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Abstract: In this study, the associations of cervical and lumbar paraspinal musculature based
on a texture analysis of proton density fat fraction (PDFF) maps were investigated to identify gender-
and anatomical location-specific structural patterns. Seventy-nine volunteers (25 men, 54 women)
participated in the present study (mean age ± standard deviation: men: 43.7 ± 24.6 years; women:
37.1 ± 14.0 years). Using manual segmentations of the PDFF maps, texture analysis was performed
and texture features were extracted. A significant difference in the mean PDFF between men and
women was observed in the erector spinae muscle (p < 0.0001), whereas the mean PDFF did not
significantly differ in the cervical musculature and the psoas muscle (p > 0.05 each). Among others,
Variance(global) and Kurtosis(global) showed significantly higher values in men than in women
in all included muscle groups (p < 0.001). Not only the mean PDFF values (p < 0.001) but also
Variance(global) (p < 0.001), Energy (p < 0.001), Entropy (p = 0.01), Homogeneity (p < 0.001), and
Correlation (p = 0.037) differed significantly between the three muscle compartments. The cervical
and lumbar paraspinal musculature composition seems to be gender-specific and has anatomical
location-specific structural patterns.

Keywords: magnetic resonance imaging; quantitative imaging; proton density fat fraction; muscle
composition; paraspinal muscle; texture analysis

1. Introduction

Muscle structure and composition change over the human life span. Not only increas-
ing body mass index (BMI) and age are associated with structural alterations, including fatty
infiltration and atrophy, but also katabolic conditions, such as sarcopenia and cachexia [1–5].
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There is evidence for connections between the overall muscle quality and muscular per-
formance [6]. Further, the loss of functional muscle tissue due to fatty replacement leads
to increasing disability and mortality [7]. Recently, it has also been shown that preoper-
ative sarcopenia is associated with poorer overall survival in pancreatic cancer patients
following pancreaticoduodenectomy [8]. Thus, non-invasive muscle status assessments
beyond quantification of mere volumetric changes are of increasing interest with regard to
personalized medicine and an individual, multi-parametric patient evaluation.

In clinical practice, established imaging methods such as dual-energy x-ray absorp-
tiometry (DXA) and computed tomography (CT) are used to assess muscle status [9].
In certain settings, more advanced imaging techniques such as single-voxel proton
magnetic resonance spectroscopy (MRS) and chemical shift encoding-based water–fat
magnetic resonance imaging (CSE-MRI) are important diagnostic tools to extract biomark-
ers such as the proton density fat fraction (PDFF) or analyze the chemical structure of
fatty acids within different tissue types [10]. There are plenty of data to support the role
of water–fat MRI in the context of muscle composition analysis in healthy adults [11–17].
Recently, studies using texture analysis (TA) of PDFF maps derived from CSE-MRI showed
promising results with regard to structural changes of vertebral bone marrow and par-
avertebral musculature with good functional correlation [18,19]. As demonstrated in these
studies, TA can generate novel information which captures structural changes in osseous
compartments and musculature beyond the mean PDFF [18,19].

However, there is still a lack of normative studies investigating the structural composi-
tion and morphological association of large muscle groups. The paravertebral musculature
exhibits age- and gender-specific degeneration patterns, which are relevant in the context
of musculoskeletal disorders [2,20,21]. The comparison of structural muscular changes
with regard to gender and anatomical location has the potential to contribute valuable
information on muscle (patho) physiology.

Therefore, this study investigated the associations of different cervical and lumbar
paravertebral muscle groups based on TA of PDFF maps to identify gender- and region-
specific structural patterns.

2. Materials and Methods
2.1. Subjects

Seventy-nine volunteers with self-reported absence of any musculoskeletal or metabolic
diseases (male = 25, female = 54) were recruited from a large cohort recruited for evaluation
of determinants of basal metabolic rate [22]. The study protocol and procedures were
approved by the local ethics committee of the Faculty of Medicine. Inclusion criteria were:
age of 18 years or older, no history of severe diseases or surgery within the last three
months, no acute physical impairment. Exclusion criteria were standard contraindications
for MRI (implanted pacemaker or MRI-incompatible implants or devices). All subjects
provided written informed consent prior to study inclusion.

