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Abstract: Risk stratification at the time of hospital admission is of paramount significance in triaging
the patients and providing timely care. In the present study, we aim at predicting multiple clinical
outcomes using the data recorded during admission to a cardiac care unit via an optimized machine
learning method. This study involves a total of 11,498 patients admitted to a cardiac care unit over
two years. Patient demographics, admission type (emergency or outpatient), patient history, lab tests,
and comorbidities were used to predict various outcomes. We employed a fully connected neural
network architecture and optimized the models for various subsets of input features. Using 10-fold
cross-validation, our optimized machine learning model predicted mortality with a mean area under
the receiver operating characteristic curve (AUC) of 0.967 (95% confidence interval (CI): 0.963–0.972),
heart failure AUC of 0.838 (CI: 0.825–0.851), ST-segment elevation myocardial infarction AUC of 0.832
(CI: 0.821–0.842), pulmonary embolism AUC of 0.802 (CI: 0.764–0.84), and estimated the duration
of stay (DOS) with a mean absolute error of 2.543 days (CI: 2.499–2.586) of data with a mean and
median DOS of 6.35 and 5.0 days, respectively. Further, we objectively quantified the importance
of each feature and its correlation with the clinical assessment of the corresponding outcome. The
proposed method accurately predicts various cardiac outcomes and can be used as a clinical decision
support system to provide timely care and optimize hospital resources.

Keywords: machine learning; mortality; duration of stay; heart failure; STEMI; pulmonary embolism

1. Introduction

Patients with diverse cardiovascular diseases are admitted through the emergency
department, into the wards, or to the cardiac care units depending on whether they are
acutely sick or being admitted for further evaluation. In general, at each stage, patients
are triaged by clinical professionals in order to provide timely care. At the same time,
a large set of demographic and clinical parameters are being recorded for each patient,
and manually analyzing and synthesizing information from all these variables proves to
be challenging. In this context, it is imperative to develop a decision support system to
assist clinicians in assessing patient risk, providing timely care, and optimizing resource
utilization [1–4].
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Various algorithms have been developed to predict in-hospital outcomes. These
include mortality prediction systems, such as the acute physiology and chronic health
evaluation (APACHE) score, the simplified acute physiology score (SAPS), and the sequen-
tial organ failure assessment (SOFA) score [5–9], the duration of stay estimation based on
electronic health record data [10], and outcomes prediction-specific to underlying medical
conditions [11,12]. However, these algorithms are tailored for subjects admitted to the
intensive care units or general medical emergency departments and are not optimized to
predict outcomes at the time of admission to the cardiac care unit. Further, these methods
are developed using a small subset of all available parameters.

With an abundance of data being recorded, machine learning (ML) methods, which
learn to discover patterns in large volumes of data, appear to be an attractive solution [13–15].
ML algorithms are known to process a large set of input parameters and remain flexible to
predict various outcomes based on suitable training [16,17]. However, the major drawback
with ML methods for large scale deployment in the medical domain is model interpretabil-
ity [18,19].

In the present work, we used a machine learning model to predict in-hospital mortality,
heart failure, ST-segment elevation myocardial infarction (STEMI), pulmonary embolism,
and duration of stay using data available at the time of admission to a cardiac care unit.
We optimized our algorithm to predict outcomes using all available parameters, includ-
ing demographic and clinical parameters. Next, using permutation feature importance
method [20], we objectively assigned importance scores for each feature to facilitate model
interpretability. Favorably, most significant features for the ML performance in the present
work are in agreement with the clinical understanding of the corresponding outcomes.
In addition, using such objective importance scores, we excluded some of the redundant
features, to further improve the model performance. Finally, we recursively excluded
the most significant features and studied the objective importance scores assigned by the
machine learning model to derive interesting clinical insights in case those features are not
timely available.

In practice, our proposed method can aid in clinical decision to stratify risk, provide
timely care, and improve resource utilization and hence the overall quality of care.

