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Abstract: The evaluation of white blood cells is essential to assess the quality of the human immune
system; however, the assessment of the blood smear depends on the pathologist’s expertise. Most
machine learning tools make a one-level classification for white blood cell classification. This work
presents a two-stage hybrid multi-level scheme that efficiently classifies four cell groups: lymphocytes
and monocytes (mononuclear) and segmented neutrophils and eosinophils (polymorphonuclear). At
the first level, a Faster R-CNN network is applied for the identification of the region of interest of
white blood cells, together with the separation of mononuclear cells from polymorphonuclear cells.
Once separated, two parallel convolutional neural networks with the MobileNet structure are used to
recognize the subclasses in the second level. The results obtained using Monte Carlo cross-validation
show that the proposed model has a performance metric of around 98.4% (accuracy, recall, precision,
and F1-score). The proposed model represents a good alternative for computer-aided diagnosis
(CAD) tools for supporting the pathologist in the clinical laboratory in assessing white blood cells
from blood smear images.

Keywords: white blood cells classification; deep learning; multi-level classification; multi-
source datasets

1. Introduction

The peripheral blood smear represents a routine laboratory test that provides the
physician with a great deal of information about a patient’s general condition. It provides
a qualitative and quantitative assessment of blood components, mainly cells and platelets.
Blood cells can be divided into white blood cells (WBC) or leukocytes and red blood cells
(RBC) or erythrocytes [1]. Leukocytes, in turn, comprise five types of nucleated cells:
monocytes, basophils, eosinophils, neutrophils, and lymphocytes. The total WBC count as the
difference of percentage between the subtypes provides critical information in infectious
diseases and chronic processes such as anemia, leukemia, and malnutrition [2].

The manual WBC count is based on the microscopic observation of the blood smear
by the analyst, who can differentiate the subtypes mainly based on the morphological char-
acteristics of the cell nucleus and cytosol. However, this process strongly depends on the
analyst’s time and experience, leading to errors if the analyst is not adequately trained [3].
In addition, since this hematological evaluation is a routine test, it is often in high demand
in clinical laboratories, representing an increased workload that affects performance. Thus,
providing computer-aided diagnosis (CAD) tools for diagnostic assistance in the laboratory
is required. For instance, CAD systems have been developed that use image processing
techniques to classify the differential white blood cell count [4,5]. This automatic leukocyte
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classification allows a faster and more reproducible result to be generated while reducing
bias and inter-observer variability.

On the other hand, due to the inherent complexity of observing medical examinations,
their automation is still a challenge for researchers today. Achieving levels of precision
comparable to those of a professional in the area is critical. The automatization is prone to
errors or biases in recognizing and classifying these images. These will directly impact the
diagnosis, increasing the treatment costs and negatively affecting the recovery and survival
of patients.

The main component of the computer-aided system for WBC classification is the
cell detection and segmentation algorithm. Based on image processing analysis, it will
identify the different elements of interest considering various aspects associated with
cell morphology: size, shape, texture, nucleus, etc. [4]. Commonly, cell segmentation is
a complex task in tissue samples. However, this task is straightforward in cell smears,
given the dark nucleus in leukocyte staining. The challenge is mainly in delineating
cell borders, separating overlapping cells, and removing noise and artifacts in the image
during acquisition [6]. Given the advantages of artificial intelligence in image processing,
several machine learning (ML) alternatives have been evaluated to classify and segment
leukocytes. These methods range from the support vector machine (SVM) [7,8] and Naïve
Bayesian [9,10] to more complex algorithms such as deep learning (DL) models [11–13].

