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Abstract: Automating screening and diagnosis in the medical field saves time and reduces the chances
of misdiagnosis while saving on labor and cost for physicians. With the feasibility and development
of deep learning methods, machines are now able to interpret complex features in medical data,
which leads to rapid advancements in automation. Such efforts have been made in ophthalmology to
analyze retinal images and build frameworks based on analysis for the identification of retinopathy
and the assessment of its severity. This paper reviews recent state-of-the-art works utilizing the color
fundus image taken from one of the imaging modalities used in ophthalmology. Specifically, the deep
learning methods of automated screening and diagnosis for diabetic retinopathy (DR), age-related
macular degeneration (AMD), and glaucoma are investigated. In addition, the machine learning
techniques applied to the retinal vasculature extraction from the fundus image are covered. The
challenges in developing these systems are also discussed.

Keywords: deep learning; fundus image; machine learning; retinal image

1. Introduction

Machine learning methods have been developed and exploited for process automa-
tions in many fields and have recently taken a leap forward thanks to the feasibility of
deep learning and storage of massive amounts of data. The algorithm is designed to make
complex neural networks learn target knowledge from big data. Consequently, traditional
machine learning algorithms have been replaced with deep learning methods. As an ex-
ample, tasks in computer vision have achieved remarkable performance. At the ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC) held in 2015, deep learning’s potential
was proven by surpassing human performance in recognizing natural images, which is
considered a very difficult task [1].

The machine learning applications for images in the medical field include lesion
detection, automatic diagnosis, medical image segmentation, and medical image generation.
Deep learning was used to classify pulmonary tuberculosis with chest radiographs [2], and
a method for detecting and classifying skin lesions in images was proposed [3]. Research
was conducted on the diagnosis of Alzheimer’s disease using neuroimaging data [4], and
the coordinates of vertebral corners in sagittal X-ray images were predicted for automatic
detection [5]. Furthermore, an algorithm was developed for segmenting tumors in multi-
modality magnetic resonance images (MRI) of the brain [6]. In addition, multiple sclerosis
lesions were also segmented [7]. Part of the knee articular cartilage was extracted from MRI
images for the early diagnosis of osteoarthritis [8]. Another clinical application is detecting
pulmonary nodules in computed tomography (CT) lung images [9]. For examples of image
generation, liver CT images were synthesized and used as the augmented data to train
deep learning models to achieve better lesion classification performance [10]. Furthermore,
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a synthesis method to create brain MRI images was proposed [11], and retinal and neuronal
images were generated to enhance data accessibility [12].

Among the various departments in the medical field, ophthalmology is where deep
learning applications have been intensely applied. There are two different imaging modal-
ities: fundus imaging and optical coherence tomography (OCT) [13]. Fundus imaging
devices use an intricate microscope with an installed image sensor that records the re-
flected light from the interior surface of the eye. This optical system allows physicians to
observe the major biological landmarks inside the eye, as well as the complex background
patterns that are created by the inner retinal structures. OCT is a non-invasive imaging
modality that incorporates the principles of interferometry and confocal microscopy [14].
With the help of images taken by the two kinds of devices, ophthalmologists can diagnose
retinal pathologies and screen patients’ eyes, and those images are the basis for developing
ophthalmologic applications.

Many machine learning techniques have been developed in ophthalmology, including
applications for the identification of retinal landmarks, retinal pathology segmentation,
and retinal disease classification. As a result, reviews of deep learning works have been
actively published, with some covering specific domains and some covering ophthalmology
in general [15–36]. A review of the applications in sub-domains has the advantage of
providing detailed and rich content, but it can be difficult to note the importance of the
applications in a large context, and a review may contain information that is not meaningful
from an engineer’s point of view. Conversely, a review of the entire domain may have the
merit of exploring commonly used methods, although it may end with a dictionary listing of
techniques and without useful information. In this paper, in order to leverage the strengths
of both approaches, we restricted our scope to applications of fundus imaging and their
most important uses are covered by presenting detailed examples. In particular, we have
selected several important, recently published reviews that cover the sub-domain tasks for
major eye diseases and the structure of the eye [37–40]. The following section introduces
domain knowledge in the field of ophthalmology, such as the imaging modality, retinal
structures, and retinopathy. In the next section, after introducing the general methods for
each task, important works are presented in detail. The final section addresses concerns
when designing machine learning models and analyzing the results.

2. Domain Knowledge
2.1. Fundus Image

The fundus image is the reflection of the interior surface of the eye, and it is normally
recorded by image sensors, usually in three colors. It includes information about the
observable biological structures, such as the surface of the retina, retinal vasculature, the
macula, and the optic disc. The spectral range of the blue color enhances the visibility of the
anterior retinal layers because the blood vessels and posterior retinal pigment layer absorb
it. Meanwhile, the green spectrum is reflected by the retinal pigmentation, providing more
information from below the retinal surface, and making its filters can improve the retinal
layer visualization. The red spectrum is only related to the choroidal layer beneath the
pigmented epithelium, and contains content about the choroidal ruptures, choroidal nevi,
choroidal melanomas, and pigmentary disturbances [25].

2.2. Retinal Structure

The human eye is an organ that takes in visual information in the form of focused
light through light-sensitive tissues. When the light reaches photoreceptors that respond
to particular spectral regions, the sensed information is converted to electrical signals,
and they are transmitted via nerve fibers to the visual cortex of the brain. The signals are
then interpreted as visual images in the brain. As depicted in Figure 1a, the eye consists
of important biological landmarks. The macula is the central region of the imaging area,
where the photoreceptors are highly concentrated for maximum resolving power. The
fovea is located in the center of the macular region, and it is responsible for high-acuity
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central vision. The optic disc, also called the optic nerve head (ONH), is the circular-shaped
area on the ocular fundus, and the place where nerve fibers come together to travel to the
visual cortex. The retinal vasculature extends from the optic disc and branches out to the
retinal layers. As can be seen in Figure 1b, the retinal layers can be divided into seven layers
according to the types of cells [41]. The retinal veins can be classified according to their
positions. The superficial, intermediate, and deep retinal vessels are located in the nerve
fiber layer and along the sides of the inner nuclear layers. The choroidal vessels are located
beneath the retinal pigment epithelium (RPE) and Bruch’s membrane. These vessels supply
nutrients and oxygen to the photoreceptors [26]. The blood vessels, including the arteries
and veins, are well represented in fundus photography with the reflected spectral ranges
of red.

Figure 1. Structure of the fundus: (a) retinal landmarks on fundus image; (b) structure of seven retinal
layers. The NFL, GCL, INL, ONL, PL, and RPE stand for nerve fiber layer, ganglion cell layer, inner
nuclear layer, outer nuclear layer, retinal pigment epithelium, and photoreceptor layer, respectively.

2.3. Retinopathy

Retinopathy refers to diseases that cause damage to the ocular structures, leading to
vision impairment. The three most common retinopathies that affect people around the
world have been introduced, and most studies have focused on these retinopathies [20].
They are diabetic retinopathy (DR), age-related macular degeneration (AMD), and glau-
coma. DR is a pathology related to abnormal blood flow, and AMD occurs because of the
aging of the tissues in the retinal layers. Glaucoma is a group of eye conditions that damage
the optic nerve. The detailed descriptions of these diseases are as follows.