2.2. Magnetic Resonance Imaging

All subjects underwent MRI at 3 Tesla (Ingenia, Philips Healthcare, Best, Nether-
lands) using the built-in 12-channel posterior coil and a 16-channel anterior coil (dStream
Torso coil, Philips Healthcare, Best, Netherlands). Subjects were positioned head-first
in supine position.

The imaging protocol comprised an axially prescribed, six-echo three-dimensional (3D)
spoiled gradient echo sequence in two stacks for chemical shift encoding-based water–fat
separation at the cervical and lumbar spine, respectively.

The dedicated sequence parameters were set as follows: field of view (FOV) = 400 ×
300 × 140 mm3 (RL × AP × FH), acquisition matrix size = 268 × 201 × 93 mm3, acquisition
voxel size = 1.5 × 1.5 × 1.5 mm3, SENSE with reduction factor = 2.5 × 1.0 mm3 (AP × FH,
phase × slice). The six echoes were acquired in a single TR using non-flyback (bipolar)
read-out gradients; cervical stack: repetition time (TR)/echo time (TEmin)/echo time step
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(∆TE) = 8.2/1.24/1.0 ms, number of signal averages (NSA) = 3, resulting scan time = 4:16 min;
lumbar stack: TR/TEmin/∆TE = 12.0/1.24/1.0 ms, NSA = 2, resulting scan time = 2:01 min.

2.3. Muscle Fat Quantification

The gradient echo imaging data were processed online using the fat quantification
routine of the MRI vendor (Philips Healthcare, Best, The Netherlands). After phase error
correction, complex-based water–fat decomposition was performed using a precalibrated
seven-peak fat spectrum model with a single T2 * [23,24]. The PDFF maps were generated
voxel by voxel by computing the ratio of the fat signal and the sum of fat and water
signals. Mean PDFF values were computed by averaging the PDFF maps over the ROIs
of the segmented muscle groups. Segmentations were performed by a radiologist using
the free open-source software Medical Imaging Interaction Toolkit (MITK, developed
by the Division of Medical and Biological Informatics, German Cancer Research Center,
Heidelberg, Germany; www.mitk.org, accessed on 18 October 2021).

The cervical musculature (CE), the erector spinae muscle (ES) and the psoas muscle
(PS) were manually segmented bilaterally in the PDFF maps at the level of C5 and L4, re-
spectively (Figure 1). As a standard, 10 axial slices were segmented for each muscle group.

Figure 1. Segmentation example. (A,B) The segmented CE (left and right multifidus, semispinalis,
and spinalis cervicis muscles (1)) at the level of C5. (C,D) The PS (2) and ES and the multifidus
muscles (3) at the level of L4.

Reproducibility of the segmentation method was described in previous publications.
The intraclass correlation coefficient (ICC) for intra-reader and inter-reader reliability
was reported to be 0.966 and 0.942 at C5 level, respectively [2]. Further, an excellent
reproducibility was reported for PDFF measurements at L5 level, with a root mean square
absolute precision error of 0.48% [21].

2.4. Texture Analysis

Based on the gray-level distribution in an image, TA can be utilized to characterize
structural properties of segmentations via the quantification of different texture features
(TFs) [25–27]. TFs were calculated for each of the segmented muscle groups, using the PDFF
maps. Extracted TFs included 3 global features (Variance(global), Skewness(global), and
Kurtosis(global)) and 8 second-order features (Energy, Contrast, Entropy, Homogeneity
and Correlation, calculated as described in [28]; Variance and Sum-average [29]; Dissimi-
larity [30]). Equations for the computed TFs can be found in the Appendix A. TFs were

www.mitk.org
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averaged over both sides, weighted by muscle volume, to extract bilateral TF values
(e.g., Variance (global)CE, Variance (global)ES, and Variance (global)PS).

Intensity histogram analysis was applied for the calculation of global features. The optimal
histogram bin size and number is a point of discussion, and strongly depending on data charac-
teristics and purpose of the histogram analysis. In our study, we chose to calculate the number
of bins by taking the median of the three following methods: Sturges’ method, Scott’s
method, and the Freedman–Diaconis method. Using this approach, we obtained the most
reasonable results compared to visual inspection of the histograms and best representation
of the relevant data characteristics [31–33].

