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Abstract: Experts usually inspect electroencephalogram (EEG) recordings page-by-page in order to
identify epileptic seizures, which leads to heavy workloads and is time consuming. However, the
efficient extraction and effective selection of informative EEG features is crucial in assisting clinicians
to diagnose epilepsy accurately. In this paper, a determinant of covariance matrix (Cov–Det) model is
suggested for reducing EEG dimensionality. First, EEG signals are segmented into intervals using
a sliding window technique. Then, Cov–Det is applied to each interval. To construct a features
vector, a set of statistical features are extracted from each interval. To eliminate redundant features,
the Kolmogorov–Smirnov (KST) and Mann–Whitney U (MWUT) tests are integrated, the extracted
features ranked based on KST and MWUT metrics, and arithmetic operators are adopted to construe
the most pertinent classified features for each pair in the EEG signal group. The selected features are
then fed into the proposed AdaBoost Back-Propagation neural network (AB_BP_NN) to effectively
classify EEG signals into seizure and free seizure segments. Finally, the AB_BP_NN is compared with
several classical machine learning techniques; the results demonstrate that the proposed mode of
AB_BP_NN provides insignificant false positive rates, simpler design, and robustness in classifying
epileptic signals. Two datasets, the Bern–Barcelona and Bonn datasets, are used for performance
evaluation. The proposed technique achieved an average accuracy of 100% and 98.86%, respectively,
for the Bern–Barcelona and Bonn datasets, which is considered a noteworthy improvement compared
to the current state-of-the-art methods.

Keywords: Electroencephalography; Cov–Det; epileptic AB_BP_NN; KST; MWUT

1. Introduction

Epilepsy is a brain disorder characterized by abnormal discharge of neurons and by
seizures that can lead to cognitive, psychological and social consequences [1–7]. Based on
the latest report on epilepsy released by the World Health Organization (WHO), more than
50 million people worldwide have this disease [8,9]. The number of people with epilepsy
is expected to increase further thanks to increasing life expectancy and the higher ratio of
people surviving birth trauma, traumatic brain injury, infections of the brain, and stroke,
which often lead to epilepsy [8,9]. Thus, it is crucial to diagnose epilepsy correctly and to
provide the correct treatment to patients. The problem of detecting epileptic seizures by
EEG can be resolved by deep analysis of EEG epileptic signals investigating non-linear and
linear features through analysing their features using innovative classification techniques
to obtain an efficient detection rate [10–14]. In this paper, we develop an expert model to
analyse epileptic EEG signals and obtain an excellent recognition rate.
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Seizure activities are usually detected visually by inspecting EEG recordings. This
work requires significant expertise, time, and effort [15]. Moreover, the results of this
method can depend on the level of experience and expertise of individual medical profes-
sionals. Experts depend on different techniques to capture brain activity and detect seizures,
such as electroencephalograms (EEG) and magnetic resonance imaging (MRI) [16,17]. How-
ever, researchers are in favour of EEG for epilepsy diagnosis due to it is low cost; it also
provides supportive proof of seizures and assists with detection of epilepsy [18–21]. In addi-
tion, clinical studies have shown that a seizure can leave signs on a patient’s EEG recording
even after it occurs. However, in most cases it is quite difficult to classify epileptics using
EEG signals manually. Hence, developing an automated epileptic classification model
can be considered an indispensable medical diagnostic to support doctors in carefully
analysing EEGs.

The problem of automatic epileptic seizure recognition has been discussed for many
years. As a result, different approaches have been utilised to detect EEG seizures. Theo-
retically, these approaches are based on machine learning algorithms and involve several
steps, starting with data analysis, then extracting features and selecting features to predict
seizures. One of the earliest examples was an automatic technique proposed by Gotman [5]
to detect seizures depending on the rhythm of an EEG. Another study by Theodore et al. [22]
used 1BF-fluorodeoxyglucose with positron emission tomography to study clinical absence
and generalized seizures. Senhadji and Wendling [23] recommended wavelet transforms
and time-frequency algorithms to investigate EEG (ictal and inter-ictal) signals. Nigam
and Graupe [24] applied a multistage nonlinear pre-processing filter based on an artificial
neural network approach. Kannathal et al. [25] evaluated several entropy estimators to
designate normal data from epileptic EEGs. Acharya et al. [26] suggested a new technique
based on recurrence plots for automated identification of epileptic EEG data.

More recently, research has focused on using convolutional neural networks (CNNs),
principal component analysis (PCA), generalized linear models (GLM), global volatility
index (GVIX), Tunable-Q wavelet transforms (TQWT), neural network models (NNM), frac-
tal dimensions (FD), Recurrence Quantification Analysis (RQA), Cross-frequency coupling
(CFC), and Discrete Wavelet Transforms (DWT), as discussed in the following [26–31]. Lu
and Triesch [14] proposed a CNN model with residual connections to detect seizures from
raw EEG data. An automatic epileptic EEG detection method based on CNN with two
innovative improvements in a data classification problem was proposed by Wei et al. [32].
Türk and Özerdem [33] adopted CNN to demonstrate its ability to learn the properties of
scalogram-based images. Hu et al. [34] combined CNN with an SVM for epileptic state
detection. Capitán et al. [26] used PCA and distribution of power in different frequency
bands to detect epileptic seizures accurately. Miao et al. [35] suggested GVIX to measure
holistic signal fluctuations in wavelet coefficients and the original time-series signal. A
TQWT method was applied by Bhattacharyya et al. [36] to detect epileptic seizures. San-
Segundo et al. [37] used a deep neural network model to analyse epileptic EEG signals.
Gruszczyńska et al. [6] applied Recurrence Quantification Analysis to classify epileptic EEG
signals, and Yu et al. [28] investigated frequency bands during an epileptic event in a given
patient using cross-frequency coupling. Tzimourta et al. [38] used DWT to identify epileptic
EEG segments. Table 1 presents a summary of these previous studies on seizure detection.