2.3.1. DR

Diabetes is a disorder in which not enough insulin is produced or cells are resistant to
insulin, which causes blood sugar levels to be abnormally high or low. One of the prevalent
consequences of diabetic complications is DR, which causes damage to the overall retinal
region. DR can be rated according to an assessment of the lesions represented on the fundus
image [32]. The lesions include microaneurysms (MAs), cotton wool spots, hemorrhage,
exudate, and neovascularization.

• MA
It is the most typical lesion and the first visible sign of DR. It is caused by limited
oxygen supply. It appears in the form of small saccular structures represented by
round red spots with a diameter of 25 to 100 µm [27].

• Cotton wool spot (soft exudate)
It is an acute sign of vascular insufficiency to an area of the retina found in early
DR, and it is also called soft exudate. It appears as white patches on the retina, which
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is a result of damage to the nerve fibers due to the occlusion of small arterioles, and it
causes accumulations of axoplasmic material within the nerve fiber layer [28].

• Hemorrhage
Retinal hemorrhage refers to bleeding from the blood vessels in the retina caused
by high blood pressure or blockage in arterioles. It ranges from the smallest dot to
a massive sub-hyaloid hemorrhage. Depending on the size, location, and shape, it
provides clues about underlying systemic disorders such as DR and AMD [29].

• Hard exudate
Hard exudate is caused by increased vascular permeability, leading to the leakage
of fluid and lipoprotein into the retina from blood vessels, which are represented as
small, sharply demarcated yellow or white, discrete compact groups of patches at the
posterior pole [30].

• Neovascularization
When oxygen shortage occurs in the retinal region due to retinal vessel occlusion,
the vascular endothelium grows to overcome the lack of oxygen. This new vessel
formation can be extended into the vitreous cavity region and leads to vision impair-
ment [31].

2.3.2. AMD

AMD is a leading cause of blindness in the elderly worldwide. There are two types of
AMD: dry AMD and wet AMD. Symptoms of dry AMD are thinning of the macula and the
growth of tiny clumps of protein called drusen, which are depicted in Figure 2. Drusen
appear over the whole retina as yellow dots in fundus photography, and they are believed
to be a result of functional decline due to aging and impaired blood flow—causing problems
cleansing waste products from the photoreceptors. Normal individuals over the age of
50 tend to have a small number of drusen, while a large number of drusen are observed
in patients with AMD. Wet AMD is caused by newly grown abnormal blood vessels that
may leak fluid or blood into the macula causing the macula to lift up from its normally
flat position. The neovascularization usually originates in the choroidal vasculature and
extends into the sub-retinal space, causing distortion or loss of central vision. AMD can
be graded based on these lesions, but there are different schemes for the grading [33,34].
Many machine learning works used AREDS (Age-Related Eye Disease Study) criteria [37].
These criteria divide AMD into eight grades based on the size of the drusen, increased
pigment, depigmentation, and geographic atrophy (GA). Wet AMD can be classified based
on the presence of neovascularization [33].

Figure 2. Lesions of the retinopathies: (a) MA, exudate, and hemorrhage for DR; (b) drusen for AMD.

2.3.3. Glaucoma

Glaucoma is a common cause of permanent vision loss in which the optic nerve
and ganglion cells are damaged. Glaucoma can be diagnosed by examining intra-ocular
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pressure, optic nerve structure, anterior chamber angle, and the morphology of the retinal
vasculature [35]. Glaucoma can be divided into three types depending on how it is caused.
The first two types, called open-angle glaucoma and closed-angle glaucoma, are associated
with increased intra-ocular pressure. Open angle glaucoma is the most prevalent type of
glaucoma. It starts in the anterior part of the eye with a drainage problem. A fluid, called
aqueous humor, controls the pressure inside the eye. It is produced behind the iris, and it
exits through the trabecular meshwork, which is a mesh-like structure. However, when
its exit rate is lower than its production rate, this causes high pressure that damages the
optic nerve at the back of the eye. Closed-angle glaucoma happens when the meshwork
becomes blocked, resulting in increased pressure. The last type is normal-tension glaucoma.
Normal-tension glaucoma occurs without eye pressure. The exact cause of normal-tension
glaucoma is still unknown, though it can be diagnosed by observing the optic nerve for
signs of damage [36].

3. Machine Learning Methods

Machine learning refers to algorithms that can be implemented in systems created for
the purpose of solving problems in various fields. It is classified into two main domains by
the forms of the target knowledge that must be learned. When information is explicit or
directly human-involved, the learning is called supervised learning. Otherwise, learning
is called unsupervised or semi-supervised learning, depending on the degree to which
the corresponding system independently judges the target-related pattern without human
intervention. Supervised learning includes all deep learning methods that exploit labels for
training, such as k-nearest neighbor (kNN), a support vector machine (SVM), fuzzy tech-
niques, and random forest (RF), while unsupervised learning includes k-means clustering,
fuzzy c-means (FCM), the Gaussian mixture model (GMM), and reinforcement learning.

Another criterion for determining the type of learning is whether the created models
include parameters or not. If the data are assumed to have a specific distribution, the model
can be set with a fixed number of parameters. Due to prior knowledge, the model has
the advantage of a relatively easy-to-understand model. However, there is less flexibility
in improving the model with additional data that does not follow the prior distribution.
This kind of model includes linear regressions, logistic regressions, Bayesian networks,
and artificial neural networks. On the other hand, a non-parametric model made by
exploiting the properties of data distribution has the advantage of flexibility and relatively
low processing speed. Such models include decision trees, RF, and the k-nearest neighbor
(KNN) classifier.

Among the techniques mentioned above, building neural networks for deep learning
has recently been considered an efficient way to transform the input data to a condensed
representation with end-to-end learning. There are many formats for creating neural
networks, depending on how the nodes are interconnected and the basic components of the
architecture. A certain number of nodes are grouped together to form a layer, and nodes
in the same layer are not usually connected to each other. On the topic of the basic blocks
of a neural network, if all nodes in one layer are connected to all nodes of the next layer,
the network is called a fully connected network (FCN). If a layer propagates the given
information by partially connecting to the nodes of the next layer with regular intervals and
the same weights, the network is called a convolutional neural network (CNN). Lastly, if the
inference operations proceed by repeatedly feeding the previous outcomes as inputs, the
network is called a recurrent neural network (RNN) and is usually designed for handling
sequential data.

The methods dealt with in this study are mostly focused on deep learning models,
given that deep learning is a state-of-the-art technology that is known to outperform
conventional machine learning. However, conventional approaches are also covered for
certain tasks if their abilities to analyze necessary patterns and the results are as good as the
deep learning methods. This section is divided into two parts. The first part is about the
methods for extracting the most complex biological landmark inside the eyes, i.e., retinal
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vessels. The second part is about the methods that automate the diagnosis and screening of
retinal diseases such as DR, AMD, and glaucoma.