Within DL models, convolutional neural networks (CNNs) have shown exemplary
performance in medical image classification [14–17]. CNNs are feed-forward neural net-
works that can be divided into two main parts: deep convolutional feature extraction
and classification. This model extracts features by applying multiple convolutional and
pooling layers that include linear operations (called kernels) that emphasize an input
image’s characteristic. A fully connected dense layer does the classification step to learn
the model using the extracted features [18,19]. Following this structure, several types of
CNN models have been proposed for specific tasks such as classification, among which are
AlexNet [20], ResNet [21], VGG [22], and GoogLeNet [23], and segmentation, highlighting
the fully connected network (FCN) [24], U-Net [25], and Faster-RCNN [26], these being
applied in the processing of blood smear images for differential WBC counting, achieving
good performance results. Recently, an efficient network architecture called MobileNet
was proposed as a small, lightweight, and low latency model for mobile and embedded
vision applications [27]. This model has been demonstrated to be effective when applied to
various tasks.

Most researchers have used these methods as one-level designs or single models built
on the entire dataset. In other fields, these single models may experience difficulty in han-
dling the increasingly complex data distribution [28] or large-scale visual recognition [29].
Given the characteristics of leukocytes, better performance in WBC classification could
be obtained if a multi-level scheme is developed. In the first level of this scheme, the
polymorphonuclears are separated from the mononuclear. Afterward, on the one hand,
the monocytes and lymphocytes (mononuclear) and, on the other hand, the neutrophils,
eosinophils, and basophils (polymorphonuclears) are classified in the second level. Thus,
more features could be extracted from each cell image, and the classification performance
could be increased.

On the other hand, medical datasets acquired from several institutions may have
different quality, contrast, and acquisition mechanisms. Thus, the datasets are prone to an
inherent bias caused by various confounding factors [30]. In machine learning, the dataset
bias may lead to a difference between the estimated and the true value of desired model
parameters. A possible solution to this problem is combining multi-source datasets such
that the model will be robust to the unseen domains with better generalization performance.

Therefore the main objective of this research is to develop a multi-level convolutional
neural network (ML-CNN) model to improve the automatic detection and classification of
individual white blood cells by mitigating the dataset bias with the combination of multi-
source datasets. The main contribution of this work is twofold. First, a new multi-level
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deep learning algorithm separates the leukocyte detection and classification processes into
two levels. In the first level, the Faster R-CNN network is applied to identify the region
of interest of white blood cells, together with the separation of mononuclear cells from
polymorphonuclear cells. Once separated, two parallel CNN models are used to classify
the subclasses in the second level. Second, the ML-CNN proposal was implemented using
the MobileNet architecture as the base model. It is an efficient model with an adequate
balance between high performance and structural complexity, making its implementation in
automated equipment such as a CAD system feasible. Furthermore, the MobileNet applies
the depthwise separable convolution to extract relevant features from each channel, which
better uses the information contained in the images to improve leukocyte classification.

The article is structured as follows. In Section 2, we present a brief revision of the
state of the art. In Section 3, the proposed method is presented. Results and discussion are
presented in Section 4. Finally, in Section 5, we give some concluding remarks, and we
outline some future works.

2. State of the Art

Traditional machine learning (ML) and deep learning (DL) models have been exten-
sively proposed as alternatives for the automatic classification of leukocytes [5,31,32]. Such
is the case of Abou et al. [33], who developed a CNN model to identify WBC. Likewise,
Togacar et al. [34] proposed a subclass separation of WBC images using the AlexNet model.
In addition, Hegde et al. [13] proposed a deep learning approach for the classification of
white blood cells in peripheral blood smear images. Wang et al. [35] applied deep convolu-
tion networks on microscopy hyperspectral images to learn spectral and spatial features.
This form makes full use of three-dimensional hyperspectral data for WBC classification.
Basnet et al. [36] optimized the WBC CNN classification enhancing loss function with
regularization and weighted loss, decreasing time processing. Jiang et al. [37] constructed
a new CNN model called WBCNet that can fully extract features of the WBC image by
combining the batch normalization algorithm, residual convolution architecture, and im-
proved activation function. Other authors include steps to improve the feature extraction
process. Thus, Yao et al. [38] proposed the two-module weighted optimized deformable
convolutional neural networks (TWO-DCNN) white blood classification, characterized
as two-module transfer learning and deformable convolutional layers for the betterment
of robustness.