Despite significant efforts made by researchers in developing seizure detection models,
the Federal and Drug Administration has not yet formally approved an artificial intelligence
approach or a health informatics system for analysing epilepsy EEG signals. An efficient
and effective artificial intelligence-based epileptic EEG classification model requires not only
high accuracy but also good stability for different patients and a high-speed classification
rate. Hence, in this paper a new automatic seizure detection system for epileptic EEG
detection is proposed. We used two publicly available EEG datasets, the Bonn University
intracranial EEG dataset and the Bern–Barcelona focal and non-focal dataset [39,40], to
evaluate the proposed model. The presented model outperforms all previous machine
learning algorithms. In this study, a determinant of covariance matrix (Cov–Det) coupled
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with an AdaBoost Back-Propagation neural network (AB_BP_NN) is used for seizure
detection. The major contributions of this research are listed as:

1. A Cov–Det model is proposed to reduce the dimensionality of EEG data and explore
the effective features set to detect EEG seizures. This model aims at reducing the
complexity of the process, and returns results in less time.

2. The AB_BP_NN is designed and used to classify EEG features into seizure and seizure-
free data. The developed model is a new and innovative classifier.

3. To eliminate redundant features, the Kolmogorov–Smirnov (KST) and Mann–Whitney
U (MWUT) Tests are integrated, by which the extracted features are investigated and
ranked based on KST and MWUT metrics and arithmetic operators adopted to deduce
the most pertinent classified features for each pair of the EEG signal group.

Table 1. A summary of recent seizure-detection methods.

Authors Methods Cases

Nicolaou and Georgiou [41] Permutation Entropy A, B, C, D, and E
Srinivasan et al. [42] Approximate entropy A, B, C, D, and E

Lee et al. [11] Wavelet transform, phase-space
reconstruction and Euclidean distance A, B, C, D, and E

Ahmedt-Aristizabal et al. [43] End-to-end Training Scheme A, B, C, D, and E
Lu and Triesch [14] Modern Deep Learning Methods A, B, C, D, and E
Siuly et al. [44] Hermite Transform A and E
Kabir and Zhang [45] Optimum allocation technique Two sets A and E

Tawfik et al. [46] Weighted permutation entropy
blended A, B, C, D, and E

Şengür et al. [47] Local Binary Pattern based approach A and E
GulerandUbeyli et al. [7] Wavelet Transform, Lyapunov Exponents A, B, C, D, and E
Khan and Farooq [8] Wavelet Transform A and E
Ahammad et al. [48] Discrete Wavelet Transform A, D and E
Tzallas et al. [49] Time-Frequency A and E
Das et al. [50] Dual Tree Complex A, D and E

Liang et al. [12] Principle component analysis, and
genetic algorithms A, D and E

Nigam and Graupe [51] Nonlinear pre-processing filter A and E
Polat and Güneş [52] Fast Fourier transform, Decision Tree A and E
Kannathal et al. [24] Entropy Measures A and E
Ghosh-Dastidar et al. [4] Chaos theory and wavelet analysis, PCA A, D and E
Tzallas et al. [53] Time-Frequency Analysis A, B, C, D, and E

Madhu et al. [54] Time domain methods, frequency domain
methods, and time frequency methods A, B, C, D, and E

Patidar and Panigrahi [28] Entropy based Tunable-Q wavelet A and E

Subasi et al. [55] genetic algorithm and particle
swarm optimization A, B, C, D, and E

Classes A and B were collected from five healthy subjects; classes C, D and E were recorded from EEG recordings
of five epileptic patients.

2. Materials and Methods

In this research, a new framework is proposed utilising the AdaBoost Back-Propagation
neural network (AB_BP_NN) coupled to a determinant of covariance matrix (Cov–Det). To
implement this model, first, each EEG signal was divided into small epochs, and further-
more, each epoch was split into sub-segments. Then, the Cov–Det model was applied to
each EEG sub-segment to reduce the dimensionality. A set of statistical features, denoted as
the standard deviation, variation, skewness, median, maximum, minimum, mean, mode,
range, and kurtosis were pulled from each EEG sub-segment. To eradicate the redundant
features, the extracted features were then investigated using two statistical metrics based
on arithmetic operators, namely, the Kolmogorov–Smirnov and Mann–Whitney U Tests.
To classify the selected features into normal and abnormal EEG segments, the hybrid
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AB_BP_NN was designed. Figure 1 shows the general methodology of the proposed model
tested for the classification of epileptic EEG signal
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Figure 1. The proposed methodology for EEG signal analysis.