3.1. Retinal Vessel Extraction Methods

Among the observable landmarks on a fundus image, retinal vessels have the most
complex shapes with bifurcations, crossovers, and sudden ends, and the difficulties of
the vasculature extraction is proven by the fact that the developed methods so far cannot
easily exceed 90% sensitivity, as reported in a recent review [38]. In particular, the deep
learning methods do not show good results, and their performances are comparable to or
even worse than those of the conventional methods. A brief explanation of the methods
used in general for each task is provided, and details for those that have achieved relatively
high performance are presented. The public dataset used in those methods and their
performances are organized in Tables 1 and 2, respectively.

Table 1. Public datasets used for the retinal vessel extraction methods.

Dataset No.
Images Image Size FOV Camera Ground Truth

DRIVE 40 564 × 584 45◦ Canon CR6-45NM A/V label

STARE 50 605 × 700 35◦ Topcon TRV-50 Topology and A/V label

INSPIRE 40 2392 × 2048 30◦ Carl Zeiss Meditec A/V label

WIDE 30 1440 × 900 45◦ Optos 200Tx Topology and A/V label

The public datasets contain vessel topological information with the segment type or
centerline type, as well as the artery and vein marks. The field of view (FOV) and image
size differ depending on the dataset. The basic metrics used include sensitivity, specificity,
and accuracy. The following are the equations for the counting metrics.

Sensitivity =
Number of true positive

Number of true positive + Number of false positive
(1)

Specificity =
Number of true negative

Number of true negative + Number of false negative
(2)

Accuracy =
Number of true positive + Number of true negative

Number of all predictions
(3)

The true positive and true negative are the predictions of the positive class and the
negative class consistent with the ground truth, and the false positive and false negative
are the wrong predictions of the positive class and negative class.

The Kappa coefficient is more conservative, thereby eliminating the chance of
coincidence.

Kappa coefficient =
po − pe
1 − pe

where pe= pp+pn (4)

po =
Number of true positive + Number of true negative

Number of all predictions
(5)

pp =
Number of positive predictions

Number of all predictions
× Number of positive ground truth

Number of all predictions
(6)

pn =
Number of negative predictions

Number of all predictions
× Number of negative ground truth

Number of all predictions
(7)

The pp is the probability that the positive prediction matches the positive ground truth,
whereas the pn is the probability that the negative prediction matches the negative ground
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truth. Accordingly, pe is the probability that the prediction matches the ground truth. The
score is then calculated by subtracting the probability of coincidences from the probability
of correct predictions, which is then divided by the adjustment term, 1 − pe. These metrics
can be applied even in the case of multi-classification by extending the binary class to the
multi-classes.

3.1.1. Deep Learning Methods for Retinal Vessel Segmentation

To extract the necessary information from a fundus image, CNN variants were
adopted in most of the research on blood segmentation. According to [42,43], RF was
used after feature extraction through a CNN. The RF is a non-parametric supervised
learner for the final classification of vessels. It was operated after the CNN operation
used inputs of the concatenated final features or all the intermediate features that
came from the hidden layers of the CNN. Another way to use hierarchical outcomes
is to implement an RNN to analyze the global context [44–46]. To overcome the
shortcomings of CNNs that cannot consider non-local pixel correlations, architectures
were modified with skip connection, arithmetic operation, and concatenation [47–50].
Meanwhile, one widely used deep learning architecture is GAN, which consists of
two main parts: generator and discriminator. It is also used for this task, and a
recent work achieved good sensitivity with the widely used public datasets DRIVE
and STARE [51]. Before feeding the fundus images into the designed network, pre-
processing called automatic color equalization (ACE) is performed to enhance the
vessels in the image [52]. After that, the image goes into the proposed architecture
called M-GAN, as shown in Figure 3. The M-GAN follows the basic shape of the GAN.
The generator is made of two consecutive U-Nets that have skip connections with
element-wise additions to reflect the global context at each level. The multi-kernel
pooling block is located between the two U-Nets to improve the segmentation accuracy.
The M-GAN loss function is described in the following equations.

generator Loss = LGAN(G)+LBCE+LFN (8)

discriminator Loss = LGAN(D) (9)

min
G

LGAN(G) =
1
2

Ex

[
(1 − D(x, G(x)))2

]
(10)

min
D

LGAN(D) =
1
2

Ex,y

[(
1 − D(x, y)2

)]
+

1
2

Ex

[
D(x, G(x))2

]
(11)

LBCE = − 1
N ∑N

i λBCE(fi log(fi) + (1 − fi) log(1 − fi)) (12)

LFN =
1

Np
∑N

i λFN(1 − pi)
2, pi =

{
1, if pi ≥ 0.5
pi if pi < 0.5

(13)

For the generator and discriminator network training, the least-squares loss
function, as represented in Equations (10) and (11), was used because it is intuitive
and effective for mimicking the input distribution [53]. The other two terms, LBCE
and LFN, were added to the generator loss. LBCE is the pixel-wise entropy function
that calculates the differences directly between the ground truth and the segmented
outputs, thereby improving performances. LFN is added to reduce the false-negative
errors as can be seen in Equation (13).
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Figure 3. Network architecture design used in [51]. The generator consists of 2 U-Nets, and the
discriminator has 6 consecutive convolution layers. The segmented image is input to the discriminator
as a pre-processed fundus image. The multi-kernel pooling (MKP) supports the scale invariance of
vessel segmentation.

3.1.2. Other Machine Learning Methods for Retinal Vessel Segmentation

The front part of the other machine learning frameworks generally comprises the
image processing techniques, which highlight the information needed—such as using
filters. The image processing involves intensity modification and histogram rearrangement,
whereas wavelet- and convolution-based filters transform explicit forms in the frequency
domain. With condensed representations, the final task is performed by classification
algorithms such as SVM, the hidden Markov model (HMM), fuzzy means clustering (FMC),
RF, and Adaboost. Within these operations, optimization algorithms can be leveraged to
obtain the optimized weights of features or to set the appropriate loss functions, and such a
job is done by expectation-maximization (EM), genetic algorithms (GA), and median rank-
ing [38]. Among various works, two pipelines that produce robust results are introduced
here [54,55]. The flowcharts of both works are shown in Figure 4.

For the first pipeline, after the intensity normalization, three different filters were
applied to enhance the vessel parts of the image: a matched filter, Frangi filter, and Gabor
wavelet filter. The matched filter is the modified Gaussian filter, and the Frangi filter is
obtained from the eigenvalues of the Hessian matrix. The Garbor wavelet filter uses the
Gabor wavelet transform at various scales [56–58]. The three filters compensate for each
other’s weaknesses, such as noise and the object vanishing problem. After applying the
three different filtered images, the combined image is obtained by summing the images and
introducing weights. The weights are optimized by the genetic algorithm in a supervised
manner [59]. The last phase of this workflow is the classification done by the different
techniques, FCM or oriented region-scalable fitting energy (ORSF) [60,61]. FCM separates
the vascular pixels from the non-vascular pixels based on a soft threshold, while ORSF
makes contours that wrap the vasculature and minimizes the predefined energy that is
functional inside and outside of the designated area. The post-process eliminates blobs and
objects that are not sufficiently elongated.
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Figure 4. Pipelines of the conventional machine learning methods used for vessel segmentation
in [54,55]: (a) In [54], three different filters are used for rough segmentation. The deformable models
and FCM are used for sophisticated segmentation; (b) In [55], combined patches of visual glimpses
are encoded with the ZCA and k-means filter. The segmentation is done by the RF classifier with
encoded features.

