel intensities without
concern for a spatial relationship is described through first-order statistics. These features
reduce an ROI to single values for mean, median, uniformity, or randomness (entropy),
magnitude (energy), and minimum and maximum gray-level intensity. Second-order
statistics, introduced in 1973 by Haralick [16], describe interrelationships between voxels
with similar or dissimilar contrast values as “texture features”, and they can readily pro-
vide a measure of intratumoral heterogeneity; these features are based on the gray-level
co-occurrence matrix (GLCM), defining the pattern of an image subregion by summarizing
the appearance of voxel pairs with a specific discretized gray-level value in a specified
direction, and on the gray-level run length matrix (GLRLM), summarizing the frequency of
continuous voxels that have the same discretized gray-level value in a given direction [17].
Higher-order statistical methods impose filter grids to extract repetitive or nonrepetitive
patterns [13].

2.4. Step 4—Feature Selection

The next step is represented by feature selection, performed to select the most useful
subset of features to build statistical and machine learning models with the exclusion of
nonreproducible, redundant, and nonrelevant features. Rizzo et al. [13] analyzed cluster
analysis and principal component analysis, which are the two most commonly used
unsupervised approaches. Cluster analysis creates groups of similar features (clusters),
and a single feature may be selected from each cluster as representative and used in
the following association analysis. Principal component analysis creates a smaller set of
maximally uncorrelated variables from a large set of correlated variables, and it allows
explaining the variation in the dataset with the fewest possible principal components. After
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the selection of the most representative features for each cluster, it is possible to develop a
model fitting with these remaining features.

2.5. Step 5—Development of Predictive Model

Once features have been selected, they are used for training the predictive model.
This is built with different machine learning algorithms, including support vector machine
(SVM), logistic regression, random forest (RF), and decision tree (DT).

The rapid development of deep learning, such as convolutional neural network (CNN)
and artificial neural network (ANN), has accelerated the pace of radiomics progress [18].

3. Radiomics in Prostate Cancer

In the last decade, radiomic studies have investigated the potential application of
texture analysis for prostate tumor detection and diagnosis, as well as for the prediction of
aggressiveness and treatment evaluation based on mpMRI findings (Table 2).

Table 2. Summary of most relevant studies on radiomic studies for prostate cancer.

Type of Study Authors, Year Description

Detection of PCa Chan et al., 2003 [19] Development of one of the first predictive models using support vector machine
(AUC 0.71–0.80)

Giannini et al., 2015 [20] Parametric color-coded map of the prostate based on the probability of each
voxel to be tumoral (AUC 0.83–0.98)

Diagnosis of PCa Ginsburg et al., 2017 [2] Evaluation of different radiomic features in PZ and TZ tumors (AUC 0.61–0.71)

Wibmer et al., 2015 [21] Haralick texture analysis to differentiate clinically significant and not clinically
significant PCa

Cameron et al., 2016 [22] Development of a comprehensive feature model consisting of an initial tumor
candidate identification schema (AUC 0.81–0.93)

Bleker et al., 2020 [23] Development of a model that quantifies the phenotype of clinically significant
PCa in PZ based on T2W and DWI images (AUC 0.75–0.98)

Khalvati et al., 2015 [24]
New automatic texture feature models incorporating computed high-b diffused
weighted imaging (CHB-DWI; AUC 0.73–0.85) and correlated diffusion imaging
(CDI; AUC 0.81–0.90) to improve differentiation of tumoral and healthy tissue

Grading and
aggresiveness Fehr et al., 2015 [25] Development of an automatic classification with a high accuracy combining

ADC and T2W to evaluate the aggressiveness of PCa (AUC 0.93)

Nketiah et al.,
2017; 2021 [26,27]

Texture features, such as homogeneity and entropy, could reveal the
aggressiveness of peripheral PCa distinguishing GS 7 (3 + 4) and GS 7 (4 + 3)

(AUC 0.83 vs. 0.72 of MRI parameters)

Cuocolo et al., 2019 [28] Geometric parameters, such as surface area-to-volume ratio (SAVR), could
predict clinically and non-clinically significant PCa (AUC 0.78)

Chaddad et al., 2018 [29]
Model based on the joint intensity matrix (JIM) to predict the GS through

different derived-features and comparing between GS groups: GS 6 (AUC 0.83),
GS 3 + 4 (AUC 0.72), and GS ≥ 4 + 3 (AUC 0.77)

PI-RADS score Giambelluca et al., 2021 [30]
Development of a texture analysis model to diagnose clinically significant PCa
withing PI-RADS 3 lesions larger than 5 mm on T2W (AUC = 0.77) and ADC

map (AUC = 0.81) images.