2.1. Segmentation

In this study, we adopted our previous study to segment EEG signals [18–21].
Evidently, the proposed method granted a highly satisfactory classification accuracy.
Mathematically, this process is explained as follows: let an EEG signal be denoted as
X = {x1, x2, . . . , xn}where n is the data point. In this study, the EEG signal X is segmented
into n segments, with each of those segments divided into m intervals. Each segment is
divided into 32 sub-segments to extract the statistical features (Diykh, Abdulla, et al.,
2019). During the training session, the number of sub-segments is empirically selected.
The redundant data in each sub-segment are eliminated by extracting a set of statistical
features. Consequently, each EEG epoch is denoted by a one-dimensional matrix of (f ∗ m)
characteristics where f refers to the number of statistical characteristics and m is the number
of sub-segments. For example, the epileptic EEG data contained five groups, A–E, with
each group having 100 single channels containing 4097 data points. Each single channel
was divided into four segments (1024, 1024, 1024 and 1025), then each interval was divided
into 32 sub-segments.

2.2. Features Extraction

EEG signals are non-stationary with no-specific patterns. In this paper, we designed
the Cov–Det model to reduce the dimensionality of EEG signals and extract the most
powerful characteristics.

2.2.1. Covariance Matrix

Each pair of elements at the position i, j in a covariance matrix is defined as the
covariance between the ith and jth elements of a random vector [56,57]. By using the
covariance, the entries of the covariance matrix could be calculated for a random vector
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A_ij = σ(a_i, a_j ) where A ∈ R̂(n× n) with mean vector m represents the dimension or
number of random variables of the data (e.g., the number of features). In addition, the
covariance matrix is symmetrical because σ(a_i, a_j ) = σ(a_j, a_i ). With respect to the
properties of the covariance matrix, the diagonal entries are the variances and the other
entries are their covariances [58]. Accordingly, a covariance matrix is sometimes called a
variance–covariance matrix [59]. The important properties of covariance matrices were
summarised in our explanation of the same scenario in our earlier study [60].

2.2.2. Determinant

The determinant of a matrix is a number (scalar) gained from the elements of a matrix
by specified operations, and is an attribute [60–62]. The determinants are defined for square
matrices only [63]. A determinant is denoted by (Det), or by | | for a square matrix. For
a determinant in which each element in any row, or column, consists of two terms, the
determinant can be expressed as the sum of two other determinants.

2.2.3. Determinants of Covariance Matrix Determinants (Cov–Det)

Based on basic linear algebra, the determinant can capture how linear transformation
changes area or volume and changes variables in integrals. This leads to a process of
eliminating the repetition and similarity in computing the high dimensionality of the
database, which was our main target behind the integration of these two approaches, that
is, covariance matrix and determinant.

In this study, the matrix elements of EEG time series with each point having its
own characteristic (e.g., time index, magnitude, slope, distance to mean, etc.) contained
fundamental information that could potentially be used in the present disease classifi-
cation problem. The primary reason for the utilization of Cov–Det as a data shrinking
method was to reduce the dimensionality of EEG signals. Initially, a time series can be
described as a sequential combination of F points or written more formally as a vector
of length F([x1, . . . , xF]). The feature candidates can therefore be combined in a feature
vector set for a point in the EEG time series. Let {vi} be the number of features defined for
a point, K. The feature vector for the Nth point of the subsequence is

an = [vN1, . . . , vNk]; (1)

when feature vectors are merged for all points, this leads to a feature matrix A,

A =

 v11 · · · v1k
...

. . .
...

vM1 . . . vMk

. (2)

The covariance of the feature matrix is

(HA) =
1

F− 1

F−1

∑
i=1

(Ai −m)(Ai −m)T (3)

where µ is the mean vector of feature vectors {a1, . . . , aM}.
To improve the extraction process, this study aimed to compute the determinant of

covariance matrix. Based on the essential properties of this covariance matrix, the HA can
be symmetric (i.e., self-adjoint) with the usual inner output its eigenvalues, which are all
real and positive, and the eigenvectors that belong to distinct eigenvalues orthogonal:

HA = ∨ ∧ ∨T . (4)
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Consequently, the determinant of the HA is

|HA| =
∣∣∣ ∨ ∧ ∨T

∣∣∣ = | ∨|| ∧|∣∣∣ ∨T
∣∣∣ = | ∧|| ∨|∣∣∣ ∨T

∣∣∣ = | ∧|∣∣∣ ∨T∨
∣∣∣ = | ∧||I| = F

∏
i=1

γi (5)

In this paper, the EEG signals were represented as a one-dimension matrix. Initially,
EEG time series were re-arranged to create a square matrix based on covariance matrix.
The total number in the square matrix refers to the segmentation length. The Cov–Det
was applied to each row; as results, we obtained a vector of 32 × 10, where 10 denotes
the characteristics extracted. Hence, the dimensionality of each segment was reduced
from 1024 datapoints to 320 data points. The dimension of each single EEG channel was
decreased from 4097 datapoints to 1280 data points.

2.3. Features Selection Based on KST and MWUT
2.3.1. Stage One: Kolmogorov–Smirnov Test (KST)

The Kolmogorov–Smirnov test (KST) is a widely-used nonparametric method for
testing the equivalence of continuous or discontinuous groups by utilising one-dimensional
probability distributions to compare a sample with a reference probability distribution
(i.e., one-sample KST) or comparing two samples (i.e., two-sample KST) [63]. A two-sample
KST test is a useful nonparametric method for comparing two groups, as it is sensitive
to differences in both the location and the shape of the empirical cumulative distribution
functions of the two samples [3,13].