As shown in Figure 4, the second pipeline first applies the contrast-limited adaptive
histogram equalization (CLAHE) in pre-processing to enhance the contrast between the
background and vessels [62]. The second step is to create the visual glimpse patch set by
up-sampling and concatenation. Each level of the multi-scale patch set is then utilized
to extract the necessary patterns in an unsupervised manner by applying K-means filter
learning [63,64]. As represented with Equation (14), the purpose of solving the optimization
problem is to obtain a dictionary, D = [d1, d2, . . . , dk] ∈ Rp×K, where p, K, dk are the
patch size, the number of patterns, and the number of learned centroids, respectively.
The harvest through this decomposition is the key that enables local spatial information
to be transformed to the encoding domain. Such a process can be done by solving the
optimization problem described in Equation (15), where λ is a parameter that controls the
reconstruction error and sparsity.

< D, s >=argmin
D,s

‖ x − Ds ‖2
2 such that ‖ s ‖0 ≤ 1 , s ∈ RK (14)

si = argmin
s
‖ x−Ds ‖2

2 + λ ‖ s ‖1 (15)

The RF is then applied as the final task for vessel and non-vessel classification. RF
has the advantage of implicit feature selection against overfitting, outliers, and imbalanced
data. The RF is made up of 100 decision trees trained independently, with samples drawn
with replacement from the encoded training set. The criterion for training is the Gini index,
and the RF returns the probability of being a vessel or a non-vessel.

3.1.3. Machine Learning Methods for Retinal Vessel Classification

Though this task has been covered for a short period of time, as proven by the small
number of papers relative to the number of papers dealing with blood segmentation, differ-
ent methods have been used to solve the classification problem [38]. Recent deep learning
works exploited CNNs and U-net structures with simple filtering and pre-processing in an
end-to-end learning manner [65,66]. The GAN structure was also used with bottom-hat
transformed images [67]. On the topic of the traditional classification algorithms used
for this research, decision boundary optimization algorithms such as linear discriminant
analysis (LDA), SVM, and KNN were used [68–71]. In addition, RF was applied to leverage
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its strengths in avoiding overfitting and outliers [72]. The following two works also belong
to traditional machine learning and show better performance than deep learning and others
in the same category.

Table 2. Performances achieved by retinal vessel extraction methods.

Task Reference Dataset
Metric (%)

Sensitivity Specificity Accuracy

Vessel
segmentation

[51]
DRIVE 83.46 98.36 97.06
STARE 83.24 99.38 98.76

[54]
DRIVE 86.44 95.54 94.63
STARE 82.54 96.47 95.32

[55]
DRIVE 86.44 97.67 95.89
STARE 83.25 97.46 95.02

Vessel
classification

[73]
DRIVE 94.2 92.7 93.5

INSPIRE 96.8 95.7 96.4
WIDE 96.2 94.2 95.2

[74]
DRIVE 95.0 91.5 93.2

INSPIRE 96.9 96.6 96.8
WIDE 92.3 88.2 90.2

As shown in Figure 5, the first workflow is divided into two parts: network topology
generation by graph representation and clustering based on the pre-defined feature set [73].
In order to construct the vascular network topology, the optic disc is removed and the
blood vessels are segmented [75,76]. Next, the segmented vessels are skeletonized with a
morphology thinning operation, and bifurcations, crossovers, and blood vessel ends are
removed by locating the intersection points and terminal points. Then the neighborhood
pixels at the intersections and endpoints form a vertex set, and their edge weights are cal-
culated with the predefined features consisting of the intensities of the three color channels,
orientation of the blood vessels, curvature of blood vessels, blood vessel diameters, and
entropy. The weight between the two points is defined as the inverse of the Euclidean dis-
tance between two feature vectors, and these evaluations are used to construct the weight
adjacency matrix for a group of points. The last phase of network topology generation is
to make two groups after extracting the dominant sets in each group. For the extraction
of the dominant sets, a replicator dynamics dominant set (RDDOS) is used to obtain one
dominant set in the given pixel group, and the topology estimation algorithms finds all
dominant sets by repeating RDDOS until all elements are assigned [77]. Based on these
marked groups, branches that share similarities can be distinguished. Finally, each branch
is classified based on the intensity threshold, which is chosen empirically.

The second approach also used graph representation with pseudo labeling [74]. For
the first job in graph construction, crossover points and bifurcation points are detected
by the vessel key-point detector (VKD) [78]. The VKD is found through the log-polar
transform (LPT) of pixels in the set area, and the crossover points and bifurcation points
can be distinguished based on the number of angle-span chunks. After that, the neighbor
pixels of the chosen points are pseudo-labeled based on their locations and angular spans
for each branch connection. By pseudo labeling, the neighbor pixels of all vessel key points
are separated into two groups that are not yet declared as artery or vein. With the pseudo
marks and VKD, the vessel subtrees are formed through a Depth-First Search (DFS). The
final labelling is processed by the RF classifier. Two hundred trees are exploited for the
prediction of each vessel subtree. The RF is trained with the pre-defined 66-dimensional
feature vector per pixel [79]. A decision for artery labeling is made if more than 90 percent
of the vessel pixels that make up the corresponding subtree are classified as artery, and
vice versa.
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Figure 5. Pipelines of the conventional machine learning methods used for the vessel classification
in [73,74]: (a) In [73], after the graph generation by the weight calculation with intersection and end
point detection, the subtree construction is followed by branch connections. Finally, the classification
is done by DOS-AV Identification; (b) In [74], the adjacency matrix is constructed during the graph
generation, and LPT and VKD are used for vessel tree construction. In the last step, the vessels are
classified through the RF with the predefined features.

3.2. Automation of Diagnosis and Screening Methods

Unlike the extraction of retinal landmarks, building an automated diagnosis and
screening system is much more complex work because it should accompany the analysis
of the corresponding lesions: exudate, hemorrhage, MA for DR; drusen, depigmentation,
and GA for AMD; and glaucomatous optic neuropathy (GON) for glaucoma. In particular,
lesions for severe DR and late AMD include neovascularization. Due to these complexities,
the deep learning methods have been preferred over the conventional machine learning
approaches of setting detailed criteria to satisfy each required feature. For this reason, this
section only describes the deep learning methods [37–40].