2. Methods
2.1. Dataset

The present study was conducted retrospectively on patients admitted over a period
of two years (1 April 2017 to 31 March 2019) at Hero Dayanand Medical College Heart
Institute Unit of Dayanand Medical College and Hospital, Ludhiana, Punjab, India. This
is a tertiary care medical college and hospital. During the study period, the cardiology
unit had 14,845 admissions corresponding to 12,258 patients. For 1921 patients who had
multiple admissions, we considered the data from their last admission only. In addition,
760 patients who got discharged against medical advice were also excluded from the
analysis. Records from the remaining 11,498 patients were used to obtain features and
outcomes. We used the admission records to obtain parameters related to demographics,
admission details, lab measurements, and comorbidities. The list of variables used in
the present study along with the patients’ baseline characteristics of the study cohort are
provided in the Table 1. We reported continuous features with mean (standard deviation)
and median (interquartile range) values of the cohort, while categorical elements are
reported as percentages. Information related to race was not collected, as all patients
resided in India, and considered to be of the same race.
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Table 1. Baseline patient characteristics.

Total Subjects: 11,498 Mean (Standard Deviation)
or Proportion (%)

Median Value
(Interquartile Range) Missing Values (%)

Demographics
Age (year) 60.81 (13.47) 62.00 (17) 0.00

Gender (male %) 63.58 0.00
Locality (urban %) 75.84 0.00

Admission type (emergency %) 67.81 0.00
Duration of stay (days) 6.35 (4.56) 5.00 (5) 0.00

Mortality (expiry %) 9.40 0.00

History
Smoking 5.06 0.00
Alcohol 6.77 0.00

Diabetes mellitus 30.99 0.00
Hypertension 47.70 0.00

Prior coronary artery disease 66.69 0.00
Prior cardiomyopathy 14.33 0.00

Chronic kidney disease 8.66 0.00

Lab parameters
Hemoglobin (g/dL) 12.32 (2.31) 12.50 (3.1) 1.81

Total lymphocyte count (K/uL) 11.41 (7.08) 10.00 (5.3) 1.98
Platelets (K/uL) 238.38 (103.11) 226.00 (116) 2.04

Glucose (mmol:L) 160.47 (82.67) 134.00 (88) 5.28
Urea (mg/dL) 47.82 (40.57) 34.00 (29) 1.69

Creatinine (mg/dL) 1.30 (1.16) 0.93 (0.6) 1.76
Brain natriuretic peptide (pg/mL) 785.96 (988.89) 432.00 (934) 59.91

Raised cardiac enzymes 20.26 0.00
Ejection fraction 44.13 (13.42) 44.00 (28) 10.51

Comorbidities
Severe anemia 1.79 0.00

Anemia 16.69 0.00
Stable angina 9.08 0.00

Acute coronary syndrome 37.16 0.00
ST-segment elevation myocardial

infarction 14.62 0.00

Atypical chest pain 3.07 0.00
Heart failure (HF) 26.75 0.00

HF with reduced ejection fraction 14.19 0.00
HF with normal ejection fraction 12.63 0.00

Valvular 3.41 0.00
Complete heart block 2.61 0.00
Sick sinus syndrome 0.70 0.00
Acute kidney injury 20.51 0.00

Cerebrovascular accident infract 2.83 0.00
Cerebrovascular accident bleed 0.42 0.00