A novel blood-cell classification framework named MGCNN, which combines a
modulated Gabor wavelet with CNN kernels, was proposed by Huang et al. [39]. In
this model, multi-scale and orientation Gabor operators are taken dot product with initial
CNN kernels for each convolutional layer. Experimental results showed that MGCNN
outperformed traditional SVM and single CNN networks. Likewise, Khan et al. [40]
presented a new model called MLANet-FS, which combined an AlexNet network with a
feature selection strategy for WBC-type identification. Razzak et al. [41] proposed a WBC
segmentation and classification using a deep contour aware CNN and extreme machine
learning (ELM).

Another interesting strategy is to apply hybrid methods such as the proposal of Çınar
and Tuncer [23]. They presented an approach combining AlexNet and GoogleNet to extract
features from WBC images. Then, these features are concatenated and classified using
SVM. In the same way, Özyurt [42] proposed a fused CNN model for WBC detection
where the pre-trained architectures AlexNet, VGG-16, GoogleNet, and ResNet were used
as feature extractors. Then, the features obtained were combined and later classifier using
ELM. Patil et al. [43] presented a deep hybrid model, CNN and recurrent neural networks
(RNN), with canonical correlation analysis to extract overlapping and multiple nuclei
patches from blood cell images. As a novel proposal, Baydilli and Atila [44], to overcome
the problem of data sets, developed a leukocyte classification via capsule networks, an
enhanced deep learning approach. A capsule network consists of the decoder (used to
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reconstruct the image) and the encoder (responsible for extracting features and classifying
the image).

Research presenting a multi-level scheme in the WBC classification is scarce. Although
Baghel et al. [45] do not perform a plan, they propose a CNN classification model whose
performance is evaluated in two phases: an initial step, binary discrimination between
the mononuclear and polymorphonuclears, and a second phase that corresponds to the
classification of subtypes. Tran et al. [46] presented as an initial setup a DL semantic
segmentation between WBC and RBC, as initial steps for classifying leukocytes. However,
none of these methods has a similar scheme to the one proposed in our research, so we
consider that our algorithm is novel and can efficiently contribute to leukocyte classification.

Table 1 summarizes the main methods that use deep learning models found in the
literature. The main advantage of deep learning models is that they are highly efficient
since they extract the most important information available in the data to generate the
prediction. The models presented above have shown an excellent performance higher than
90% [23,35,40], which makes them a helpful tool in the WBC classification. However, their
architecture implies a high computational cost due to the use of complex architecture and
large volumes of data, this being its main disadvantage. Simpler models that maintain
good performance with fewer trainable parameters in their architecture could be generated.
However, these methods require image processing techniques for feature extraction, mak-
ing them slower [45,47]. Therefore, to implement deep learning models in a CAD system,
methods should have a reasonable trade-off between performance and complexity without
affecting the processing speed.

Table 1. Summary of the state-of-the-art models for white blood cells classification.

Authors Model Description

Abou et al. [33] CNN model with ad hoc structure.

Baghel et al. [45] CNN model.

Banik et al. [47] CNN with fusing features in the first and last convolutional layer.

Basnet et al. [36] DCNN model with image pre-processing and a modified loss function.

Baydilli et al. [44] WBC classification using a small dataset via capsule networks.

Çınar et al. [23] Hybrid AlexNet, GoogleNet networks, and support vector machine.

Hegde et al. [48] AlexNet and CNN model with ad hoc structure.

Huang et al. [39] MFCNN CNN with hyperspectral imaging with modulated Gabor wavelets.

Jiang et al. [37] Residual convolution architecture.

Khan et al. [40] AlexNet model with feature selection strategy and extreme learning machine (ELM).

Kutlu et al. [49] Regional CNN with a Resnet50.

Liang et al. [50] Combining Xception-LSTM.

Özyurt [42]
Ensemble of CNN models (AlexNet, VGG16, GoogleNet, ResNet) for feature extraction
combined with the MRMR feature selection algorithm and ELM classifier.

Patil et al. [43] Combining canonical correlation analysis CCANet and convolutional neural networks
(Inception V3, VGG16, ResNet50, Xception) with recursive neural network (LSTM).