Referring to the methods developed so far, the possible ways to develop such systems
are by detecting referable cases, detecting the presence of disease, classifying the degree of
severity, and localizing lesions. Based on [37,39], the development of frameworks for DR
has been the most researched, followed by frameworks for AMD. Frameworks for glaucoma
have not been studied as much as DR and AMD [37,39,40]. The DR framework mentioned
in this section encompasses not only a general explanation about the developed deep
learning methods, but also detailed descriptions of two methods that achieved relatively
better sensitivity for the widely used public datasets shown in Table 3 [39]. The same
approach is applied to the general explanation in the AMD framework that is mentioned.
Furthermore, detailed content about the methods for the classification of multiple AMD
stages are presented because multi-classification has been under research in comparison
with binary detection, which is a relatively less complicated task. The used dataset with
finely-graded labels is presented in Table 3. The last retinal disease to be discussed is
glaucoma. Due to the fact that the diagnosis of glaucoma is controversial [80–82], the
details about a method that adopts the sophisticated procedure of data collection and
model creation with glaucoma experts are presented as well as the general approach. The
public glaucoma dataset used is listed in Table 3.
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Table 3. Public datasets used for automated diagnosis and screening methods.

Diabetic Retinopathy (DR)

Dataset Total
Grade

Normal Mild DR Moderate DR Severe DR Proliferative DR

DIARETDB1 89 27 7 28 27
IDRiD 516 168 348
DDR 13,673 6266 630 4713 913

Messidor 1200 540 660
APTOS

2019 3662 1805 370 990 193 295

Age-Related Macular Degeneration (AMD)

Dataset Total
Grade

1 2 3 4 5 6 7 8 9 10 11 12 UG

AREDS 120,656 41,770 12,133 5070 8985 6012 7953 6916 6634 2539 4128 13,260 1098 4158

Glaucoma

Dataset Total

Grade

Normal Early Moderate Deep Ocular
hypertension

RIM-ONE 169 118 12 14 14 11

The metrics for these tasks include all the metrics in Section 3.1, and the area under
the curve (AUC), which indicates the area under the receiver operating characteristic curve
(ROC curve). The ROC curve is represented on a two-dimensional plane where the x-axis
indicates the false positive rate (Equation (17)) or 1-specificity, and the y-axis indicates the
true positive rate (Equation (16)) or sensitivity. The true positive rate is the proportion of
correct positive predictions with respect to the total number of real positive cases, whereas
the false positive rate means the proportion of incorrect positive predictions with respect to
the total number of real negative cases.

True positive rate =
Number of true positive

Number of true positive + Number of false negative
(16)

False positive rate =
Number of false positive

Number of false positive + Number of true negative
(17)

The ROC curve can be drawn by adjusting the threshold, which slowly increases the
false positive rate, or decreases the specificity. The curve usually takes the form that as x
increases, y also increases. The AUC takes a value between 0 and 1, and a model having an
AUC of 1 is the perfect model for discriminating against any positive case.

3.2.1. DR

As mentioned in Section 2.3.1, DR can be proliferative or non-proliferative depending
on the presence of neovascularization, which is newly grown pathologic vessels originating
from the existing retinal veins and extending along the inner surface of the retina. Specifi-
cally, non-proliferative DR can be divided into several stages according to the severity of the
lesions: MA, hemorrhage, and exudates. The possible ways to build automated systems for
diagnosis are to make a model only to detect referable DR, or to classify the severity along
with the existence of proliferation. If a model can mark the mentioned lesions in the input
images, it can be used as a DR screening system. Considerable research has been conducted
to develop those systems. For classification, the pre-designed CNN variants have mainly
been used [83–91]. The pre-trained Inception V3, ResNet152, and Inception-ResNet-V2
were integrated to determine whether DR is referable or not [92], and ResNet34 and VGG16
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were exploited to classify non-DR and DR [93,94]. As for multi-classification, the fine-tuned
ResNet50, DenseNets, and Inception variants classified four stages of DR [95], while the
modified CNN with the pre-trained AlexNet, SqueezeNet, and VGG-16 were also used to
distinguish the four stages [96]. Even five-stage divisions were implemented by exploiting
the pre-trained VGG, LeNet, AlexNet, and InceptionNet [97,98]. Research for DR lesion
detection has been conducted. Exudates were detected by incorporating circular Hough
transformation (CHT) followed by classification through a CNN [99]. Another method
includes morphological construction and RF [100]. MA and hemorrhage were also detected
by patch-based prediction using a customized CNN [101,102]. Two works well represented
the automated DR diagnosis and screening system [103,104]. Furthermore, as can be seen
from Table 4, they evaluated the performance on the public dataset, which has finer-grained
labeling than the other datasets, APTOS 2019 and DDR [39].

Table 4. Performances achieved for automated diagnosis and screening methods.

Retinopathy Reference Task Dataset

Metrics (%)

AUC Accuracy Sensitivity Specificity Kappa
Coefficient

DR
[103]

Binary classification for
non-severe and severe DR

DIARETDB0 78.6 82.1 50
IDRiD 81.8 84.1 50

Messidor 91.2 94.0 50

Binary classification
for DR detection

IDRiD 79.6 85.9 50
Messidor 93.6 97.6 50

[104]
5 DR stage classification DDR 97.0 89.0 89.0 97.3
5 DR stage classification APTOS2019 97.3 84.1 84.1 96.0

AMD
[105]

4 AMD stage classification

AREDS

96.1

13 AMD stage
classification 63.3 55.47

[106] Binary classification 99 99.2 98.9 99.5

Glaucoma [107] 3 glaucoma stage
classification RIM-ONE 95.4 96.5 94.1 92.7

The first study is about a screening method for the detection of red lesions such as
MA and hemorrhage, which are the first signs of DR [103]. The fundus images are pre-
processed using a modified Gaussian filter to enhance the contrast between lesions and non-
lesions [102]. After that, the images are divided into same-sized patches to reduce the neural
network complexity. Two neural networks are used in total, and the first neural network,
called the selection model, consists of five convolution layers with two fully connected
layers, as shown in Figure 6a. The selection model infers the probability of lesions. It is
built to sample the necessary non-lesion patches to avoid redundant information, given
that the number of non-lesion patches is much larger than the number of other patches.
After training and inferring all non-lesion patches, 50,000 non-lesion patches that have
the highest error are selected. This study also exploited rotated augmented patches and
suggested grid pixel sampling, instead of considering all pixels in an image because the
goal was to detect the presence of lesions rather than to provide a precise segmentation. The
VGG16 was chosen as the inferring model for calculating the probability of the presence of
lesions, and pre-trained ImageNet weights were used as the initial weights [84].
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Figure 6. Network architecture design used in [103,104]: (a) In [103], the poor classification results
from the selection network are used to filter unnecessary data, and the remains are used to fine-tune
VGG16, which detects the lesion; (b) In [104], various neural networks are followed by KNN or the
artificial neural network (ANN) for DR stage classifications. The CNN and YOLO architectures are
used for lesion classification, and the YOLO localizes the lesions as well.