Atrial fibrillation 4.87 0.00
Ventricular tachycardia 3.13 0.00

Paroxysmal supraventricular
tachycardia 0.74 0.00

Congenital 1.13 0.00
Urinary tract infection 5.87 0.00

Neuro cardiogenic syncope 0.97 0.00
Orthostatic 0.82 0.00

Infective endocarditis 0.16 0.00
Deep-vein thrombosis 1.37 0.00

Cardiogenic shock 6.78 0.00
Shock 5.64 0.00

Pulmonary embolism 1.46 0.00
Chest infection 2.33 0.00
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Specifically, data were related to patients′ date of admission; date of discharge; de-
mographics, such as age, sex, locality (rural or urban); type of admission (emergency or
outpatient); patient history, including smoking, alcohol, diabetes mellitus (DM), hyper-
tension (HTN), prior coronary artery disease (CAD), prior cardiomyopathy (CMP), and
chronic kidney disease (CKD); and lab parameters corresponding to hemoglobin (HB),
total lymphocyte count (TLC), platelets, glucose, urea, creatinine, brain natriuretic peptide
(BNP), raised cardiac enzymes (RCE) and ejection fraction (EF). Other comorbidities and
features (28 features), including heart failure, STEMI, and pulmonary embolism, were
recorded and analyzed. Among other comorbidities, shock was defined by systolic blood
pressure <90 mmHg, and the cause for shock was due to any reason but cardiac. Patients
in shock due to cardiac reasons were classified into cardiogenic shock, while patients in
shock due to multifactorial pathophysiology (cardiac and non-cardiac) were considered for
both categories. The outcomes indicating whether the patient is discharged or expired in
the hospital were also recorded.

2.2. Outcomes

We are interested in predicting a wide range of outcomes, including in-hospital mor-
tality, which is an important clinical outcome; the duration of hospital stay, which is a
measure for resource utilization; and variable patient diagnoses, such as heart failure,
STEMI, and pulmonary embolism. While STEMI and pulmonary embolism were newly
occurring during hospitalization, heart failure could be newly occurring or an existing
condition diagnosed during hospitalization. Specifically, we aim to predict the outcomes
based on parameters acquired during admission and prior to the starting of treatment. We
obtained the ground-truth annotation for mortality as a discharge disposition of expired.
Duration of stay was obtained from the difference of the date of discharge and the date of
admission. Heart failure, STEMI and pulmonary embolism were obtained from the clinical
flag set in the diagnosis chart. We used all available features for predicting mortality and
duration of stay. For classification of heart failure, STEMI, and pulmonary embolism, we
only used patient demographics, admission type, patient history, and lab parameters while
excluding comorbidities.

2.3. Performance Metrics

To estimate the performance of the proposed method, we performed k-fold cross-
validation (with stratified random sampling) on the available data. We assessed the 10-
fold cross-validation performance of our method and then took the mean performance
along with the 95% confidence interval (CI) range. We considered only the data from
the latest admission for each patient and ensured that each patient was included either
in the training or in the test set. During each fold, only data from the fold-training set
was used for tuning hyperparameter. In particular, a random 10% of the fold-training
data was used as validation data to tune the hyperparameters, and the remaining 90% of
the fold-training data was used for training the model. The resulting architecture with
optimal hyperparameters was evaluated on the test set, and the mean performance across
all folds was reported. We used AUC and mean absolute error to report performance
of classification and regression models respectively. Further, we used the permutation-
importance technique to obtain the importance score for each feature, indicating their
contribution towards the model performance.

2.4. Data Preprocessing

All categorical variables were encoded as numerical. In particular, each binary variable
was mapped to −1 and 1. Missing values in the data were imputed using the k-Nearest
Neighbors (KNN) approach using Euclidean distance metric [21]. In particular, each
missing feature was imputed using average feature value from k = 10 nearest neighbors.
We normalized the data to have a zero mean and unit variance.
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To perform the regression on the duration of stay data, we excluded values that
exceeded the 15 days using the median based rejection method [22]; where the duration of
stay values that are less than a factor 1.5 of the inter quartile range (IQR) below the 25th
percentile (Q1 − 1.5 * IQR) or greater than a factor 1.5 of the IQR above the 75th percentile
(Q3 + 1.5 * IQR), were excluded. Such data exclusion was performed only during model
development, and the performance of the trained models was evaluated on the entire
dataset. For imputation and normalization of the test and validation data sets in each fold,
we used the parameters estimated from the training data of the corresponding fold.

