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Abstract: The objective was to assess the instrumental validity and the test–retest reliability of a
low-cost hand-held push dynamometer adapted from a load-cell based hanging scale (tHHD) to
collect compressive forces in different ranges of compressive forces. Three independent raters applied
50 pre-established compressions each on the tHHD centered on a force platform in three distinct
ranges: ~70 N, ~160 N, ~250 N. Knee isometric strength was also assessed on 19 subjects in two
sessions (48 h apart) using the tHHD anchored by an inelastic adjustable strap. Knee extension and
flexion were assessed with the participant seated on a chair with the feet resting on the floor, knees,
and hips flexed at 90◦. The isometric force peaks were recorded and compared. The ICC and the
Cronbach’s α showed excellent consistency and agreement for both instrumental validity and test–
retest reliability (range: 0.89–0.99), as the correlation and determination coefficients (range: 0.80–0.99).
The SEM and the MDC analysis returned adequate low values with a coefficient of variation less
than 5%. The Bland–Altman results showed consistency and high levels of agreement. The tHHD
is a valid method to assess the knee isometric strength, showing portability, cost-effectiveness, and
user-friendly interface to provide an effective form to assess the knee isometric strength.

Keywords: muscle strength; knee assessment; isometric contraction

1. Introduction

Muscle weakness increases the risk of injuries on different populations [1–3]. The
occurrence of injuries due to muscle weakness impairs functional independence, sports
practice, leading to increased costs to public health system [4–7]. As part of physical
assessment, the maximal isometric strength is used as an objective parameter to prescribe
exercise and to evolve the exercise training [8–11]. Additionally, several studies reported
the isometric strength ability to predict the occurrence of non-contact injuries or even the
higher incidence of joint pain [12–15]. To perform those objective assessments, the clinician
or the coach must use a device that provides the force output in kilogram or in Newton.
However, the gold-standard equipment (i.e., the isokinetic dynamometer) [1,2] is expensive,
not portable, requires extensive staff training, and it is limited to laboratory environment.

Inexpensive, accurate and more affordable devices are then essential to objectively
assess isometric muscle strength [16]. Thus, hanging scales, load-cell transducers and hand-
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held dynamometers (HHD) have been proposed as valid and reliable alternatives [7,17–20].
Despite their usefulness, portability and the efforts to ensure the relative accurate measures
obtained from those devices, most previous studies only described the overall tension
or compression force outputs applied on the equipment, not distinguishing the acquired
precision during different ranges of load [7,17–19]. The lack of precision from those mea-
surements may lead to misinterpretation during softer compared to heavier loads applied
on the device (i.e., accuracy to differentiate weak vs. strong/normal muscles). Other
concerns were raised during a test–retest study using the isokinetic, a fixed load-cell type
dynamometer, and a portable HHD [20]. Test–retest reliability assessed between days
for knee extension was considered high for the first and second devices while fair relia-
bility was demonstrated using the HHD. Despite the price of those devices is a fraction
of a gold-standard isokinetic, they are still expensive (from USD 1000 to USD 5000) for
most clinicians.

Due to the above-mentioned issues, the objective strength assessment is essential to
establish prospective evaluation, compare baseline results to other timeline assessments,
or even as a prognostic measure to predict future outcomes [21,22]. Thus, the present
study aimed to assess the instrumental validity and the test–retest reliability of a low-cost
push hand-held dynamometer (~USD 160) adapted from a load-cell based hanging scale to
collect compressive forces, emulating a commercially available HHD in different ranges of
compressive forces.

2. Materials and Methods
2.1. Equipment

All data were collected at the facilities of the Clinic-School of Physical Therapy, Federal
University of Juiz de Fora. The tested dynamometer—tHHD (MED.DOR Ltd., Governador
Valadares, Brazil; maximum compression = 2000 N, 4-digit display (Figure 1)) calibration
was checked by placing 5 known weights (50–250 N) on the application surface. The
maximal tolerated difference between the weight and the value on the display was 1 N.
The tHHD used in the present study was brand new, and the calibration was checked twice
before any measurement.
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Figure 1. The push low-cost hand-held dynamometer.