Razzak [41] CNN combined with extreme learning machine (ELM).

Togacar et al. [34] AlexNet with QDA.

Wang et al. [35] Three-dimensional attention networks for hyperspectral images.

Yao et al. [38] Two-module weighted optimized deformable convolutional neural networks.

Yu et al. [51] Ensemble of CNN (Inception V3, Xception, VGG19, VGG16, ResNet50).

ML-CNN
(Our proposal)

Multi-level convolutional neural network approach with multi-source datasets. Combines
Faster R-CNN for cell detection with a MobileNet for type classification.
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3. Materials and Methods

In this research, a multi-level convolutional neural network (ML_CNN) was developed
to detect and classify individual WBC obtained from blood smear images.

3.1. White Blood Cell Images Datasets

In this work, five different datasets were used. The description of these sources follows.

1. Blood Cell Detection (BCD) dataset (Aslan [52]): Contains 100 annotated images in png
format, with 2237 labeled as Red Blood Cells and only 103 as White Blood Cells. Each
image consists of 256 pixels in height and width of RGB channels. (More information
can be found at https://github.com/draaslan/blood-cell-detection-dataset. Accessed
date: 30 June 2020)

2. Complete Blood Count (CBC) dataset (Alam et al. [53]): Contains 360 blood smear images
along with their annotation files. (More information can be found at [54], https://
github.com/MahmudulAlam/Complete-Blood-Cell-Count-Dataset. Accessed date:
20 June 2021)

3. White Blood Cells (WBC) dataset (Zheng et al. [55,56]): Contains 300 images of size
120× 120, and 100 color images of size 300× 300. (More information can be found at
http://www.doi.org/10.17632/w7cvnmn4c5.1. Accessed date: 15 May 2019)

4. Kaggle Blood Cell Images (KBC) dataset (Mooney [57]): Contains 12,500 augmented
images of blood cells (JPEG) with accompanying cell type labels (CSV). There are
approximately 3000 images for each of 4 different cell types. (More information can
be found at https://www.kaggle.com/paultimothymooney/blood-cells. Accessed
date: 15 May 2019)

5. Leukocyte Images for Segmentation and Classification (LISC) dataset (Rezatofighi et al. [58]):
Corresponds to a dataset of 250 blood smear images in BMP format. It contains a set
of 25 basophil images. (More information can be found at http://users.cecs.anu.edu.
au/~hrezatofighi/Data/Leukocyte%20Data.htm. Accessed date: 15 May 2019)

In the previous datasets, there was an insufficient number of basophils. Therefore, the
algorithm was developed using images that contain monocytes, lymphocytes, segmented,
and eosinophils.

For developing the proposal, a human specialist used the LabelImg (https://github.
com/tzutalin/labelImg, Accessed date: 10 September 2019) graphical annotation tool to
label the blood smear images. For the first level, a subset of images obtained from the
KBC data set was selected, the cells were detected with the identification of the region of
interest (ROI) using bounding boxes, and the cells were labeled as polymorphonuclear or
mononuclear. A total of 365 labeled images with the bounding boxes of the cells were used
to train the Faster R-CNN of the first level. A human specialist used the LabelImg tool to
label the cell images into lymphocytes, monocytes, segmented, and eosinophils. On the
one hand, a CNN model was trained with the mononuclear cells to classify between the
lymphocytes and monocytes, and a total of 2282 and 2134 images were used, respectively. On
the other hand, a CNN model was trained with the polymorphonuclear cells to classify
between the segmented neutrophils and eosinophils, and a total of 2416 and 2477 images were
used, respectively.

3.2. A Multi-Level Convolutional Neural Network Approach

For WBC classification, a multi-level and hybrid scheme is proposed, in which the
first step corresponds to the detection and separation of leukocytes into mononuclear and
polymorphonuclear. Subsequently, the classification of the subtypes in the second level,
monocytes, lymphocytes, eosinophils, and neutrophils, is performed, as shown in Figure 1.