2.5. Machine Learning Algorithm

We used a fully connected neural network algorithm for both classification and regres-
sion tasks [23]. In particular, the fully connected neural network architecture consists of
multiple layers between input and output layers. Each layer has multiple nodes, and each
node is connected to all the nodes in the next layer through a weight vector. These weights
are learnt during network training using a backpropagation algorithm. For classification
and regression tasks, we used binary crossentropy and mean absolute error as the cost func-
tions, respectively. We developed our models using python (version 3.8.3) and the keras
open-source library (version 2.4.0). We used the scikit-learn library for feature imputation
and feature importance computation using KNNImputer and permutation_importance rou-
tines, respectively. Performance metrics were computed using MATLAB (version R2014b).
Finally, we optimized the various hyper parameters of the network, as described below.

2.6. Network Optimization

We used the keras tuner library to optimize the architecture of the neural network [24].
Using a random grid search method [25], we chose the number of hidden layers between
1 and 10; the number of nodes in each layer were chosen within the range of 10 to 200
with a step size of 10. The activation function was chosen between sigmoid and ReLu,
while the learning rate was chosen from 0.001 to 0.1, incremented by a factor of 10. We
randomly sampled the hyper parameters over 100 trials while repeating each trial thrice.
Finally, the optimization was performed on all 10-fold cross-validation data to obtain the
optimal architecture. We obtained a different architecture for every fold, and we chose
the architecture with minimum number of trainable parameters across 10 folds. We then
re-trained the network using the training and validation sets of each fold and reported the
mean performance on the test sets.

2.7. Performance Evaluation and Feature Selection

To evaluate the model performance, we first trained models that used all features (FS1)
as inputs specific to each outcome. Next, we used a permutation-importance technique, and
we obtained the importance score for each feature, indicating their contribution towards
model performance. Based on the feature importance scores, we obtained a reduced feature
set (FS2) by excluding those features with the cumulative importance contributing less than
1% to the overall importance. Excluding such redundant features is known to improve the
model performance as well as reduce the computational complexity [26].

We carried out additional analysis on modified feature sets, where we omitted the most
important features. This was motivated by the fact that the top features could be already
established predictors of the relevant outcomes, and we were interested in determining
how predictive the less obvious features were. Therefore, we excluded the most significant
feature from FS2 to obtain feature set-3 (FS3); subsequently, excluding the most significant
feature from FS3, we obtained feature set-4 (FS4). In the same vein, we obtained feature
set-5 (FS5), feature set-6 (FS6), and feature set-7 (FS7) by recursively excluding the most
significant feature from the corresponding super sets FS4, FS5, and FS6, respectively.
Although such elimination of the most significant feature seems counterintuitive, due to
potential decrease in model performance, the importance of the non-obvious features can be
objectively quantified to derive further insights. Additionally, in practice, certain important
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features could be missing due to time and resource constrains, and excluding such features
would also calibrate the model performance based on individual circumstances.

First, we obtained the baseline performance by optimizing the network configuration
using FS1 as input. Next, we excluded the non-significantly contributing features from FS1
to obtain FS2 and again optimized the network configuration to obtain the performance with
FS2 as input. We used the optimal configuration obtained for FS2 for training and evaluation
of models developed using FS3–FS7. The optimal network configuration obtained for each
outcome is described in the Supplementary Materials. The performance of the model on
the feature sets FS1–FS7 is shown in Table 2. Best mean performance over 10-fold cross-
validation was obtained for the models trained with FS2 (reduced/optimal feature set) as
input for all the outcomes. A detailed description of the performance for each outcome is
presented in the Supplementary Materials. Major conclusions specific to each outcome can
be summarized as follows:

Table 2. Performance of the proposed method in terms of area under receiver operating characteristic
curve (AUC) for predicting mortality, heart failure, ST-segment elevation myocardial infarction
(STEMI), and pulmonary embolism and in terms of mean absolute error (MAE) for estimating the
duration of stay for various set of input features. FS1 constitutes all the features. Features with
cumulative importance of less than 1% are excluded from FS1 to form FS2. The most significant
feature from FS2 is removed to form FS3. Similarly, FS4, FS5, and FS6 are formed by excluding
the most significant feature from the corresponding super sets FS3, FS4, FS5, and FS6, respectively.
Optimal performance (highlighted in bold) is obtained on feature set-2 (FS2) by excluding redundant
features.