Brancato et al., 2021 [31] Relevant texture features for stratifying PI-RADS 3 (AUC 0.80) and PI-RADS 4
lesions (AUC 0.89) from T2W and ADC images

Treatment evaluation and
prediction of biochemical

recurrence
Shiradkar et al., 2016 [32]

Targeted treatment radiotherapy planning based on a radiomic model,
consisting of cancer detection on feature analysis, transference of delineation to

CT, and generation of targeted focal radiotherapy plans

Gnep et al., 2017 [33] Geometrical characteristics and Haralick texture correlate with Gleason score,
and they are associated with biochemical recurrence

3.1. Detection of Prostate Cancer

The application of radiomics has improved the process of predictive model devel-
opment for indicating tumor location, known as computer-aided detection (CAD). The
intention of CAD systems is to advise and complement radiologists in PCa detection in both
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PZ and TZ, increasing the sensitivity from 74% to 100% and specificity in from 43% to 93%
with a 1.5 Tesla MRI scanner, as reported by Lemaître et al. [34]. Deep learning networks
for automated prostate segmentation through CAD using atlas-based and model-based
methods could facilitate the radiomic analysis of the tissue and reduce the time needed
for segmentation, as well as the operator variability [35]. In the last few years, many CAD
systems have been developed to detect prostate cancer on MRI images. The first CAD
system to detect PCa in the PZ was implemented by Chan et al. [19], using SVM as a
classifier. In 2015, Giannini et al. [20] proposed a CAD system based on a two-stage process.
Firstly, a parametric color-coded map of the prostate gland was created, and colors were
assigned to the map as a function of the probability of each voxel being cancerous; then, a
candidate PCa segmentation was performed to highlight suspected areas. This is a fully
automated system, and it was trained using the histopathological images as a comparison
to reduce the number of false positives after two steps of reduction.

3.2. Diagnosis of Prostate Cancer

Ginsburg et al. [2] evaluated features in a cross-institutional setting for cancer detection
in TZ and PZ. Radiomic features for the identification of cancer detection in the PZ were
distinct from those that were useful in the TZ [2].

In 2015, Wibmer et al. [21] investigated whether Haralick texture analysis (i.e., energy,
entropy, homogeneity, and contrast from GLCM) could help in differentiating between
clinically and non-clinically significant PCa on mp-MRI, with good results for the analysis
of T2-weighted and ADC images. Cameron et al. [22] proposed a model consisting of an
initial tumor candidate identification schema followed by the MAPS system (morphology,
asymmetry, physiology, size) to score the candidate regions; the goal of the proposed
model was to incorporate high-level features using candidate tumor regions through
mp-MRI and region morphology to construct a high-dimensional feature space that can
be mined for different purposes such as detection or prognosis of cancer, achieving an
accuracy of 87%, sensitivity of 86%, and specificity of 88%. Moreover, Bleker [23] in 2020
realized a model based on mp-MRI features extracted from an auto-fixed volume of interest
(VOI) that quantifies the phenotype of clinically significant PCa in PZ on the basis of
T2W and DWI images; DCE features improved diagnostic performance, despite not being
statistically significant.

Lastly, Khalvati et al. [24] designed a new automatic mp-MRI texture feature model in-
corporating computed high-b diffused weighted imaging and correlated diffusion imaging
that improved the visual separability of cancerous and healthy tissue in the prostate, lead-
ing to improved performance in both detecting PCa and prognosis, achieving a sensitivity,
specificity, and accuracy of 82%, 89%, and 86%, respectively.