A gold-standard two-axis force platform (37 cm × 37 cm; Pasport PS-2142; PASCO,
Roseville, CA, USA) collected data using five force beams (sample rate = 1000 Hz). Four
beams in the corner were used to measure the vertical force (range: −1100 N to +4400 N)
and a 5th beam measured the force in a parallel axis (range: −1100 N to +1100 N).
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2.2. Procedures
2.2.1. Instrumental Validity

Three independent raters performed fifty 3-s pressure trials each using the tHHD
centered on the force platform (Figure 2). An off-board USB camera was synchronized and
positioned facing the dynamometer’s display to record the peak values. Each rater manu-
ally applied progressive pressures on the tHHD until reaching a previously determined
threshold (1st rater’s threshold ~70 N; 2nd rater threshold ~160 N; and 3rd rater threshold
~250 N). The raters were allowed to guide their pressure application using the tHHD display.
The threshold pressure was kept for 3 s. All 3 raters were blinded to the force platform’s
results. Data were collected and stored using the PASCO Capstone Software (Version 1.13.4;
PASCO Scientific, 2019, Roseville, CA, USA). The maximal peaks were then extracted offline
from the force platform software recordings and from the tHHD recordings.
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nized camera.

2.2.2. Test–Retest Reliability

A convenience sample of 25 participants (24.21± 4.06 years; 1.70± 0.07 m; 67.83± 14.03 kg)
were recruited by the public invitation through folders and personal contacts. The a priori
two-tailed point biserial model sample size calculation was performed using the G-power
3.1 Software (Franz Faul, Univesity Kiel, Germany) considering a coefficient of determina-
tion of 0.97 with an effect size of 1.04 obtained from a previous similar study [18], with an
alpha of 5% and a sampling power (1-β) of 95%. A sample size of 15 subjects was returned
with an actual power of 0.962. Exclusion criteria included a history of injury on the lower
extremity during the past six months, a history of hip and knee osteoarthritis, previous knee
surgery, diagnosed neurologic disorder (e.g., stroke, head trauma), or current symptoms
related to the hip and knee area. The UFJF ethics committee for human investigation
approved (Number of Approval: 29238720.7.0000.5147) the procedures employed in the
study. The objectives, benefits and potential risks involved were previously explained to all
participants. Then, they all signed an informed consent form before participation.

After an initial familiarization session and following a warm-up set of submaximal
bilateral isometric knee’s flexion-extension, the participants were asked to perform two
sessions (Day 1 and Day 2) of 3 trials of maximal flexion-extension isometric contractions
(3 min of rest between trials; 48 h between sessions). Each subject was asked to refrain from
strenuous exercise or training 48 h before assessments and to avoid eating 2 h before testing.
During the test, the participants remained seated on a chair with their arm crossed on the
chest. The knee flexed at 90◦ with the feet resting on the floor, with hips flexed at 90◦. All
angles were quantified through goniometric measurements. An adjustable inelastic strap
was then anchored on a metallic bar as the dominant lower limb was involved by the same
strap. The tHHD was positioned between the strap and the posterior distal portion of the
leg (right above the malleolus line) for flexion and anteriorly for extension. The volunteer
was instructed to perform three maximum isometric contractions trying to flex-extend the
knee. Verbal encouragement was given to ensure maximal effort (push, keep pushing, stop).
The peaks from each trial were extracted and the means were used for statistical analysis.
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2.3. Statistical Analysis