Gray-level co-occurrence matrix (GLCM) analysis was applied for the calculation of
second-order TFs [28]. The preprocessing included gray-level quantization of the PDFF
maps to prevent sparseness by normalizing the image intensities. For this purpose, we used
200 equally sized bins and the minimum and maximum gray levels, which correspond to
values of 0% and 100%, respectively.

The entries of the GLCMs at different angular directions θ = (0◦, 45◦, 90◦, and 135◦)
were generated by computing the joint probability of two adjacent voxel intensities at
a given offset d = (dx, dy, dz) and given θ, with dx, dy and dz denoting the displacement
along the x-, y- and z-axis, respectively.

Three-dimensional GLCM analysis was conducted by computation of the co-occurrence
probabilities of voxel intensities from the 26 neighbors, which are aligned in 13 directions.
In this process, discretization length differences were taken into account and adjusted for.
Averaging the 13 directions ensures rotation invariance. All described preprocessing steps
(isotropic resampling and gray-level uniform quantization) as well as the actual TA were
performed with MATLAB 2021a (MathWorks Inc., Natick, MA, USA) using a radiomics
toolbox (https://github.com/mvallieres/radiomics/, accessed on 18 October 2021) [34–36].

2.5. Statistical Analysis

For the statistical analyses, SPSS (version 20.0; IBM SPSS Statistics for Windows,
Armonk, NY, USA) was used. Statistical significance was considered at p < 0.05 (two-sided)
in all conducted tests.

The Kolmogorov–Smirnov test indicated non-Gaussian data distribution. Differences
in age, BMI, mean PDFF, and TFs of all muscle compartments between males and females
were assessed with Wilcoxon–Mann–Whitney tests. Differences in mean PDFF and TFs be-
tween the three muscle compartments were analyzed with Wilcoxon signed-rank tests. Fur-
thermore, partial correlations (r), adjusting for age and BMI, were determined in a pairwise
manner for mean PDFF and TFs between different muscle groups. For correlation testing,
the whole included cohort as well as males and females were calculated separately.

3. Results
3.1. Study Population

Seventy-nine volunteers (25 men and 54 women) participated in the present study
(mean age ± standard deviation: men: 43.7 ± 24.6 years; women: 37.1 ± 14.0 years).
Neither age (p = 0.280) nor BMI (mean BMI ± standard deviation: men: 24.1 ± 6.5 kg/m2;
women: 24.2 ± 4.8 kg/m2; p = 0.411) differed significantly between men and women
(Table 1).

Table 1. Subject characteristics (age and BMI), PDFF values, and TFs in men (n = 25) and women
(n = 54).

Sex Mean SD p

age men 43.7 24.6 n.s.
women 37.1 15.0

https://github.com/mvallieres/radiomics/
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Table 1. Cont.

Sex Mean SD p

BMI men 24.1 6.5 n.s.
women 24.2 4.8

PDFFcervical men 7.9 7.2 n.s.
women 9.5 6.1

PDFFerector spinae men 7.4 5.6 <0.001
women 16.9 9.2

PDFFpsoas men 3.3 4.4 n.s.
women 4.4 3.8

Variance (global)cervical men 69.2 8.7 <0.001
women 55.0 8.4

Variance
(global)erector spinae

men 135.2 13.9 <0.001

women 117.0 13.3
Variance (global)psoas men 98.6 13.6 <0.001

women 67.1 9.8
Skewness (global)cervical men −0.65 0.9 n.s.

women −0.29 0.8
Skewness

(global)erector spinae
men 0.13 0.9 0.005

women 0.68 0.5
Skewness (global)psoas men −0.68 0.3 n.s.

women −0.50 0.5
Kurtosis (global)cervical men 3.3 1.7 0.008

women 2.3 1.4
Kurtosis

(global)erector spinae
men 3.2 0.8 <0.001

women 1.9 1.6
Kurtosis (global)psoas men 1.1 0.5 0.006

women 1.6 0.7
Energycervical men 0.018 0.001 0.011

women 0.011 0.001
Energyerector spinae men 0.001 0.0002 0.012

women 0.0008 0.0004
Energypsoas men 0.0004 0.0001 0.039

women 0.0005 0.0001
Contrastcervical men 468.3 89.4 n.s.