Feature Set
Mortality Heart Failure STEMI Pulmonary Embolism Duration of Stay

AUC (95% CI) MAE (95% CI)

FS1 0.955 (0.947–0.963) 0.833 (0.819–0.846) 0.832 (0.824–0.839) 0.779 (0.733–0.826) 2.561 (2.526–2.596)

FS2 0.967 (0.963–0.972) 0.838 (0.825–0.851) 0.832 (0.821–0.842) 0.802 (0.764–0.840) 2.543 (2.499–2.586)

FS3 0.952 (0.946–0.958) 0.795 (0.783–0.807) 0.790 (0.778–0.801) 0.737 (0.688–0.786) 2.572 (2.528–2.616)

FS4 0.938 (0.929–0.947) 0.767 (0.755–0.779) 0.731 (0.714–0.748) 0.630 (0.580–0.680) 2.623 (2.579–2.667)

FS5 0.922 (0.912–0.933) 0.725 (0.715–0.734) 0.678 (0.666–0.691) 0.621 (0.585–0.658) 2.642 (2.598–2.685)

FS6 0.911 (0.901–0.922) 0.707 (0.696–0.718) 0.647 (0.632–0.662) 0.597 (0.557–0.636) 2.651 (2.608–2.695)

FS7 0.907 (0.899–0.915) 0.670 (0.657–0.684) 0.624 (0.615–0.633) 0.589 (0.543–0.636) 2.694 (2.650–2.737)

2.8. Mortality

We obtained a baseline AUC of 0.955 (95% CI: 0.947–0.963) using FS1 as input. An
optimal AUC of 0.967 (95% CI: 0.963–0.972) was achieved using FS2 as input (see Figure 1).
The optimized network architecture has one hidden layer with 150 nodes, sigmoid activa-
tion, and a learning rate of 0.01, with the top three features being EF, shock, and admission
type. Indeed, EF and shock have been reported to predict mortality [27,28]. The feature
importance score and receiver operator characteristic (ROC) curves for the classifier evalu-
ated using FS1–FS7 are shown in the Supplementary Materials Figure S1A–G and in the
Supplementary Materials Figure S6, respectively. The features of highest importance in
predicting mortality using FS2–FS7 are EF, shock, cardiogenic shock, prior CAD, urea, and
creatinine, respectively. Although admission type is consistently listed in the top three
features, a clinical variable took precedence as the most important feature for various input
combinations.



Diagnostics 2022, 12, 241 7 of 14

Figure 1. Optimal receiver operating characteristic curve of mortality classifier using the optimal
feature set (FS2) as input. The proposed model achieved an AUC of 0.967 (95% CI: 0.963–0.927),
which is superior to the AUC of the classifier using all features (FS1) as input.

2.9. Heart Failure

We obtained a baseline AUC of 0.833 (95% CI: 0.819–0.846) using FS1 as input. An
optimal AUC of 0.838 (95% CI 0.825–0.852) was achieved using FS2 as input (see Figure 2).
The optimized network architecture has one hidden layer with 140 nodes, sigmoid acti-
vation, and a learning rate of 0.01, with the top three features being BNP, EF, and urea.
BNP and EF were the most significant features in detecting heart failure, correlating well
with clinical knowledge [29]. When BNP and EF were excluded from model development
(using FS5), prior CMP exhibited the highest importance. The feature importance score and
ROC curves for the classifier evaluated using FS1–FS7 are shown in the Supplementary
Materials Figure S2A–G and in the Supplementary Materials Figure S7, respectively. The
features of highest importance in predicting heart failure using FS2–FS7 are BNP, EF, prior
CMP, urea, creatinine, and admission type, respectively.