The second method classifies five stages of DR and localizes the lesions on the fundus
images simultaneously [104]. When it comes to classification, the performances of two
separate systems with CNNs and YOLOv3 are compared. The CNNs make decisions based
on the features extracted from the input patches, whereas the lesions localized from the
whole region of the input images are used as the seed for the decisions by YOLOv3, as
depicted in Figure 6b. For the classifier, the KNN is utilized for both models, whereas
the ANN is used only with the YOLOv3. Specifically, CNN299 and CNN512 consist of
four and six convolution layers with different dimensions of input layers, followed by two
fully connected layers. YOLOv3 puts bounding boxes around the objects of interest in the
given images and its architecture is well-described in [108]. The ANN classifier has three
fully connected layers ending with a softmax layer. As in previous work, transfer learning
is also applied with EfficientNetB0 by using the pre-trained weights on the ImageNet
dataset only for feature extraction [109]. For dataset utilization, several steps are taken
in pre-processing. Contrast-limited adaptive histogram equalization (CLAHE) is used
to enhance the contrast, and the Gaussian filter eliminates the noise. Next, after the
unnecessary black pixels around the retina are cropped, the color normalization is applied
to remove variations that originated from the patients and the cameras. Furthermore,
the pre-processed data are augmented with rotation, flipping, shearing, translation, and
random darkening/brightening.

3.2.2. AMD

AMD-related deep learning tasks are said to be the second most well-known topic after
DR in the ophthalmology domain, according to the number of frequently used datasets
and the number of published papers [37,39]. For a brief explanation, AMD can usually be
graded based on the areas of lesions, such as drusen, increased pigment, depigmentation,
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and GA [33,34]. In the binary classification works, no AMD and early-stage AMD images
were differentiated from intermediate and advanced-stage AMD images. AlexNet was
trained with random initial weights, and its performance was compared with the one
with pre-trained weights and the SVM classifier. [110]. The original images and contrast-
enhanced images were fed into each ensemble network made of three CNNs with multiple
dense blocks and depth-wise separable convolutions. The last colony networks produced
the final score by averaging the values calculated by each ensemble network [111]. Another
criterion for binary classification is whether the AMD is dry or wet. The three Inception-
v3 architectures were exploited for the classification of referable AMD, the assessment
of image quality, and the visual availability of the macular region, respectively. Before
the given images were fed into the first network, the second and third classifiers first
selected gradable images by checking image clarity and capturing the incorrect location
of the macular region, thereby preventing the errors that could occur due to poor quality
data [112].

For the multi-classification of AMD, three pre-trained overfeat networks were utilized
for feature extraction, and areas of interest of various sizes were fed into the networks [113].
The linear SVM was used to classify from two to four stages of AMD, given a concatenated
array of the multiple feature vectors [114]. Studies on lesion detection and classification
were also conducted. A parallel integration of three Inception-v3 networks was designed
for the classification of three stages of drusen, the detection of pigmentary abnormalities,
and the detection of neovascularization or central GA [115]. The same principle was applied
to differentiate GA from central GA, which is GA around the macular region. Among the
three separate models, one was for identifying GA in normal eyes, while the other two
were for identifying central GA in normal eyes and differentiating central GA from GA,
respectively [116].

The following works are methods that attempt to distinguish as many stages of AMD
as possible. As for the first work, 13 classes were stratified through the network in total [105].
The first stage is defined as few or no AMD-related images and the second to the ninth
stages are considered to be the early or intermediate stages. The other three classes are
late-stage AMD, wet AMD, and the combined AMD. The last class is for labeling the
ungradable images that are unsuitable for grading AMD severity due to overexposure,
blurring, or dirt on the lens. The applied pre-processing step normalizes the color and
illumination balance by Gaussian filtering. The usual augmentation methods of rotation,
mirroring, flipping, cropping, and aspect ratio adjustment are used to regularize the data
distribution. For the classification model, six different convolution neural nets were trained,
namely ResNet with 101 layers, Inception-ResNet-v2, VGG with 11 convolution layers,
Inception-v3, AlexNet, and LeNet [1,83–87,91]. After the six CNNs obtained the class
probabilities, the probabilities were fed into an RF with 1000 trees and a final decision was
made by a majority vote by the individual trees. The overall workflow is illustrated in
Figure 7a.

Other work used a similar pipeline, but several components were added to make
sophisticated predictions [106]. Unlike the previous method, the filtering out of ungradable
images proceeded with the deep neural networks performing binary classification in the
first stage of the system. As shown in Figure 7b, another part of the screening module
grades AMD severity in 12 classes, and it consists of 9 classes of early to intermediate AMD
and 3 classes of late AMD. Those nine classes are fed into the prediction module created
using a logistic model tree (LMT) that predicts whether or not an individual with early or
intermediate AMD would progress to late AMD within one or two years. That training
is possible because the AREDS dataset that was used has information about the AMD
progression of same patients. Furthermore, along with the nine probabilities of severity,
other probabilities obtained from the additional two stages—quantifying drusen areas [117]
and categorizing reticular pseudo drusen (RPD) into three classes—enter the prediction
module. After the first automated prognosis, whether the expected progression is dry or
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wet AMD is determined at the last stage of the prediction module. This part also consists
of two LMT for the one and two-year period, respectively.

Figure 7. Workflows in [105,106], and one of the used architectures in [105]: (a) In [105], an ensemble
of 6 different neural networks is used for feature extraction, and the RF is used for the classification of
13 AMD stages; (b) In [106], AMD classification as well as fundus analysis with Drusen quantification
and RPD detection are conducted in the screening module. Based on the classification, fundus
analysis, and additional socio-demographic parameters with clinical data, further prognosis of late
AMD is done by the prediction module; (c) This shows the architecture of Inception-ResNet v2,
one of the six different architectures in [105]. The architecture has six different modules namely,
Inception-ResNet-A, Inception-ResNet-B, Inception-ResNet-C, Reduction-A, Reduction-B, and Stem.
After analyzing the features by the modules, the Average Pooling and Dropout extract the core
information, and the final Softmax layer outputs the probabilities of the classes.

The deep learning model used for the binary classification and for four classifications
is the ensemble of five networks of different input sizes, including two Inception-v3s, one
Inception-ResNet-v2, and two Xception networks. The other models for the 12 AMD classi-
fications and 3 RPD classifications are an ensemble of 6 networks of different input sizes of
1 Inception-Resnet-v2, 2 Inception-v3s, 2 Xception networks, and 1 NasNet [83,85,88,118].
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3.2.3. Glaucoma