Data were presented as mean and standard deviation. The Shapiro–Wilk’s and the
Levene’s tests were used to test the data distribution and the homoscedasticity, respectively.
The normality and the homogeneity were both accepted. Significance was set at p < 0.05.
Two-way mixed effects model intraclass correlation coefficient (ICC) was calculated to
assess the reliability between results [23]. The Cronbach’s α test was used to assess the
expected correlation measuring the same construct. ICC and Cronbach’s α values were
qualitatively classified as poor (<0.50), moderate (0.5–0.75), good (0.75–0.90) or excellent
(>0.90) [23]. Linear regression estimated the coefficient of correlation (r) and the adjusted
coefficient of determination (r2). The correlation coefficients were qualitatively classified
as high (>0.70), moderate (0.50–0.70), low (0.30–0.50) and weak (<0.30) [24]. The Bland–
Altman method estimated the measurement bias, with lower and upper limits of agreement
between results. Standard error of measurement (SEM), percentage of SEM as a coefficient
of variation (%SEM = SEM × 100/mean of Day 1 and Day 2), and minimal detectable
change at a 95% confidence level (MDC = SEM × 1.96 ×

√
2) were calculated. A %SEM

of 10% or less was set as the level at which a measure was considered reliable [25,26]. All
statistics were performed using the JAMOVI software. (The JAMOVI project [2021]. Version
1.6. Retrieved from https://www.jamovi.org (accessed on 11 March 2021)).

3. Results
3.1. Validity Analysis

Descriptive and validity data for all force variables are presented in Table 1. The ICC
and the Cronbach’s α showed excellent consistency and agreement (>0.95). The results also
showed excellent correlation and determination coefficients between the force platform and
the tHDD (>0.97). The SEM ranged from 0.14 to 1.20, with %SEM less than 2%, suggesting
the tHHD as a reliable measure compared to the force platform. The MDC analysis returned
a range from 0.38 to 3.32 N. The Bland–Altman results showed high levels of agreement
(Figure 3).

Table 1. Validity analysis.

Outcome tHHD (in N) Force Platform (in N) ICC Cronbach α r r2 SEM %SEM MDC (in N)

Overall 157.03 ± 79.19 163.19 ± 80.67 0.999 0.999 0.999 0.998 0.14 0.09 0.38
~70 N 65.92 ± 15.97 70.73 ± 16.48 0.954 0.998 0.997 0.993 0.73 1.07 2.02

~160 N 154.36 ± 19.29 160.06 ± 19.93 0.953 0.996 0.993 0.987 0.87 0.56 2.42
~250 N 250.80 ± 31.48 258.79 ± 32.56 0.955 0.992 0.985 0.970 1.20 0.47 3.32

Legend: tHHD = push hand-held dynamometer; ICC = intraclass correlation coefficient; r = coefficient of correla-
tion; r2 = coefficient of determination; SEM = standard error of measurement; MDC = minimal detectable change.

3.2. Reliability Analysis

Descriptive and test–retest reliability is presented in Table 2. ICC and Cronbach’s
α showed good to excellent results (range: 0.89–0.97), with high levels of between-day
correlation. The SEM and the MDC analysis returned adequate low values with a coefficient
of variation less than 5%. The Bland–Altman results showed consistency and high levels of
agreement (Figure 4).

Table 2. Reliability analysis.

Outcome Day 1 (in N) Day 2 (in N) ICC Cronbach α r r2 SEM %SEM MDC (in N)

Flexion 253.03 ± 112.03 274.75 ± 122.14 0.930 0.971 0.947 0.897 0.90 3.33 2.48
Extension 266.84 ± 96.39 272.76 ± 106.22 0.897 0.944 0.899 0.808 1.00 3.65 2.78

Legend: ICC = intraclass correlation coefficient; r = coefficient of correlation; r2 = coefficient of determination;
SEM = standard error of measurement; MDC = minimal detectable change.

https://www.jamovi.org
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4. Discussion