2.3.2. Stage Two: The Mann–Whitney U Test (MWUT)

The Mann–Whitney U test (MWUT) is referred as the Mann–Whitney Wilcoxon Test
or the Wilcoxon Rank Sum Test. It is applied to test whether two samples are derived
from the same population [64,65]. This test is carried out as a two-sided test and thus the
research hypothesis indicates that the populations are not equal, as opposed to specifying
directionality [66,67].

2.3.3. Two-Stage Features Selection Method

The idea behind the feature selection process is to remove redundant features. By
removing irrelevant data, this ensures that a classification model is trained only on the
most important features [66–68]. In addition, removing irrelevant information can be
expected to increase the accuracy of a predictive model [69] and reduce the computation
time involved. Based on statistics applied to measure the similarity and dissimilarity of the
means of two independent samples, this study also employed a nonparametric test that
was deemed appropriate for comparing two independent samples. Generally, to compare
the outcomes between independent samples, there are two popular nonparametric tests,
the Kolmogorov–Smirnov test (KST) and the Mann–Whitney U test (MWUT). These two
non-parametric tests were employed to reduce the dimensionality of input features fed to
the classifier algorithm. Figure 2 shows the process of obtaining EEG features according to
the statistical theory by which the most distinguishing features were extracted from the
EEG dataset.

Tables 2 and 3 report the feature sets that successfully passed the two non-parametric
tests. It is noteworthy that compound events in each EEG signal can be captured from
diverse sample points. The set theory and its operators, with the most basic operators being
the union and the intersection of the EEG features, can describe these operations. Based
on the set theory and its operators, the features selected were those where each event was
categorized using a diverse set of characteristics. Table 4 reports the selected features set
for each event according to our investigation in Tables 2 and 3. For example, to categorize
the class {A, B and C} against class E, thee features sets were investigated (C vs. E., A vs. E
and B vs. E) in order to obtain a superior representative feature dataset.
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Table 2. Stage 1 of the features selection process using Kolmogorov–Smirnov metric.

Statistical Feature A vs. E (1) B vs. E (2) C vs. E (3) D vs. E (4)

Mean 3.6964 × 10−12 1.4660 × 10−9 4.2607 × 10−13 5.6969 × 10−10

Maximum 9.4812 ×10−44 2.9582 × 10−32 9.4812 × 10−44 2.3304 × 10−35

Minimum 1.2251 × 10−44 1.9582 × 10−32 2.7628 × 10−40 1.6754 × 10−31

Mode 5.6969 × 10−10 2.9582 × 10−32 9.4812 × 10−44 2.3304 × 10−35

Median 3.6951 × 10−9 1.2116 × 10−7 5.2233 × −8 1.4670 × 10−9

Range 1.2251 × 10−44 5.1128 × 10−33 7.1865 × 10−43 8.6551 × 10−34

Variance 1.2251 × 10−44 5.1128 × 10−33 9.500 × 10−44 8.6551 × 10−34

Standard Deviation 1.5506 × 10−45 8.8103 × 10−38 1.9277 × 10−39 5.1128 × 10−33

Skewness 0.19 0.6742 0.0874 0.7410
Kurtosis 0.786 0.5521 0.3219 0.2770

Table 3. Stage 2 of the feature selection process using Mann–Whitney U metric.

Feature Statistics A vs. E (1) B vs. E (2) C vs. E (3) D vs. E (4)
Mean 0.14364 0.84789 0.13836 0.26889
Maximum 0.00001 0 0 0.00001
Minimum 0.00001 0 0.00001 0.00001
Mode 0 0.00001 0.00001 0
Median 0.22789 0.18177 0.39448 0.20432
Range 0 0 0.00001 0.00001
Variance 0.00001 0.00001 0 0.00001
Standard Deviation 0.00001 0.00001 0 0
Skewness 0.067418 0.79658 0.21952 0.076688
Kurtosis 0.73874 0.7871 0.0099791 0.023436

Table 4. The final features data set.

Problem Features

A vs. E [max, min, Mode, range, var. and standard deviation]
B vs. E [max, min, Mode, range, var. and standard deviation]
C vs. E [max, min, Mode, range, var., standard deviation and kurtosis]
D vs. E [max, min, Mode, range, var., standard deviation and kurtosis]
{A, B vs. E} {A vs. E} ∩ {B vs. E}
{A, C vs. E} {A vs. E} ∩ {C vs. E}
{A, B, C} vs. E {A vs. E} ∪ {B vs. E} ∪ {C vs. E}
{A, B, C, D} vs. E {A vs. E} ∪ {B vs. E} ∪ {C vs. E} ∪ {D vs. E}
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In Table 2, it can be seen that not all of the EEG groups to have the same features.
This depends on the hypothesis of the test H0 : two samples have the same continuous
distribution vs. H1 : two samples do not come from the same continuous distribution with
a level of significance α = 0.05. Based on the KST metric, the features [min, Mode, range, var,
standard deviation, and max] were used to distinguish between groups B vs. E. However,
to distinguish between class C vs. class E, the features set [standard deviation, kurtosis,
max, min, Mode, range, and var] were accepted with the values ≤0.05, while the values
>0.05 were rejected. At the second stage, a further investigation was made for the input
features using the KST. The results in Table 3 were obtained using MWUT test to select the
most appropriate features. The same hypothesis was considered with the MWUT test; for
example, all feature values ≤0.05 were accepted, while those exceeding this threshold were
marked as not significant with green shading.