women 528.8 248.8
Contrasterector spinae men 336.7 50.0 <0.001

women 410.0 90.4
Contrastpsoas men 391.9 51.8 n.s.

women 391.2 78.2
Entropycervical men 10.8 0.9 0.010

women 11.4 0.9
Entropyerector spinae men 11.3 0.5 <0.001

women 11.9 0.8
Entropypsoas men 12.1 0.2 n.s.

women 11.9 0.3
Homogeneitycervical men 0.25 0.04 0.008

women 0.22 0.04
Homogeneityerector spinae men 0.22 0.02 0.006

women 0.20 0.02
Homogeneitypsoas men 0.16 0.1 0.003

women 0.17 0.1
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Table 1. Cont.

Sex Mean SD p

Correlationcervical men 0.4 0.2 n.s.
women 0.5 0.1

Correlationerector spinae men 0.5 0.1 <0.001
women 0.6 0.1

Correlationpsoas men 0.5 0.1 n.s.
women 0.5 0.1

Variancecervical men 0.11 0.01 n.s.
women 0.13 0.01

Varianceerector spinae men 0.01 0.001 <0.001
women 0.02 0.001

Variancepsoas men 0.01 0.001 n.s.
women 0.01 0.001

Sum-averagecervical men 0.00241 0.0003 n.s.
women 0.00231 0.0003

Sum-
averageerector spinae

men 0.00208 0.0002 n.s.

women 0.00212 0.0002
Sum-averagepsoas men 0.00256 0.0002 n.s.

women 0.00240 0.0002
Dissimilaritycervical men 11.6 1.8 0.009

women 13.4 3.7
Dissimilarityerector spinae men 10.9 3.2 <0.001

women 12.6 2.1
Dissimilaritypsoas men 13.4 0.9 0.043

women 12.9 1.1

3.2. Gender-Specific Results

Mean PDFF showed significant differences between men and women in ES (p < 0.0001),
but not in CE (p = 0.149) and PS (p = 0.611).

There were multiple TFs with significant differences between men and women in all
muscle groups. Amongst others, Variance (global), Kurtosis (global), and Dissimilarity
showed significant differences between men and women in all included muscle groups
(Table 1). For instance, Variance (global) demonstrated significantly higher values in men
than in women in all included muscle groups (p < 0.001). In contrast to mean PDFF, gender-
specific differences in CE and PS could be detected for Kurtosis (global) and Dissimilarity
(Figure 2).

3.3. Muscle-Specific Results

The mean PDFF values (p < 0.001), Energy (p < 0.001), Entropy (p = 0.01), Homogeneity
(p < 0.001), Sum-average (p = 0.012) and Correlation (p = 0.037) differed significantly
for all three muscle groups. There were also other TA, such as Kurtosis (global), Skewness
(global) and Dissimilarity, which only differed in two muscle departments. In general,
a high muscle specificity for the included TA with regard to all included muscle groups
could be detected.

3.4. Correlations of PDFF Measurements and Texture Features between Muscle Groups

A partial correlation analysis, adjusted for age and BMI as potential confounders, was
performed. No significant correlations could be detected regarding mean PDFF or TFs
between the muscle groups in the whole cohort as well as for males and females separately.
The TFs of each muscle group correlated with the extracted mean PDFF of the same muscle
group, but not with the TFs of other muscle compartments. For CE, the TF correlation
showed the highest correlation with mean PDFF (r = 0.786; p < 0.001). For ES, higher values
in Variance (global) were associated with increased mean PDFF values (r = 0.863; p < 0.001).
For PS, mean PDFF correlated significantly with Homogeneity (r = 0.334; p = 0.03; Figure 3).
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Figure 2. Representative color-coded PDFF maps. (A,C): 68-year-old female (PDFFCE = 22.9%,
PDFFES = 40.0%, PDFFPS = 12.7%, BMI = 39.1 kg/m2). (B,D): 47-year-old male (PDFFCE = 23.4%,
PDFFES = 14.8%, PDFFPS = 8.2%, BMI = 30.4 kg/m2). In the female subject, structural heterogeneity
of the ES (C) is depicted exemplarily. PDFF, proton density fat fraction; CE, cervical muscles; ES,
erector spinae muscles; PS, psoas muscles; BMI, body mass index.