Figure 2. Optimal receiver operating characteristic curve of heart failure classifier using the optimal
feature set (FS2) as input. The proposed model achieved an AUC of 0.838 (95% CI: 0.825–0.851),
which is superior to the AUC of the classifier using all features (FS1) as input.



Diagnostics 2022, 12, 241 8 of 14

2.10. ST-Segment Elevation Myocardial Infraction

We obtained a baseline AUC of 0.832 (95% CI: 0.824–0.839) using FS1 as input. An opti-
mal AUC of 0.832 (95% CI: 0.821–0.842) was achieved using FS2 as input (see Figure 3). The
optimized network architecture has two hidden layers, each with dimension of 20 nodes,
a ReLu activation, and a learning rate of 0.01, with the top three features being EF, prior
CAD, and admission type. Indeed, STEMI and EF were significantly correlated [30], which
is in agreement with reported data suggesting that reduced EF occurs in 30–40% of patients
who suffer STEMI [31]. The feature importance score and ROC curves for the classifier
evaluated using FS1–FS7 are shown in the Supplementary Materials Figure S3A–G and in
the Supplementary Materials Figure S8, respectively. The features of highest importance
in predicting STEMI objectively using FS2–FS7 are EF, prior CAD, admission type, total
lymphocyte count (TLC), glucose, and age, respectively.

Figure 3. Optimal receiver operating characteristic curve of ST-segment elevation myocardial infarc-
tion (STEMI) classifier using the optimal feature set (FS2) as input. The proposed model achieved
an AUC of 0.832 (95% CI: 0.821–0.842), which is comparable to the AUC of the classifier using all
features (FS1) as input.

2.11. Pulmonary Embolism

We obtained a baseline AUC of 0.779 (95% CI: 0.733–0.826) using FS1 as input. An
optimal AUC of 0.802 (95% CI: 0.764–0.84) was achieved using FS2 as input (see Figure 4).
The optimized network architecture has two hidden layers with dimension of 50 nodes
and 80 nodes for layer 1 and layer 2, respectively, with sigmoid activation for both layers
and a learning rate of 0.01, with the top three features being EF, prior CAD, and admission
type. Indeed, pulmonary embolism and acute heart failure are known to be present
concomitantly [32], which agrees with the clinical observations suggesting that the relative
risk of pulmonary embolism is at least double to that of patients without heart failure and
increases as LV systolic function declines [33], hence correlating well with EF. The feature
importance score and ROC curves for the classifier evaluated using FS1–FS7 are shown in
the Supplementary Materials Figure S4A–G and in the Supplementary Materials Figure S9,
respectively. Features of highest importance in predicting pulmonary embolism objectively
using FS2–FS7 are EF, prior CAD, admission type, locality, DM, and HTN, respectively.
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Figure 4. Optimal receiver operating characteristic curve of pulmonary embolism classifier using
the optimal feature set (FS2) as input. The proposed model achieved an AUC of 0.802 (95% CI:
0.764–0.840), which is superior to the AUC of the classifier using all features (FS1) as input.

2.12. Duration of Stay

We obtained a baseline mean absolute error (MAE) of 2.561 (95% CI: 2.526–2.596) of
data with a mean and median DOS of 6.35 days and 5.0 days, respectively, using FS1 as
input. An optimal MAE of 2.543 (95% CI 2.499–2.586) was achieved using FS2 as input.
The optimized network architecture has one hidden layer consisting of 10 nodes with ReLu
activation and a learning rate of 0.01, with the top three features being admission type, TLC,
and EF. An electronic health-record-based duration of stay estimation method reported
a mean absolute error of 4.68 days [10] with a mean and median DOS of seven days and
four days, respectively. The mean predicted DOS versus the actual DOS and the absolute
value of the mean prediction error versus the actual DOS along with the corresponding 95%
confidence intervals are shown in Figure 5A,B, respectively. Intuitively, admissions type
has the highest importance, as emergency admissions may be related to a longer duration
of stay. The feature importance score for models using FS1–FS7 as inputs are shown in
the Supplementary Materials Figure S5A–G. Features of highest importance in estimating
duration of stay objectively using FS2–FS7 are admission type, TLC, stable angina, EF,
STEMI, and BNP, respectively.
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Figure 5. (A) The mean predicted duration of stay along with the 95% confidence intervals versus
the actual duration of stay. (B) The absolute value of the mean prediction error along with the 95%
confidence intervals versus the actual duration of stay. The proposed model achieved a mean absolute
error (MAE) of 2.543 days (95% CI: 2.499–2.586), which is superior to the MAE of the classifier using
all features (FS1) as input.