A Faster R-CNN allows individual white blood cells to be detected and extracted in
the first level. This model is an object detection system that improves on Fast R-CNN by
utilizing a region proposal network (RPN) with the CNN model [59]. Thus, this network
is structured in two distinct modules: a CNN that proposes regions and a Fast R-CNN
detector that uses the proposed regions (Figure 2).

https://github.com/draaslan/blood-cell-detection-dataset
https://github.com/MahmudulAlam/Complete-Blood-Cell-Count-Dataset
https://github.com/MahmudulAlam/Complete-Blood-Cell-Count-Dataset
http://www.doi.org/10.17632/w7cvnmn4c5.1
http://www.doi.org/10.17632/w7cvnmn4c5.1
https://www.kaggle.com/paultimothymooney/blood-cells
http://users.cecs.anu.edu.au/~hrezatofighi/Data/Leukocyte%20Data.htm
http://users.cecs.anu.edu.au/~hrezatofighi/Data/Leukocyte%20Data.htm
https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
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Figure 1. Scheme of identification and classification of white blood cells by the proposed method.
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Figure 2. Representation of Faster R-CNN segmentation.

In the Faster R-CNN, the RPN from an image generates a set of proposed rectangular
objects, each of which has an objectivity score. These proposals are developed by sliding
a small network over the feature map emitted by the last shared convolutional layer,
considering an n× n spatial window mapped to a lower-dimensional feature. Multiple
region proposals are simultaneously predicted at each sliding window location, where
the number of maximum possible suggestions for each area is denoted as k. Each of the k
proposals is parameterized relative to k reference boxes, marked as anchors, and associated
with a specific scale and aspect ratio. Each anchor is assigned a binary class (an object or
not). The positive or negative labels depend on the most significant overlap of intersection
over union values to minimize the objective function. Finally, the Fast R-CNN network
inputs the evaluated image and the set of object proposals already obtained [60]. First,
the whole image is processed with several convolutional and maxima clustering layers to
produce a feature map. Then, for each object proposal, a region of interest (RoI) clustering
layer extracts a fixed-length feature vector from the feature map. Each feature vector is
fed into a sequence of fully connected layers that ultimately branch into two sister output
layers: one that produces softmax probability estimates over K object classes plus a general
“background” type. Another layer makes four real-valued numbers for each of the K object
classes. Each set of 4 values encodes the refined positions of the enclosures for one of the
K classes.

The softmax function takes an input vector z = [z1, . . . , zK] and normalizes it into a
probability distribution for the K classes:

σ(z)i =
ezi

∑K
k=1 ezk

(1)
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In the proposed model, the Faster R-CNN is trained to detect leukocytes by separating
these cells into two distinct classes according to the morphology of their nuclei, creating
two labels at this stage:

1. Mononuclear (MN), whose nuclei show morphological unity, and includes lympho-
cytes and monocytes.

2. Polymorphonuclear (PMN), whose nuclei are divided, and includes segmented neu-
trophils and eosinophils.

After the first level, the dataset was separated into two cell groups according to the
segmentation of the nucleus. In the second level of the proposal, two CNNs were developed:
one for classifying mononuclear cells into lymphocytes and monocytes and another for
separating polymorphonuclear cells into segmented neutrophils and eosinophils. The
CNNs implemented have the MobileNet architecture as a base model with the application
of transfer learning, where the weights were pretrained for the ImageNet classification.
The output layer was discarded and replaced with a new fully connected classifier.

The MobileNet uses a depthwise separable convolution that reduces the number
of parameters compared to conventional CNN. The depthwise separable convolutions
factorize the convolution into a depthwise (dw) and a pointwise (pw) (see Figure 3). On
the one hand, the dw convolution applied a single filter to each input channel. On the
other hand, the pw convolution applied a 1× 1 convolution to combine the outputs of the
pw convolution.