The present findings showed the validity of tHHD, not only considering the overall
applied force output, but also the different ranges to differentiate weak from strong muscles
during knee isometric flexion and extension. This is particularly important considering
the price range of the commercial HHD compared to tHHD, and the fact that, to our
knowledge, this is the first study to consider those distinct ranges. Strength improvements
should be measured along training to fulfill the subject’s needs and to assure adequate
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training adjustments [18]. Isometric strength re-assessments are valid and effective to
evaluate the strength-training adaptations, as the torque production measured at a constant
angle is more sensitive to influences produced by muscle fiber type rather than angle-
independent peak torque during dynamic contractions [16]. For rehabilitation routines
the validity in distinct ranges of force constitutes an essential component to consider
during prospective assessments, as musculoskeletal injuries/diseases often provoke muscle
weakness and deficits on the force output, while training promotes the recovery of strength
and consequent changes on the isometric maximal force. For the clinician, the precision of
each assessment is crucial to decide whether to evolve (or not) the load levels along with
the training session. Additional to the validity, the present test–retest reliability showed
optimal results to prospectively assess the isometric knee strength.

The current results are consistent with previous studies that assessed hanging scales
as cost-effective alternatives to ensure accuracy and safe performance for muscle strength
assessments during isometric knee movements [7,18]. Those studies showed excellent ICC
(>0.90) in every assessed movement comparing the tested device to isokinetic dynamome-
ter or laboratorial load-cells. Intra and inter-tester reliability was also good for all the
movements assessed (ICC > 0.75). Those hanging scales were also validated to assess other
joint isometric strength, such as shoulder, elbow, hip and ankle, during distinct ranges of
force loads [7,17–19]. To collect force data, the hanging scales have consistently shown
accuracy and reliability. However, all studies considered only the devices’ tension function
during movements exerted in traction, without any adaptation to handle the device. This
may impair the usefulness in daily routine due to time to set-up the device and adjust the
anchoring while positioning the patient. The present tHHD terminals were adapted to be
used with a common adjustable inelastic strap, minimizing the time to anchor and to set the
device up. The tHHD might also be useful to detect asymmetries during the assessments,
between limbs and also monitor the muscle strength while the training protocol evolves,
collaborating to decrease the risk of injuries and reduce the costs associated to muscu-
loskeletal weaknesses [1,27]. Additionally, and based on another study [4], the authors
emphasize the importance of limb positioning to perform strength tests, as changes on
positioning the joint might influence the joint’s ability to develop muscle force. The present
results showed excellent validity and reliability for knee movements on seated position.
Thus, we recommend the maintenance of the described participant’s body positioning, and
the tHHD anchoring to ensure the same results. In the present study, the novelty is the
adaptation of a hanging scale to provide a push type dynamometer. Other studies only
used the hanging scale in a pull mode [3–6]. In addition, we assessed the precision of the
device in distinct ranges of compression. All results showed the validity for such analysis,
not presented in previous studies. Finally, our study provides a cheaper device to assess
muscle strength. This is especially important in developing and poor countries, where the
cost of a commercial dynamometer is prohibitive.

The tHHD validity to assess knee isometric strength would allow health professionals
and coaches to objectively evaluate strength with less complexity, as no training is required
to use the device. Minimal investment is also an advantage, as the device is not expensive
compared to other equipment, such as isokinetic, and laboratorial load-cells. However,
some limitations must be acknowledged. The present study included only healthy and
young participants. The results may differ in the presence of pathology. Nevertheless, to
avoid any adverse outcome due to repeated trials, the safety of the procedure should be
firstly assessed with non-pathological subjects, as we did. Another limitation is that the
tHHD provides only the peak force, while other devices would allow the extraction of other
measures such as rate of force development and time to peak force, that cannot be measured
using the tHHD. The participants’ movements were assessed in specific positions. Of note,
the positioning is an essential factor that may affect the joint’s ability to produce force. The
present results may vary accordingly. It was not our goal to establish the validity for all
joint movements. Instead, to provoke other studies that assess distinct joint movements in
other population, as many other studies previously did [3,5].
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5. Conclusions

The results suggest the tHHD as a valid and reliable method to assess the knee
isometric strength. The portability, the cost-effectiveness, and the user-friendly interface
provide an effective form to assess the knee isometric strength.
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