3.3. Grading and Aggressiveness

Accurate assessment of localized prostate cancer aggressiveness is of utmost impor-
tance for determining patient treatment and follow-up strategies. The Gleason score (GS)
is the current clinical grading system for prostatic carcinoma, which is based only on the
architectural pattern of the tumor. The grade is defined as the sum of the grade of the
two most common architectural alterations of the prostatic tissue [36]. The discrimination
between clinically significant (GS equal or more than 7) and non-clinically significant PCa
(GS equal to 6) is important to reduce unnecessary biopsies and to avoid unnecessary
prostatectomy. Indeed, non-clinically significant lesions are often detected, and clinically
significant cancers are sometimes missed. TRUS biopsy also carries significant morbidity,
such as erectile dysfunction and urinary incontinence, and it can cause life-threatening
sepsis [37]. Radiomic combined patterns can impact clinical outcomes, treatment selection,
and the determination of disease status noninvasively, which avoids unnecessary inva-
sive instrumentation. Many studies demonstrated how texture features, such as energy,
entropy, contrast, and homogeneity on GLCM, calculated on T2W and ADC images, could
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provide information related to aggressiveness, differentiating low-risk from intermediate-
or high-risk PCa [21,38–41].

In 2015, Fehr et al. [25] proposed a machine learning-based automatic classification
(RFE-SVM, recursive feature selection support vector machine) of PCa aggressiveness by
combining ADC and T2W images. This method distinguished between GS 6 (3 + 3) and
≥7 cancers with 93% accuracy; moreover, this approach distinguished GS 7 (3 + 4) from
GS 7 (4 + 3) with 92% accuracy. In comparison, a classifier using only the ADC mean
achieved an accuracy as high as 58% for distinguishing GS (3 + 3) from GS ≥ 7 and 59% for
distinguishing GS 7 (3 + 4) from GS 7 (4 + 3).

Nketiah et al. [26] demonstrated that T2W image-derived textural features were
correlated significantly with GS; in particular, homogeneity and entropy were significantly
different between GS 7 (3 + 4) and GS 7 (4 + 3). Similar to Fehr [26], the results indicated
that combining traditional MRI and derived textural features could achieve a higher
classification accuracy (91%). Then, they tested and confirmed with a multicenter study the
potential of T2W image-derived textural features for quantitative assessment of peripheral
zone PCa aggressiveness. Statistical analysis with the Mann–Whitney U test indicated that
image homogeneity and disorder/complexity correlated significantly (p < 0.05) with low-
(grade group 1) and intermediate/high-risk (grade group ≥ 2) PCa [27].

The study of Cuocolo et al. [28] recognized the surface area-to-volume ratio (SAVR)
derived from ADC maps as a promising tool in the discrimination of clinically and non-
clinically significant PCa, outperforming other shape features (AUC = 0.78). Assessment of
geometric parameters has the potential to be used as a noninvasive test to predict GS for
patients with clinically significant PCa.

Chaddad et al. [29,42] proposed a model based on the joint intensity matrix (JIM) to
predict the GS of PCa. JIM is a computation that translates image heterogeneity into texture
predictors on the basis of five different derived features (contrast, homogeneity, difference
variance, dissimilarity, and inverse difference), and it has the capacity to compare GS
groups (GS 6, GS 3 + 4, and GS ≥ 4 + 3); higher-Gleason-score cancers have been found to
be associated with relatively high ADC entropy and low ADC energy, in comparison with
low-Gleason-score cancers [29,42].

3.4. Radiomics and PI-RADS Score

The interpretation of PI-RADS 3 lesions remains often undefined, termed as “inter-
mediate” or “equivocal in the presence of clinically significant cancer” [5]. These lesions
represent a treatment challenge for urologists, ranging from conservative management
with imaging follow-up to surgical therapy. Some studies investigated the role of machine
learning-based classifiers in detecting clinically significant PCa with PI-RADS score 3 le-
sions. Results predicted by the classifier may be an important reference for clinical decision
making and will help in increasing the prostate-positive biopsy rate in PI-RADS 3 while
decreasing unnecessary biopsies [43–45]. Giambelluca et al. [30] showed that predictive
models based on texture features extracted through a texture analysis software (MaZda
4.6) had a good performance for the diagnosis of clinically significant PCa among PI-RADS
3 lesions on T2W (AUROC = 0.77) and ADC map (AUROC = 0.81) images. These results
may provide preliminary evidence to justify the use of texture analysis in the stratification
of PI-RADS 3 lesions.