Glaucoma is a common eye disease, along with DR and AMD. Its symptoms are com-
monly referred to as glaucomatous optic neuropathy (GON) and includes many features
that indicate structural damage, such as thinning or notching of the neuro-retinal rim,
retinal nerve fiber layer (RNFL) thinning, disc hemorrhage, parapapillary atrophy (PPA),
increased or asymmetric cup-to-disc ratio (CDR), the nasalization of the central optic nerve
head (ONH) vessels, the baring of circumlinear vessels, excavation of the optic cup, and lam-
inar dots [119,120]. Although there is no globally agreed-on set of guidelines for glaucoma
detection, the features most focused on have been increased CDR, thinning or notching of
the neuro-retinal rim, and RNFL defects, which can be reflected in the fundus image [121].
Based on these characteristics, various deep learning methods have been developed and
binary classification has been the method of choice in almost all studies [40,122,123]. The
Inception-v3 architecture was developed to classify non-referable GON and referable GON.
The criteria for manifesting referable GON here is the increased CDR, neuro-retinal rim
width, and notches. In addition, the analysis of false-negative classifications by deep
learning models was presented to provide the reasons for the wrong decision [124]. The
ResNet, a CNN variant, was also used to discriminate glaucoma and used the labels fol-
lowed by the Japan Glaucoma Society guidelines for glaucoma [125]. In order to evaluate
the validity of the neural network, the additional models VGG16, SVM with radial basis
function, and random forest were exploited to compare performances [126]. Another work
proposed an online learning system with a human–computer interaction loop that used
manual confirmation by human graders during training. The adopted architecture was the
ResNet and the labels for GON criteria were clearly represented [127]. In addition to the
binary classification, methods for multi-classification and feature detection have also been
researched. For example, the Inception-v3 network was used with the initial pre-trained
weights by ImageNet to output four probabilities corresponding to no-risk, low-risk, high-
risk, and likely glaucoma [128]. Furthermore, the network carried out multiple detections
of various ONH features for referable GON simultaneously, and ten networks were trained
for ensemble prediction by averaging the multiple outcomes [128].

The following method was also developed for multi-classification, and the experi-
mental design is illustrated in Figure 8 and represents the local dataset preparation and
utilization well [107]. Two main processes are involved in dataset selection and strati-
fication. They are the assessment of image quality and clinical classification into three
categories: normal, GON-suspected, and GON-confirmed. The image quality is controlled
by excluding poor images containing severe artifacts, insufficient inclusion of the surround-
ings of the optic disc or overexposure, and the existence of any retinal pathology other than
GON. These image reviews are executed in two consecutive steps by four ophthalmologists
and four glaucoma specialists, respectively. After the data is collected, it is divided into
two sets for training and testing, with random selection by the participants. The evaluation
of the trained model is performed using the test dataset along with two glaucoma experts
for comparison.

For the pre-processing of images used for training the model, the Hough transform
technique is applied to automatically trim the square region around the ONH center, which
is the region of interest for classification [129]. Careful augmentation is done by flipping
only horizontally, considering the orientation of the superior and inferior sectors. After that,
random cropping and normalization with down-sampling are performed. The model used
is the ResNet with 101 residual units, and it is fine-tuned with the pre-trained initial weights
from ImageNet to achieve better performance with a smaller amount of data. Furthermore,
retrospectively collected medical history data were incorporated into the extracted feature
maps to improve the results, as shown in Figure 8. The additional medical data was utilized
in a raw format as an array whose elements were normalized, and it contained information
about the patients, including the age, personal GON-related therapy, and the personal
GON record.
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Figure 8. Experimental workflow for the glaucoma classification, and the used architecture in [107]:
(a) Glaucoma specialists are involved in local data collection and the test of trained neural networks
for performance comparison. The significance of the model prediction can be evaluated through the
statistical comparison between the experts’ performance and model’s performance; (b) The right
model obtains a feature map through residual units and pooling layers, and stages are classified by
a fully connected layer. The number of classes in the paper was set to three glaucoma stages, i.e.,
normal eyes, GON-confirmed eyes, and GON-suspected eyes. If necessary, the patients’ medical data
can be incorporated into the feature map, and the improvement of the sensitivity and specificity were
confirmed according to the paper.

Table 5 illustrates the performance achieved by other methods. In [130], the four sever-
ity stages of non-proliferative DR and proliferative DR were classified, and the ungradable
class was assigned for the images that cannot be predicted. Furthermore, this work con-
ducted pixel-level annotation with a bounding box that represents the different lesions,
such as MA and exudate. The overall accuracy for the six classes were 82.84%. The other
method introduced in [131] modified AlexNet to classify DR into four classes including
non-proliferative and proliferative. This work used only a green channel because it pro-
vides finer details of the optic nerves and other features of the retina, which reduces the
distraction for feature analysis from the network’s point of view. The sensitivity and speci-
ficity achieved were 92.35% and 97.45%, respectively. For AMD classification, the referable
AMD score was calculated by the CNN ensemble and the Image quality was evaluated with
the quality score in [111]. The performance of the binary classification was 88.0% accuracy.
In [132], this work also detects the AMD with CNN-based architecture that showed 86.3%
accuracy. The four works of the automation of glaucoma diagnosis in Table 5 conducted
binary classification with the private datasets. In [124,128], Inception-v3 was used for the
detection while the other two used ResNet, achieving over 90 percent for the sensitivity
and specificity.
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Table 5. Performances achieved by other methods.

Retinopathy Reference Task Dataset
Metrics (%)

AUC Accuracy Sensitivity Specificity

DR
[130] 6 class classification DDR 82.84

[132] 4 class classification Messidor 96.35 92.35 97.45

AMD
[111] binary classification AREDS 94.9 88.0

[123] binary classification Optretina 93.6 86.3

Glaucoma

[124] binary classification Private
dataset 98.6 95.6 92.0

[126] binary classification Private
dataset 96.5

[128] binary classification Private
dataset 94.5

[133] binary classification Private
dataset 99.6 96.2 97.7

4. Discussion

According to the investigation, a challenge in the structural component extraction from
fundus images is the extraction of the retinal vasculature. Many machine learning methods,
including traditional approaches such as graph cuts, matched filtering, morphological
image processing, and multi-scale methods, as well as modern approaches like deep
learning methods have been developed to improve segmentation performance. Unlike other
tasks, such as lesion screening and pathology diagnosis, the vessel extraction still appears
to be valid for traditional machine learning techniques, as the performances achieved by
some of them have been superior to those of the deep learning methods [38]. This fact
shows the limitations of the feature analysis of complicated shapes like blood vessels by
deep learning models with a small amount of data, which represents the boundaries of
tasks that can be solved more or less effectively with deep learning.

Another thing that can be noted in the application of deep learning to retinal disease
screening and diagnosis thus far is that the deep learning models consisting of pre-designed
universal models, such as AlexNet, GoogleNet, ResNet, and the Inception network, per-
formed well for binary detection [37,39,40]. However, the developed models were not good
at the sophisticated predictions of multiple disease stages. For example, the accuracies of
mild DR, moderate DR, and severe DR predictions were 0.2275, 0.6458, and 0.4085, respec-
tively [130], while the accuracy for the binary classification of DR were easily above 0.90 [39].
The accuracy decreased from 99.2% to 96.1% when the AMD detection task was switched
to the four stage classification [106]. In another work, the performances of two–four classes
of AMD classification were 93.4%, 81.5%, and 79.4%, respectively [114]. Therefore, careful
customization of deep learning to improve the performance of stage prediction needs to be
researched in a way that interprets the features of each stage independently, rather than the
features of all stages at once.

In inferring with deep neural networks, it is important to know which pixels on the
given images are critical to the decisions, but the high complexity of the architecture makes
it difficult for researchers to analyze the inference process. If researchers can evaluate how
much a pixel affects the prediction, researchers can judge whether the designed networks
can properly find the region of interest or not. Such efforts have been made in several
ways. A primitive way to quantify the importance of pixels is to infer using partially
occluded images and compare the performance with the original images. Randomly
masked images demonstrated that the neuro-retinal rim region of the fundus images was
the most important part, whereas the periphery region was relatively less important for
glaucoma detection [107,134]. For AMD stage predictions, a significant drop in confidence
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was observed when the features of the macular and fovea regions, for their respective class,
were masked [105]. Those regions were also recognized as important parts for the kernel
visualization techniques with a sliding window [112].