Figure 3. Correlations r of mean PDFF measurements and TFs after adjustment for age and BMI.
Shown are the TFs with the highest r for each muscle group. (A): Correlation between PDFFCE

and the TF Correlation (r = 0.786; p < 0.001). (B): Correlation between PDFFES and the TF Variance
(r = 0.863; p < 0.001). (C): Correlation between PDFFPS and the TF Homogeneity (r = 0.334; p = 0.03).
r, Pearson correlation coefficient; PDFF, proton density fat fraction; TF, texture feature; BMI, body
mass index; CE, cervical muscles; ES, erector spinae muscles; PS, psoas muscles.
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4. Discussion

In the present study, the structural composition of the cervical and lumbar paraver-
tebral musculature was assessed using the TA of PDFF maps generated with CSE-MRI.
TA enabled the detection of gender-specific differences beyond the mean PDFF. In all
muscle groups, PDFF heterogeneity as assessed by TA was greater in males than females.
Within each muscle group, there were several TFs that correlated with the mean PDFF, but
no significant inter-muscular correlations could be revealed. This finding suggests quite
distinct anatomical location-specific structural patterns of the paraspinal muscles studied.
Further, Variance (global) and Kurtosis (global) showed the potential for differentiating
male and female structural patterns for the CE and PS, and thereby offered morphological
information which could not be detected using PDFF values alone.

For a non-invasive quantitative multi-parametric muscle status assessment, CSE-
MRI, MRS, and CT can be used in a preclinical but also in a clinical setting, provid-
ing valid biomarkers such as the mean PDFF and fatty acid characterization [9,11,37].
Recently, the literature on structural characterization of musculature using TA of PDFF
maps has become available [19,38]. In these studies, an association of quantitative multi-
parametric muscle imaging and isometric strength was reported [28,38]. Due to an aging
population and a predominantly sedentary lifestyle, alterations in muscle composition,
such as increasing fatty infiltration, with associated frailty and impaired functional integrity,
are valuable markers of functional muscle integrity and may allow an early diagnosis of
impaired function and prediction of adverse health consequences such as frailty [39]. De-
tecting and quantifying structural changes in the initial stages but also differentiating patho-
logic alterations from age-related degeneration will become a challenge in the near future.

In all three muscle compartments, the TFs Variance (global), Kurtosis (global), and
Dissimilarity differed significantly in all three muscle compartments between males and fe-
males. These results are in line with prior studies showing the gender-associated structural
variations in paravertebral musculature [14,15]. Our findings point to distinct intra- and
inter-individual TF distribution patterns and suggest different underlying pathophysiologi-
cal mechanisms for different muscle groups. By circumscribing the physiological spectrum
of TF distribution in healthy subjects, our study is a first step towards the quantitative
visualization of the pathophysiologic processes occurring in muscle tissue due to aging
and related to gender. As our findings demonstrate, TA offers in-depth insights into par-
avertebral muscle composition beyond simply quantifying the extent of fatty infiltration.
Thus, the present results bring us closer to understanding the intra- and inter-individual
variations with regard to differentiating the start of disease manifestations from normal
physiological conditions.

To the best of our knowledge, this is the first study to show gender-specific differences
in paravertebral muscle composition using TFs in a considerably large cohort of healthy
subjects. The results extracted from our analysis could be used in oncologic patients at
risk of sarcopenia or cachexia to improve the early detection and monitoring of these
severe complications and to facilitate adequate intervention [4,8,40,41]. The comparably
short scan time of about two minutes per acquisition for the lumbar spine could be added
to the scanning protocol in the course of oncologic disease monitoring without signifi-
cant additional time expense. Altered TFs could be indicative of the start of structural
changes before volumetric changes or functional impairments are evident. In the light of
the potential clinical implementation in primary and secondary preventions, the reported
data might serve as a reference standard for early pathology detection at the muscle level.