Another limitation of PI-RADS 3 lesion assignment concerns the role of DCE-MRI,
which is still debated and not clearly assessed. Currently, DCE-MRI is only used to
upgrade PI-RADS category 3 lesions to PI-RADS category 4, but only for lesions located in
the PZ [5]. Brancato et al. [31] examined the mp-MRI-based radiomic approach and was
able to improve PI-RADS v2.1 performance in stratifying PI-RADS 3 and PI-RADS 4 lesions.
Lesions with Gleason score ≥6 on biopsy were used as the reference standard. The most
relevant features for classification were texture features arising from T2W and ADC images;
the features associated with DCE-MRI were not useful for building a predictive model.

Figure 3 depicts an example of the workflow of radiomics for prostate cancer [46].
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3.5. Treatment Evaluation and Prediction of Biochemical Recurrence

Prostate cancer patients are typically classified into different categories as a function
of the PSA level, Gleason Score, and T stage (tumor size) as low- (PSA ≤ 10 ng/mL,
GS ≤ 6, T1–T2), intermediate- (10 ng/mL < PSA < 20 ng/mL, GS = 7, T2b), and high-
risk (PSA > 20 ng/mL, GS ≥ 8, T2c–T3a) [47]. In clinical practice, patients who undergo
whole-gland radiotherapy (RT) may have short-term and long-term side effects such as
incontinence, sexual dysfunction, and bowel toxicity. Abdollahi et al. [48] demonstrated
the application of radiomic features to assess radiation-induced bladder wall changes and
the relationship that exists between radiation dose and change in these features, using pre-
and post-radiotherapy images. The most significant feature change occurred in the GLCM
feature set; radiation breaks tissue homogeneity, and the radiomic changes are correlated
with radiation dose.

In local therapy, it is important to localize malignant lesions accurately to increase
biological effects against the tumor while achieving a reduction in target dose to noncancer-
ous tissue. For this purpose, Shiradkar et al. [32] presented a radiomics-assisted targeted
treatment radiotherapy planning (Rad-TRaP), consisting of three modules: cancer detection
on MRI based on radiomic feature analysis, transference of cancer delineation to CT via
multimodal deformable co-registration, and then generation of targeted focal radiotherapy
plans for brachytherapy and external beam radiation therapy (EBRT).

Biochemical recurrence (BCR) is one of the most frequent complications of patients under-
going radical prostatectomy, especially those categorized as high-risk cancer (PSA > 20 ng/mL,
GS ≥ 8, T2c-T3a) [49]. Some studies explored the association between extracted textural
features from MR images and biochemical recurrence. Gnep et al. [33] showed how ge-
ometrical characteristics related to the tumor size and Haralick texture features (inverse
difference moment, sum of squares, and difference entropy), derived primarily from T2W
images, correlate with Gleason score and are associated with biochemical recurrence.

4. Limitations and Future Applications

Despite the wide range of potential applications, radiomics may be sensitive to a
number of technical factors. First of all, the main challenge is the lack of reproducibility and
uniform standardization in acquisition protocol and feature selection. Most of the existing
studies are retrospective with relatively small sample sizes, for which conclusions are short
of extensive validation. Moreover, the number of extracted features is much greater than
the number of patients, which can lead to feature selection bias [50].

The future directions include the correlation between proteomic and genomic tumor
analysis with radiomic features through the introduction of radiogenomics. Currently, the
application of this technique in PCa is relatively less diffused than in other organs such
as brain or lung. This new radiomic approach will play an important role in the future
directions of personalized treatment in patients affected by PCa in order to increase the
diagnostic performance of imaging mp-MRI in predicting prognosis and treatment re-
sponse. Characterization of the protein profile could reveal significant differences between
benign tissue and tumors, as well as between low- and high-grade tumors. As reported by
Skvortsov et al. [51], significant upregulation of HSP60 is shown in early and advanced PCa
compared to nonmalignant tissue, while levels of lamin A expression are correlated with
lower and higher Gleason scores. A multimodal approach combining different imaging
modalities, such as CT, MRI, and PET, and including clinical and laboratory information
could represent the future approach of an integrated radiomics model for PCa patients.
PET/CT radiomics could provide promising pretreatment and intra-treatment biomarkers
for outcome prediction, improving the limitation of each single technique to predict tumor
prognosis [52].
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5. Conclusions

In conclusion, radiomics has the potential to become a useful reproducible assistant
tool in clinical oncology imaging, contributing to the main future objective of personalized
diagnosis and treatment of prostate cancer patients.
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