The filtered matrix G(x, y) is obtained by applying the classical convolution between
the kernel ω and the input matrix F(x, y) with the following equation:

G(x, y) = ω ∗ F(x, y) =

 ki

∑
δx=−ki

kj

∑
δy=kj

ω(δx, δy) · F(x + δx, y + δy)

+ ωbias (2)

where ωbias is the bias introduced to the convolution product.
Table 2 schematically shows the architecture of the MobileNet. In this article, we set

the hyperparameters of the width multiplier α = 0.5 and the resolution multiplier ρ = 1.
However, the width multiplier reduces the input and output channels by half in this work.
The first layer uses the classical convolution. The following layers are depthwise separable
convolutions followed by batch-normalization and ReLU activation functions. The ReLU
activation function has the following equation:

ReLu(x) = max{0, x} (3)

The stride is a parameter that controls the movement of the filter over the image and
induces the kernels’ downsampling. For instance, a stride of 2 (s2) reduces the image to
half the original size. A final average pooling reduces the spatial resolution to 1 before the
fully connected layer.

The model was trained using the backpropagation algorithm with the Adam optimizer
and the binary cross-entropy loss function:

Lcross_entropy(y, ŷ) = − 1
N

N

∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (4)

where yi and ŷi are the i-th target and the predictions, respectively. N is the total number
of samples.

The hyper-parameters of the learning algorithm were set to learning_rate = 0.001,
beta_1 = 0.9, beta_2 = 0.999, and epsilon = 10−7.

In this work, we have used a web-based virtual experimental environment. We have
run the models using the Kaggle and Google Colab environment with GPU, and the models
were implemented with Keras and TensorFlow.
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Figure 3. Depthwise separable convolution of the MobileNet, which factorizes the convolution into
depthwise and pointwise convolutions.

Table 2. Architecture of the MobileNet with transfer learning.

Layer Layer Type Stride Kernel Size Input Size NºParameters

M
ob

ile
N

et
Ba

se
M

od
el

1 Conv. 2D s2 3× 3× 3× 16 128× 128× 3 496
2 Conv. dw s1 3× 3× 16 64× 64× 16 208
3 Conv. pw s1 1× 1× 16× 32 64× 64× 16 640
4 Conv. dw s2 3× 3× 32 64× 64× 32 416
5 Conv. pw s1 1× 1× 32× 64 32× 32× 32 2304
6 Conv. dw s1 3× 3× 64 32× 32× 64 832
7 Conv. pw s1 1× 1× 64× 64 32× 32× 64 4352
8 Conv. dw s2 3× 3× 64 32× 32× 64 832
9 Conv. pw s1 1× 1× 64× 128 16× 16× 64 8704

10 Conv. dw s1 3× 3× 128 16× 16× 128 1664
11 Conv. pw s1 1× 1× 128× 128 16× 16× 128 16,896
12 Conv. dw s2 3× 3× 128 16× 16× 128 1664
13 Conv. pw s1 1× 1× 128× 256 8× 8× 128 33,792

14–23 5× Conv. dw
Conv. pw

s1 3× 3× 256 8× 8× 256 5× 3328
s1 1× 1× 256× 256 8× 8× 256 5× 66, 560

24 Conv. dw s2 3× 3× 256 8× 8× 256 3328
25 Conv. pw s1 1× 1× 256× 512 4× 4× 256 133,120
26 Conv. dw s1 3× 3× 512 4× 4× 512 6656
27 Conv. pw s1 1× 1× 512× 512 4× 4× 512 264,192

D
en

se – Global Avg. Pool s1 Pool 4× 4 4× 4× 512 -
28 FC – – 512 262,656
– Softmax – Output 2 1026

Total Parameters: 1,093,218
Trainable Parameters: 263,682

3.3. Performance Metrics

The confusion matrix corresponds to a summary of the prediction results obtained
with the machine learning model. Given n samples, the TP is the number of true positives;
the TN is the number of true negatives; FN is the number of false negatives; and FP is the
number of false positives.

We use the classification metrics obtained from the confusion matrix to evaluate the
performance. These metrics are accuracy, precision, recall, and F1-score, and they are
described below.
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• Accuracy: the accuracy value refers to how close a measurement is to the true value,
and the equation is given by

Accuracy =

(
TP + TN

TP + TN + FP + FN

)
· 100% (5)

where TN are true negatives.
• Recall: the measure of sensitivity or recall is the percentage of positive cases that were

correctly labeled by the model. The recall equation is given by

recall =
(

TP
TP + FN

)
· 100% (6)

where TP is the ratio of true positives, FP is the ratio of false positives, and FN are
the false negatives.