2.4. AdaBoost Back-Propagation Neural Network (AB_BP_NN)

This study develops the AB_BP_NN method based on successful implementation of
a back-propagation neural network in an EEG classification problem for abnormal event
detection [70]. To enhance the performance of traditional neural network models, the
AdaBoost technique resulting in the hybrid AB_BP_NN was proposed, as the AdaBoost
neural network is less vulnerable to issues of data over-fitting compared to some of the
other machine-learning algorithms. To resolve this problem, in this study about 15% of the
data from the training set were subsequently used to validate each of the neural networks.
Figure 2 shows the architectural structure of the proposed hybrid AB_BP_NN model.
The procedure of implementing AdaBoost Back-Propagation neural network model was
as follows.

Let N be a set of the weak classifiers. This study trained the ith neural network on the
xi and yi sets and then evaluated the classification output of the testing set yclass

i , where
the distribution D was used to calculate the evaluation error for the ith neural network
defined as

Di+1,j = Di,jX
(

1 + δ ∗ I
(

yj − yclass
i,j

))
with

{
i = 1, . . . , L
j = 1, . . . , M

(6)

Here, δ is multiplication factor, and Di,j is the ith in D vector. The ith neural network
assessment error E with the equivalent distribution error D is

E = ∑M
j=1 |Di,jXI

(
yj − yclass

i,j

)
| (7)

Here, I is a binary function:

I(x) =
{

1 i f x > 0.2
0 otherwise

(8)

A weight w is assigned for the ith neural network based on its error, E. Then, the ith
neural network classifies p based on the input, f . For each neural network, the weights and
biases are initialized and the error threshold for I is set to 0.2. To convert the error of each
neural network into its respective weight and to provide each neural network with low
error and high weight, a covert function is utilised so that w for each neural network is

wi =
1
Ei

(9)

Here, wi is the weight of ith neural network. The overall classification score is given
by the weighted sum

Q =
m

∑
i=1

wiXp (10)
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The classification score is bounded by [0, 1], with a better score being close to a trivial
value. The AdaBoost neural network was employed to classify the FC and the NFC EEG
signal, with the input of the AdaBoost neural network being the extracted features in the
EEG signal. In this study, a total of nine input cells were applied based on the number
of the input features: two hidden layers with nine cells each. As used in most deep
learning algorithms, two transfer functions denoted by the tangent sigmoid (tansig) and the
rectified linear unit (ReLU) function were selected for the first and the second hidden layer,
respectively, whereas a pure linear transfer function (x) = x was used for the single node
output layer. In the hidden layers, several tests were performed using various activation
functions, with tansig and ReLU used to select the best performance. Figure 3 shows the
proposed AB_BP_NN model.
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2.5. Performance Evaluation Metrics

To test the performance of the proposed AB–BP–NN model, several metrics were
employed: accuracy (ACC), sensitivity (Sen), specificity (Spec), Negative Predictive value
(NPV), f-scor (FSCOR), informedness (INFO), negative likelihood ratio (NLR), false negative
rate (FNR), positive likelihood ratio (PLR), diagnostic odds ratio (DOR), false positive rate
(FPR), and Mathews correlation coefficients (MCC) (Altman & Bland, 1994), (Baldi et al.,
2000), (Youden, 1950). Based on the confusion matrix, the metrics of terminologies based
on true positives (TP), false negatives (FN), true negatives (TN) and false positives (FP)
were also calculated. Table 5 shows a short description of the score metrics used for the
performance evaluation [71–76].

Table 5. Summary description of performance evaluation metrics.

No. Score Metric Formula No. Metric Formula

1 Acc. (TP + TN)/(TP + TN + FP + FN) 7 NLR FNR/Spec.
2 Sen. TP/(TP + FN) 8 DOR (TP/FN)/(FP/TN)
3 Spec. TN/(TN + FP) 9 INFO. Sen. + Spec. − 1
4 NPV TN/(TN + FN) 10 FNR 1-Sen.
5 FSCOR 2× PPV×Sen.

PPV+Sen. 11 PLR Sen./FPR

6 MCC. ((TP × TN) − (FP × FN))/
√

((TP + FP)(TP + FN)(TN +
FP)(TN + FN)) 12 FPR FP/(FP + TN)
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3. Results

To evaluate the proposed model, two different EEG datasets collected from Bern–
Barcelona and Born University were used to detect EEG seizures. The FC and the NFC
EEG datasets included a sufficiently long EEG series of 3750 pairs of FC and NFC EEG
signals, while the epileptic EEG dataset contained five groups named as A–E, with each
group recorded from 100 single channels.

MATLAB R2019 was utilised to implement the proposed model. Signal processing
toolbox was used in the implementation. In addition, EEG recordings and annotation files
were read and stored on a PC using a MATLAB code named Read- Data_EDF collected
from MathWorks.