3. Discussion

The present study demonstrates that a machine model can predict various clinical out-
comes with high discriminatory performance. Although various scores exist for predicting
the outcomes of critically ill patients in ICU, scores for stratifying risk at the admission in
a cardiac unit emergency ward are limited. We proposed an optimized machine learning
model to predict various outcomes based on available data during admission to a car-
diac care unit. We also demonstrated that the features that contribute significantly in the
machine learning algorithm performance are in agreement with the clinical knowledge
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of the underlying outcome. Several conclusions can be drawn from this study: first, a
machine learning approach can predict various outcomes using the data available at the
time of admission; second, the importance of various features in predicting the arrhythmia
can be objectively quantified; third, such feature-importance scores can be used to explain
machine learning models and hence corroborate with the clinical knowledge to build trust
and facilitate practical deployment; and fourth, objective importance scores can provide
interesting clinical insights in diagnosing various conditions.

Various methods have been reported to predict specific outcomes considered in the
present study. The rapid emergency medicine score (REMS) was reported to predict
in-hospital mortality in patients attending the emergency department with an AUC of
0.852 [34]. A method to predict mortality in departments of internal medicine reported an
AUC of 0.857 [35]. A recent algorithm reported an AUC of 0.942 for predicting mortality
at admission to a medical ward [36]. The present method achieved superior performance
(AUC 0.967) compared to the reported methods in predicting mortality. Similarly, machine
learning methods are being used in predicting heart failure [37], pulmonary embolism [38],
mortality due to STEMI [39], and duration of hospital stay using electronic health record
data [40]. However, these methods are not directly comparable, as we aim to predict the
outcomes using only data available at the time of index admission to a cardiac care unit.

In the present work, we used different set of features as input to evaluate the perfor-
mance of the classifier in various scenarios. In particular, we used all features (FS1) as
input to obtain the baseline performance. Then, a reduced/optimal set of features (FS2)
that provide the optimal performance was obtained and used thereafter. Finally, the most
significant features from the optimal set were sequentially excluded (FS3–FS7) to assess
the model performance when certain important features are missing due to practical con-
straints. Comparing FS1 and FS2 as inputs, the mean performance for FS2 is superior to FS1;
however, the performance of 95% confidence interval (CI) values significantly overlapped
for all outcomes except mortality. Such an observation is consistent with the reported
studies that indicate the gain in performance using a reduced feature set is specific to the
underlying outcome [26]. Using FS3–FS7 as input, as expected, resulted in performance
decrease, as we sequentially excluded the most significant features. We observed that
objective feature importance scores of the proposed machine learning models correlated
well with clinical knowledge, establishing the confidence in the learnt models.

In general, admissions to these units are for patients at varied risk levels. Triaging
the patients requiring quick decision making, that is based on the preponderance of pa-
tients’ clinical, historical, and lab tests is challenging, especially for the clinical staff at the
admission unit. In this context, the proposed machine learning model that operates on data
available at admission and is flexible to process varying feature inputs proves to be useful
in providing timely care and optimizing the resources. Further, the features of importance
in our models correlate well with the clinical state-of-art knowledge of the corresponding
outcomes. In practice, the proposed system, when integrated into an admission ward,
could serve as a decision support system to help triage patients and manage the available
resources effectively.