• Precision: precision is the percentage of correct classifications. This metric is defined
with the following equation:

precision =

(
TP

TP + FP

)
· 100% (7)

• F_Score: F_score corresponds to the harmonic mean between precision and sensitivity
and gives a trade-off measure between the recall and the precision:

F_Score = 2
(

Precision · Recall
Precision + Recall

)
(8)

4. Results and Discussion

As mentioned in the previous sections, a two-level hybrid model was run to classify
white blood cells in blood smears. To evaluate the performance of our proposed model, we
have used Monte Carlo cross-validation with 10 repetitions, with a split of 70% for training
and 30% for testing. The averages and standard deviations of the metrics computed for the
test set are shown in Table 3. It can be seen that a good performance was obtained, with
metrics from 96% reaching up to 100%. All the performance metrics were around 98.4%,
highlighting the model’s discriminatory power developed for classifying leukocytes.

Table 3. Performance obtained in the classification model for each of the WBC cell types considered
in the validation set.

Cells Classification Model Accuracy Recall Precision F_Score

Mononuclear
Lymphocytes 99.92%± 0.08 99.94%± 0.08 99.91%± 0.08 99.93%± 0.07

Monocytes 99.92%± 0.08 99.91%± 0.09 99.94%± 0.09 99.92%± 0.08

Polymorphonuclear
Eosinophils 96.80%± 0.30 96.86%± 1.17 96.85%± 0.61 96.85%± 0.32

Segmented Neutrophils 96.80%± 0.30 96.75%± 0.70 96.78%± 1.14 96.76%± 0.27

Average 98.36% 98.37% 98.37% 98.36%

Table 4 shows a comparative analysis of the results with those obtained in the state of the
art. Our proposed model achieved higher performance than those reported by Abou et al. [33],
Baydilli [44], Banik et al [47], Huang et al. [39], Jiang et al. [37], Kutlu et al. [49], Liang et al. [50],
Özyurt [42], Patil et al. [43], Togacar et al. [34], Wang et al. [35], Yao et al. [38], and Yu et al. [51],
who reported accuracy between 83% and 98%. However, it should be noted that the
average performance of our proposal was lower than those reported by Baghel et al. [45]
and Basnet et al. [36], where they have included image processing for feature extrac-
tion to enhance the prediction performance. Likewise, the works of Çınar et al. [23],
Hedge et al. [48], and Khan et al. [40] have reported accuracy values higher than 99%.
Nevertheless, it should be noted that the latter models have more complex structures and
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a larger number of trainable parameters, which represents a disadvantage in terms of
computational cost.

Table 4. Comparison of WBC classification results with models in the sate of the art. (NI denotes
not informed.)

Authors Accuracy (%) Recall (%) F Score(%) Layers Parameters

Abou et al. [33] 96.8 NI NI 5 NI

Baghel et al. [45] 98.9 97.7 97.6 7 519,860

Baydilli et al. [44] 96.9 92.5 92.3 6 8,238,608

Banik et al. [47] 97.9 98.6 97.0 10 105

Basnet et al. [36] 98.9 97.8 97.7 4 NI

Çınar et al. [23] 99.7 99 99 8
22

60 · 106 (AlexNet)
7 · 106 (GoogleNet)

Hegde et al. [48] 98.7 99 99 8 60 · 106 (AlexNet)

Huang et al. [39] 97.7 NI NI 4 NI

Jiang et al. [37] 83.0 NI NI 33 NI

Khan et al. [40] 99.1 99 99 8
3

60 · 106 (AlexNet)
40 · 106 (ELM)

Kutlu et al. [49] 97 99 98 50 26 · 106 (Resnet50)

Liang et al. [50] 95.4 96.9 94 71 23 · 106 (Xception)