3.1. The EEG Datasets
3.1.1. The Epileptic EEG Database

The epileptic EEG signal database collected from the Department of Epileptology at
the University of Bonn, Germany (accessed 8 July 2021, available online https://www.
ukbonn.de/epileptologie/?idcat=193&lang=3 ) is adopted in this paper [10]. This database
consists of five feature sets, denoted A–E, with each feature set containing 100 channels
running a length of 23.6 s from the five separate classes. Each signal was chosen based on
visual inspection for artefacts, such as the cause of muscle activities or eye movements.
With the same 128-channel amplifier system, all EEG recordings were made utilising an
average common reference. Utilising the 12-bit resolution, all the recorded datasets were
digitised at 173.61 samples per second. The 10–20 system of electrode placement was used
for the recording of the EEG signals [10].

3.1.2. Focal and Non-Focal Database

Another dataset, the Bern–Barcelona dataset collected from the University of Bern
Department of Neurology [38,39], was employed for performance evaluation. A total of
3750 pairs of focal (FC) and non-focal (NFC) signals were collected from five patients.
Pharmaco-resistant temporal lobe epilepsy was involved in the recording of EEG signals.
The EEG signals were labelled as X and Y for FC and NFC. Depending on the respective
channel and visual identification by two neurologists, the FC recordings from all five
subjects were captured. These recordings were utilised to distinguish the first ictal EEG
change. However, NFC signals were collected from channels within the neighbourhood of
FC channels. All of the other channels were categorised as FC EEG channels. The sampling
frequency of all EEG recordings was kept at 512 Hz, and each contained 10,240 samples.
This research aimed to evaluate the proposed approach utilising all FC and NFC signals.

3.2. Case 1: Classification Results for Epileptic EEG Data

In this section, the proposed model was assessed using epileptic EEG data. Eight
experiments were conducted to obtain a clear picture of the efficiency of the proposed
model. In each experiment, different pairs of EEG cases were considered as follows.

⇒ Exp.1: {A vs. E}
⇒ Exp.2: {B vs. E}
⇒ Exp.3: {C vs. E}
⇒ Exp.4: {D vs. E}
⇒ Exp.5: {(A, B) vs. E}
⇒ Exp.6: {(C, D) vs. E}
⇒ Exp.7: {(A, C, D) vs. E}
⇒ Exp.8 {(A, B, C, D) vs. E}

The EEG data were divided into two equal groups for training and testing, respectively.
Table 6 shows the performance of the proposed model for different EEG cases. The features
in Table 4 were considered for each pair of EEG cases. Twelve metrics were used to evaluate
the performance of the model with classification accuracies of eight cases. The average of

https://www.ukbonn.de/epileptologie/?idcat=193&lang=3
https://www.ukbonn.de/epileptologie/?idcat=193&lang=3
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classification accuracy of the proposed model was 98%, with an average sensitivity and
specificity of 99% and 98%, respectively. In addition, the proposed model also gained high
scores for the other performance metrics, as showed in Table 6.

Table 6. Classification accuracy under feature selection.

Case Sen Spec ACC NPV FNR FPR FSCOR INFO NLR DOR PLR MCC

{A vs. E} 99% 98% 100% 97% 87% 97% 97% 99% 97% 98% 98% 97%
{B vs. E} 98% 99% 100% 98% 85% 98% 98% 98% 97% 98% 98% 99%
{C vs. E} 99% 99% 99% 99% 87% 97% 99% 97% 96% 97% 98% 99%
{D vs. E} 98% 100% 100% 99% 86% 99% 99% 99% 99% 99% 99% 100%

{(A, B) vs. E} 99% 98% 99% 97% 85% 98% 97% 97% 98% 97% 97% 97%
{(C, D) vs. E} 98% 97% 98% 98% 85% 99% 98% 96% 98% 98% 98% 98%

{(A, C, D) vs. E} 98% 99% 99% 99% 84% 98% 99% 99% 99% 99% 98% 99%
{(A, B, C, D) vs. E} 99% 98% 98% 98% 86% 98% 97% 97% 98% 97% 98% 97%

To further investigate the findings in Table 6, all features, including [Mean, max, min,
mode, median, range, variance, standard division, Skewness and kurtosis], were adopted
to classify all of the EEG cases, and these features were sent into the proposed AB_BP_NN
without the feature selection phase. The results demonstrate that using the same features
set to classify all EEG cases can degrade the classification accuracy. Table 7 and Figure 4
reports the classification accuracy of the proposed AB_BP_NN model with and without the
feature selection phase. As most of the epileptic EEG data are non-ictal, a new experiment
that reflected the actual situation of EEG data was designed to test the proposed model. In
this experiment, the epileptic EEG signals were separated into two different sets.

Table 7. Classification accuracy without feature selection.