4. Conclusions

In this study, we proposed a method to predict various outcomes based on data avail-
able at the time of admission to a cardiac care unit. In particular, we sought to accurately
predict duration of stay, mortality, occurrence of heart failure, STEMI, and pulmonary
embolism to facilitate patient risk assessment and to help triaging and optimizing resource
utilization. To this end, we used a fully connected neural network algorithm to learn an
optimal non-linear mapping of input features to the output. Using a permutation feature
importance technique, we ranked the importance of each feature towards model perfor-
mance. Next, we excluded some of the redundant features to further optimize the model
performance. Using 10-fold cross-validation, our optimized machine learning model pre-
dicted mortality with a mean AUC of 0.967 (CI: 0.963–0.972), heart failure AUC of 0.838 (CI:
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0.825–0.851), ST-segment elevation myocardial infarction AUC of 0.832 (CI: 0.821–0.842),
pulmonary embolism AUC of 0.802 (CI: 0.764–0.84), and estimated the duration of stay with
a mean absolute error of 2.543 days (CI: 2.499–2.586). Favorably, features important for the
model performance correlated well with the clinical knowledge of the underlying outcome.
Finally, using various subsets of features, we derived insights onto which parameters
contributed most to specific outcomes. With suitable translation, our method can serve
as a decision support system to triage the patients at the admission unit and optimize the
resource allocation.

5. Study Limitations

In this study, the models we developed used only two years of data from a single
center; therefore, the generalizability of the models across multiple centers and multiple
years has to be investigated. Additionally, the study was conducted retrospectively, with
the intent to prospectively integrate and evaluate the proposed method in a cardiac care
unit. However, our demonstration on independent 10-fold cross-validation indicates that
similarly built models could translate well to multi center settings as well as prospective
evaluation. Thus, the overall benefit of triaging and resource optimization using the
proposed method has to be suitably quantified and evaluated.

Finally, an inherent limitation of the current approach in predicting clinical outcomes
using only data available at the time of admission is that the system (patient) is affected (by
numerous interventions) following admission. Such interventions should be considered in
future model implementations (using tools like recurrent neural networks), which allow
one to make reliable long-term predictions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12020241/s1, Figure S1: Feature importance scores
for predicting mortality using (A) FS1; (B) FS2; (C) FS3; (D) FS4; (E) FS5; (F) FS6; (G) FS7; Figure S2:
Feature importance scores for predicting heart failure using (A) FS1; (B) FS2; (C) FS3; (D) FS4; (E)
FS5; (F) FS6; (G) FS7; Figure S3: Feature importance scores for predicting of ST-segment elevation
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(D) FS4; (E) FS5; (F) FS6; (G) FS7; Figure S5: Feature importance scores for estimating duration of
stay using (A) FS1; (B) FS2; (C) FS3; (D) FS4; (E) FS5; (F) FS6; (G) FS7; Figure S6: Comparison of
receiver operation characteristic (ROC) curves of mortality classifier using feature sets FS1–FS7 as
inputs. The classifier model using FS2 as input has superior performance over the model using FS1
as input, and the performance gradually decreases with input being varied from FS3 to FS7; Figure
S7: Comparison of ROC curves of heart failure classifier using feature sets FS1–FS7 as inputs. The
classifier model using FS2 as input has slightly better performance over the model using FS1 as
input, and the performance gradually decreases with input being varied from FS3 to FS7; Figure S8:
Comparison of ROC curves of ST-segment elevation myocardial infarction (STEMI) classifier using
feature sets FS1–FS7 as inputs. The classifier model using FS2 as input is comparable to the model
using FS1 as input, and the performance gradually decreases with input being varied from FS3 to FS7;
Figure S9: Comparison of ROC curves of pulmonary embolism classifier using feature sets FS1–FS7
as inputs. The classifier model using FS2 as input has superior performance over the model using
FS1 as input, and the performance gradually decreases with input being varied from FS3 to FS7.
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