There are some methodological and conceptional limitations to our study. First,
the retrospective nature of the study design makes it prone to selection bias. Second, man-
ual segmentation always holds the possibility for inaccuracies. However, freely available
and reliable automated segmentation algorithms are just about to be implemented for
analyses of paraspinal muscles. Third, although a wide range of different age groups was
recruited, we had a 2:1 female-to-male ratio, which has to be considered when interpreting
our results. Fourth, there were no follow-up scans, which would have allowed a longitudi-
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nal analysis. Further longitudinal and interventional studies could also reveal changing
muscle composition in association with exercise or caloric restriction. Lastly, the analysis
lacks information about potential confounding factors such as physical activity. Future
analyses should include information on such confounders.

5. Conclusions

The results of the present study demonstrate gender-specific and anatomical location-
specific, distinct differences of fatty paraspinal muscle infiltration in a cohort of healthy
subjects. The missing inter-muscular correlations after partial correlation testing suggest
increasing BMI and age to be driving forces for muscle tissue changes. Thus, the presented
TFs provide additional structural information of different muscle groups with potential
for clinical implementation in differentiating physiologic from pathologic alterations.
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Appendix A.

Appendix A.1. Global Texture Features

Let P define the first-order histogram of a volume V(x, y, z) with isotropic voxel size.
P(i) represents the number of voxels with gray-level i, and Ng represents the number of
gray-level bins set for P. The ith entry of the normalized histogram is then defined as:

p(i) =
P(i)

∑
Ng
i=1 P(i)

(A1)

The Global texture features are then defined as:

Varianceglobal = σ2 =
Ng

∑
i=1

(i− µ)2 p(i) (A2)

Skewnessglobal = σ−3 =
Ng

∑
i=1

(i− µ)3 p(i) (A3)
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Kurtosisglobal = σ−4 =
Ng

∑
i=1

[(i− µ)4 p(i)]− 3 (A4)

Appendix A.2. Second-Order Texture Features

Let P define the gray-level co-occurrence Matrix (GLCM) of a quantized volume
V(x, y, z) with isotropic voxel size. P(i, j) represents the number of times the voxels of gray-
level i were neighbors with voxels of gray-level j in V, and Ng represents the pre-defined
number of quantized gray-levels set in V. The entry (i, j) of the normalized GLCM was
defined as:

p(i, j) =
P(i, j)

∑
Ng
i=1 ∑

Ng
j=1 P(i, j)

(A5)

The following quantities were also defined:

µi =
Ng

∑
i=1

i
Ng

∑
j=1

p(i, j) (A6)

µj =
Ng

∑
j=1

j
Ng

∑
i=1

p(i, j) (A7)

σi =
Ng

∑
i=1

(i− µi)2
Ng

∑
j=1

p(i, j) (A8)

σj =
Ng

∑
j=1

(
j− µj

)
2

Ng

∑
i=1

p(i, j) (A9)

The second-order texture features are then defined as:

Energy =
Ng

∑
i=1

Ng

∑
j=1

[p(i, j)]2 (A10)

Contrast =
Ng

∑
i=1

Ng

∑
j=1

(i− j)2 p(i, j) (A11)

Entropy = −
Ng

∑
i=1

Ng

∑
j=1

p(i, j) log2[p(i, j)] (A12)

Homogeneity =
Ng

∑
i=1

Ng

∑
j=1

p(i, j)
1 + |i− j| (A13)

Correlation =
Ng

∑
i=1

Ng

∑
j=1

(i− µi)
(

j− µj
)

p(i, j)
σiσj

(A14)

Variance =
1

Ng2

Ng

∑
i=1

Ng

∑
j=1

[(i− µi)
2 p(i, j) +

(
j− µj

)
2p(i, j)] (A15)

Sum average =
1

Ng2

Ng

∑
i=1

Ng

∑
j=1

[i p(i, j) + j p(i, j)] (A16)

Dissimilarity =
Ng

∑
i=1

Ng

∑
j=1
|i− j| p(i, j) (A17)
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