Case Sen Spec ACC NPV FNR FPR FSCOR INFO NLR DOR PLR MCC

{A vs. E} 88% 87% 89% 83% 82% 81% 83% 81% 82% 83% 83% 85%
{B vs. E} 86% 88% 86% 82% 83% 81% 82% 85% 81% 81% 83% 84%
{C vs. E} 87% 85% 87% 81% 82% 83% 81% 84% 83% 82% 99% 83%
{D vs. E} 85% 84% 87% 80% 83% 81% 82% 83% 80% 81% 100% 83%

{(A, B) vs. E} 87% 83% 89% 82% 83% 81% 84% 82% 83% 83% 99% 85%
{(C, D) vs. E} 88% 85% 85% 83% 82% 83% 83% 84% 81% 81% 98% 83%

{(A, C, D) vs. E} 86% 86% 84% 82% 84% 84% 82% 82% 83% 83% 82% 82%
{(A, B, C, D) vs. E} 85% 84% 83% 81% 83% 82% 81% 82% 81% 81% 83% 83%
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The first set comprised all ictal EEG data while the second set represented the 25%
of the non-ictal EEG data in the four non-ictal sets A–D. The experiment was repeated
several times, with each 25% of the non-ictal sets A–D considered. Based on the results,
the proposed model attained a satisfactory performance in all of the experiments, with an
average accuracy of 97%. Table 8 shows the performance of the proposed model through a
ten-cross-validation process for each EEG case. An overall classification accuracy of 99%
was obtained. From the results in Table 8, it can be observed that the classification accuracy
was satisfactory, and was able to reflect the efficiency of the proposed model. In addition,
the performance of the proposed model was stable and there were no high fluctuations in
the obtained results among the ten crosses.

Table 8. Classification accuracy for each EEG Case.

EEG Cases Accuracy Based on Ten Cross Validations

{A vs. E} 100%
{B vs. E} 100%
{C vs. E} 98.5%
{D vs. E} 99%
{(A, B) vs. E} 98%
{(C, D) vs. E} 98.2%
{(A, C, D) vs. E} 98%
{(A, B, C, D) vs. E} 98.5%

3.3. Case 2: Classification Results for the FC and NFC EEG Data

This section discusses the classification results of the proposed model for the FC
and the NFC EEG signal. The same scenario as for the epileptic EEG data was applied
to segment the FC and the NFC EEG signal and to extract the most influential features
in the EEG signal. Table 9 reports the performance of the proposed model based on
the sensitivity, specificity and classification accuracy against other classification models,
including k-means, LS-SVM, KNN and multi-class SVM, and neural networks. Evidently,
the classification accuracy of the proposed model for all subjects was higher than the
k-mean, LS-SVM and multi-class SVM and neural network models. The average sensitivity
and specificity of the proposed model was 98.7% and 99.37%, respectively, while the LS-
SVM scored the second-highest classification accuracy with 90%, showing the efficacy of
the Cov–Det-based AB_BP_NN model.

Table 9. Comparison of the proposed model with other classifiers.

Methods Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Acc Spec Sen Acc Spec Sen Acc Spec Sen Acc Spec Sen Acc Spec Sen
The proposed model 99 98.4 99 98.7 98 98 99 98.4 97.9 98.6 97.8 97.6 99 97.5 97.5

k-means 86 85 83 89 88 86 87 83 85 88 87,3 86.5 90 88 87
KNN 90 89 88 87 88 86 89 87.5 88.4 89.5 87.9 87.6 91 89 88.9

LS-SVM 92 91 90 89 90 88 91 90 89 92 91 89 93 91 89
Multi-class-SVM 90 89 88 88 86 89 90 90 89 91 90 90 89 87 88

To further explore the utility of the proposed model, another experiment was con-
ducted using the ten-cross-validation procedure. Based on the results in Figure 5, the
performance of the proposed method was relatively stable, and there were no high varia-
tions in the attained results among any of the ten-fold cross validations.
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Figure 5. The performance of the proposed Cov–Det-based AB–BP–NN model using the ten-cross
validation procedure.

4. Discussion

In this study, we detected epileptic seizures with a high success rate. Specifically, we
used EEG data from two datasets to investigate the ability of the proposed model in seizure
detection. We highlight our findings according to the following points.

1. The complexity of the proposed model was investigated. Figure 6 depicts the time
in seconds of the proposed model based on the number of samples. For the FC
and NFC EEG signals, the x-axis refers to the number of samples and the y-axis
denotes the complexity time. From Figure 6, it can be noticed that the proposed
model had a slightly higher execution time than the SVM and k-means methods.
However, the increase in the execution time is reasonable compared with the increase
in classification accuracy.

2. One of the limitations of the proposed method is that it should be tested with larger
clinical databases. We believe that the proposed method may or may not yield perfect
classification accuracy. The proposed model could be modified by testing other
feature selection methods. Second, the proposed model could be computationally
costly, especially when used in real time applications. Thus, future study should
attempt to apply big data technology and use parallel processing techniques to reduce
the time complexity of the proposed model and avoid the problem of feature numbers.

3. The proposed model was trained and tested based on leave-one-out cross validation
(LOOCV) to avoid overfitting issues. In this experiment, one subject was used for
testing while others were used for training. An average accuracy of 99% along with
99% for each dataset was obtained by the proposed model in this experiment.