Another visualization technique uses the gradients of the feature maps: class activation
map (CAM) and gradient class activation map (Grad-CAM). Basically, they share the same
principle of reflecting the weighted importance of each feature map while producing the
heatmap. However, CAM provides a stricter basis for the predictions of neural networks
than does Grad-CAM because it limits the shape of the network architecture in imple-
menting the global average pooling (GAP) [135]. On the contrary, Grad-CAM has fewer
limitations in designing the architecture, while it needs to be supported by propagation
methods such as guided backpropagation or layer-wise relevance propagation to improve
the precision of the evidence [136]. A method of AMD stage prediction proposed using the
heatmap generated by CAM in the last module of the diagnosis framework to distinguish
early AMD from late AMD [106]. It showed that the important region was the area around
the macula, and the size of the area was different depending on the severity. In a work on
glaucoma detection, Grad-CAM was used for visualization, and it proved that the optic
disc area was the crucial part [127].

Embedding methods have also indirectly helped elucidate the evidence for decisions.
They were originally designed for the purpose of transforming a high-dimensional repre-
sentation into a low-dimensional representation. Depending on how the transformation
criteria are set, many methods have been developed and compared with each other [137].
Among them, t-distributed stochastic neighbor embedding (t-SNE) has a relatively low
complexity and is able to preserve local structure well. For these reasons, the reviewed
studies adopted it as the method for visualizing the features of the hidden layers. The
hidden features for the types of drusen, presence of pigmentary abnormality, and presence
of late AMD were represented in each two-dimensional space, and the classification results
were justified by presenting evidence of the properly encoded data [115]. Furthermore, one
of the vessel segmentation methods showed the relationships between patches of given
images in the reconstructed two-dimensional spaces [55]. In spite of the usefulness of an
ability to describe the hidden representation, the embedding methods do not explain the
reasoning by deep learning frameworks because they are not calculated in a way that links
to the inference results.

Leveraging deep learning networks naturally comes with the risk of choosing datasets
that have biased distributions. For example, the distribution of collected data may be
affected by patient characteristics such as ethnicity, gender, age, and medical history. In
addition, the devices used for image acquisition can also be a danger. The fundus images
taken from cameras made by different manufacturers are bound to have differences in prop-
erties, such as exposure, capture angle, and color distribution [138]. From a data labeling
perspective, studies have shown that human grading has limited reproducibility and poor
inter-rater reliability [139,140]. Looking at the studies so far, most developed methods were
designed to work for only specific diseases, and these disease-specific models cannot make
proper decisions when other pathologies coexist in the given images [37–40]. In summary,
researchers should try to avoid erroneous results caused by poor data sources or evaluate
the negative impact of the limited data on the results. Such efforts have been made in
some works by testing with different test datasets or by analyzing the limitations posed
by the dataset conditions. In a DR screening example, the distribution of the area under
the ROC curve under a fixed specificity was plotted using six different test datasets [103].
The graphs showed the models’ ability to analyze the respective datasets. If the distribu-
tion has a large variance, it can be said that the designed model has a low probability of
producing consistent predictions and the model has been trained with relatively diverse
data. Although this diverse data cannot be the absolute index, it can provide clues about
the relative position on the prior distribution by comparing the respective variances of the
metric distributions. One study on glaucoma detection presented the ROC curve generated
by several groups in the test data: whole data, non-highly myopic glaucoma patients, and
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highly myopic glaucoma patients [126]. These validation groups can provide information
about model performance for the specific groups of data and biases in the dataset used.

Another thing to consider is overcoming the task-related uncertainty by utilizing
additional patient information. The automated diagnosis and screening systems that use
information about lesions, which are reflected in the images as simple forms, as the basis for
reasoning may be relatively easy to construct compared with systems that handle complex
patterns in the images. For example, the shape, size, and color of DR and AMD lesions
in fundus images can be more easily distinguished from the background than glaucoma
lesions. As can be seen in Figure 2, lesions such as exudate, MA, hemorrhage, drusen, and
neovascularization have relatively distinctive properties, and this clarity can provide a
solid basis for setting a standard for the severity of diseases [32,33]. However, diseases such
as glaucoma have a large number of symptoms, including symptoms that can be detected
in fundus images and symptoms that cannot be [119,120]. One related study pointed out
that the trained model cannot be a replacement for a comprehensive eye examination for
visual acuity, refraction, slit-lamp examination, and eye pressure measurements, because
it does not interpret the non-GON lesions [107]. In addition, some of these symptoms do
indicate the presence of disease, and no single agreed-on set of guidelines exists [80,81].
Therefore, in order to address the uncertainties, additional ONH features related to the
GON assessment were presented to better understand the model’s decision and offer a way
to support the final diagnosis by physicians in [128]. This work demonstrated the patient
proportions of the RNFL defect presence, disc hemorrhage presence, laminar dot presence,
beta PPA, and vertical CDR, with respect to the referral and non-referral cases. Another
approach is to use other structural factors as labels rather than using binary assessment by
humans. One of the indices for quantification is the RNFL thickness, which is measured by
the spectral-domain OCT, and this index has a high reproducibility of measurement and a
high correlation with glaucomatous damage [82,141]. The study proved that the encoded
features of the fundus image can be mapped to the corresponding RNFL thickness, showing
a Pearson correlation coefficient of 0.832 with a p-value less than 0.001 [142]. In another case,
the minimum rim width relative to the Bruch membrane opening (BMO-MRW) global and
sector values were exploited, as they are considered to be a parameter for the indication of
visual field loss in glaucoma [143]. It was shown that deep learning predictions were highly
correlated with the actual values of global BMO-MRW, with a Pearson correlation of 0.88
and a p-value less than 0.001 [144]. This work is expected to support glaucoma diagnosis
in the case where the optic discs of highly myopic patients are shown to be difficult to
grade [143]. The heatmap generated by CAM confirmed that the neuroretinal rim was a
crucial area for the inference.

5. Conclusions

This paper presented a review of recent machine learning applications using fundus
images in the field of ophthalmology. For automated fundus analysis, methods of retinal
vasculature extraction using conventional machine learning techniques as well as the deep
learning methods were investigated. Despite the recent abuse of deep learning, traditional
approaches have shown its feasibility for this task and it is expected to be helpful in
the screening and diagnosis of microvascular diseases of the eye. Furthermore, various
deep learning frameworks for DR, AMD, and glaucoma were explored by presenting the
characteristics of each disease. In particular, the difficulties of glaucoma diagnosis and
the process of glaucoma data collection were described. Finally, this review discussed the
limitations and concerns in creating applications and datasets, such as visualization of the
basis for the decisions made by deep neural networks, the risk of biased medical data, and
patient information utilization to improve performance.
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