4. To examine the advantages of the proposed model relative to other benchmark tech-
niques, a comparison was made among the proposed model and several existing meth-
ods in the literature. Table 10 reports the comparison results. The proposed technique
achieved an average accuracy of 100% and 98.86% for the two datasets, respectively,
which is considered a noteworthy improvement compared to the state-of-the-art
methods in conducting comparisons with 15 studies described in this section. For FC
and NFC classification, Das and Bhuiyan [49] suggested empirical mode decomposi-
tion (EMD), discrete wavelet transform (DWT) with K-nearest neighbour classifier
to discriminate focal and non-focal signals. The studies of Bhattacharyya et al. [17],
R. Sharma et al. [29] and R. Sharma et al. [30] proposed an automatic classification
technique based on LS-SVM. However, it was evident that our proposed AB_BP_NN
model system outperformed their methods. Bhattacharyya et al. [35] proposed an
automatic seizure classification method based on empirical wavelet transform tech-
nique (EWT) with LS-SVM classifier to classify the 50 pairs of focal and non-focal
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EEG signals. Deivasigamani et al. [71] obtained an equivalent rate of accuracy to our
result; however, it was applied on 50 pairs of focal and non-focal EEG signals, while
we tested the proposed model on 3750 pairs of focal and non-focal EEG signals, which
produced more accurate and reliable outcomes. Despite the promising results of those
studies for FC, and NFC classification, their classification accuracies were lower than
our proposed model.
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Table 10. Comparisons among proposed model with the state of the art.

Authors Methods Classifiers Cases Acc. Sen. Spe.

Das and Bhuiyan [49] EMD, DWT K-nearest
neighbour Entire Dataset 89.4% - -

Bhattacharyya et al. [17] TQWT LS-SVM 3750 pairs of focal
and non-focal 84.67% - -

R. Sharma et al. [29] DWT LS-SVM 50 pairs of focal and non-focal 84% 84% 84%

R. Sharma et al. (2015b) Entropy
features LS-SVM 50 pairs of focal and non-focal 87% - -

Deivasigamani et al. [71] (DT-CWT) ANFIS 50 pairs of focal and
50 non-focal 99% 98% 100%

Bhattacharyya et al. [35] EWT LS-SVM 50 pairs of focal and
50 non-focal 90% 88% 92%

Acharya et al. [26] DFA, FD, LLE LS-SVM 3750 pairs of focal and
3750 non-focal 87.93% 89.97% 85.89%

Proposed Method Cov–Det AB–BP–NN
model

3750 pairs of focal and
3750 non-focal 98.86% 98.7% 99.37%

Epileptic EEG dataset

Authors Methods Classifiers Cases Acc. Sen. Spe.

Lee et al. [11] WT, PSR, ED NEWFM Five sets A, B, C, D, and E 98.17% 96.33% 100%

Ahmedt-Aristizabal et al. [42]
End-to-end
Training
Scheme

LSTMs Five sets A, B, C, D, and E 95.54% 91.83% 90.50%

Lu and Triesch [14] DNT ANT Five sets A, B, C, D, and E 99% 96.15% 100%

Şengür et al. [46] GLCM, TFCM,
LBP SVM Two sets A and E 100% 100% 100%

Liang et al. [12] PCA, GAs BP, LISVM Three sets A, D and E 96.83% - -
Madhu et al. [54] TM, FT PNN Five sets A, B, C, D, and E 92.75% 72.5% 98%
Patidar and Panigrahi [27] En LS-SVM Two sets A and E 97.75% 97% -
Subasi et al. [54] GA, PSO SVM Five sets A, B, C, D, and E 99.38% - -

Proposed Method Cov–Det AB–BP–NN
model

Five sets A, B, C, D, and E
with Eight cases (8 problems) 100% 99% 98%
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For seizure detection, Lee et al. [11], Ahmedt-Aristizabal et al. [42], Lu and Triesch [14]
achieved better than 95% rates of accuracy based on several epilepsy classification tech-
niques such as Neural Network Classifier (ANNs), Neural Network with Weighted Fuzzy
Membership functions (NEWFM), Recurrent Neural Networks (RNNs) via the use of Long
Short Term Memory (LSTM) networks, Deep Convolutional Neural Network Architecture,
and SVM. Patidar and Panigrahi [27] proposed Kraskov Entropy-based Tunable-Q wavelet
with LS-SVM for analysis of epileptic EEG signals, obtaining an average accuracy and
sensitivity of 97.75% and 97%, respectively. Subasi et al. [54] proposed a genetic algorithm
and particle swarm optimization with SVM to automatically detect an epileptic seizure, ob-
taining an average of accuracy 99.38%. Even though the studies described above provided
advanced results, the high classification accuracy of the proposed model outperformed all
of them. Comparing the studies that obtained an equivalent rate of accuracy to our result,
most of the methodologies have been applied on part of datasets, while we have applied
the proposed model to whole datasets and analysed eight problems, which clearly show the
superiority of our proposed model. Through analysing and investigating the information
presented in Table 10, the proposed model can be considered an optimal technique for
these databases.

5. Conclusions

In this study, an efficacious automated classification model for epileptic EEG signals
classification was proposed. It was evaluated using two separate medical datasets. The
proposed model was evaluated by using several metrics to test its performance. Based on
our findings, we believe that the proposed model can be utilised to aid neurologists and
other medical specialists in the accurate diagnosis of epileptic seizures. A follow-up study
may investigate the improvement of the performance of the proposed model by reducing
the number of features used in this initial study. Moreover, due to the scarce number of
studies focused on designing both feature extraction and detection models for the accurate
diagnosis of epileptic seizures, there is a need for further research in this area.
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