Özyurt [42] 96.03 NI NI

8
22
16
50

60 · 106 (AlexNet)
7 · 106 (GoogleNet)
138 · 106 (VGG16)
26 · 106 (Resnet)

Patil et al. [43] 95.9 95.8 95.8 71 23 · 106 (Xception)

Razzak et al. [41] 98.8 95.9 96.4 3 NI

Togacar et al. [34] 97.8 95.7 95.6 8 60 · 106 (AlexNet)

Wang et al. [35] 97.7 NI NI 18 30 · 106

Yao et al. [38] 95.7 95.7 95.7 55 60 · 106

Yu et al. [51] 90.5 92.4 86.6

48
71
19
50

23 · 106 (InceptionV3)
23 · 106 (Xception)
138 · 106 (VGG19)
26 · 106 (Resnet50)

ML-CNN
(Our proposal) 98.4 98.4 98.4 28 1 · 106 (MobileNet)

It is essential to highlight some advantages in terms of the functionality of our pro-
posal. The first one is that the ML-CNN is a method that involves simpler models and
obtains comparable performances. This fact differentiates it, for example, from Wang’s
proposal [35], which requires microscopy hyperspectral images and the architecture of a
3D residual block used in the deep hyper model. Likewise, Khan et al. [40] presents a
more complex model involving convolutional features followed by a selection strategy
to identify cellular subtypes. Alternatively, Yao et al. [38] propose a model based on two
modules involving transfer learning. All these models are more complex than our proposal.
Therefore, the multi-level structure presented is simpler to implement without affecting
the classification performance on a large scale.

Another noteworthy aspect of the functionality of the proposed model is that the
multi-level strategy allows for the first phase of cell detection. It is possible to identify the
regions of interest in the images to extract the white blood cells to be subsequently classified.
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With the exception of [41,49], none of the reviewed works focuses on this detection scheme.
It should be noted that the proposed multi-level scheme not only allows efficient cell
element classification but also reduces processing times by running CNN networks in
parallel during stage two. This hybrid scheme is one of the differentiating aspects of the
proposal compared to the methods discussed in the state of the art, which are primarily
single-level. This makes our proposal functionally efficient for use in automated equipment
as a CAD system.

Figures 4 and 5 are examples of the operation of the ML-CNN for mononuclear and
polymorphonuclear cells, respectively, showing in both cases examples of correctly and
erroneously classified images. The excellent classification performance obtained for the
mononuclear may be due to the morphological characteristics being well-differentiated
between monocytes and lymphocytes, where the former has an irregularly shaped nucleus,
and the latter has a wholly rounded shape [1]. If a partial comparison is made, it can be
observed that the hybrid model developed obtained a better mononuclear classification
accuracy compared to the proposals of Wang et al. [35], Baydilli and Atila [44], and
Huang et al. [39]. Although it is ideal to have a model that efficiently achieves a global
classification of leukocytes, a model that classifies mononuclear cells very well could help
screen viral infections since the count of these subclasses acquires greater relevance in these
infections [2].

In the case of polymorphonuclear cells (Figure 5), a good classification of the cellular
subtypes was also observed. However, in this group, the identification is more complex
since the cellular characteristics are not as well differentiated as in the case of mononuclear
cells. In this case, the differentiating aspect is not the nucleus but the cell cytoplasm.
Therefore, the staining of the blood smear and the acquisition of the image for its correct
identification play a fundamental role. Another aspect that could contribute to misclassifi-
cation is the shape of the cell nucleus. Although mononuclear cells have a rounded core, in
the case of polymorphonuclear cells, a slight indentation generates a lobule shape that is
not always constant.

Another aspect to highlight is the image labeling process for the model developed.
A medical technologist with extensive professional experience performed the manual
labeling, thus minimizing the risk of using erroneous datasets. Likewise, we worked with
a subset of random images from four databases that were subsequently labeled for the
validation set. Thus, we have a new database whose labels are verified by a professional
and that in the future will be available for use in other investigations.

A limitation of the model developed is that, on the one hand, basophils were not
considered among the polymorphonuclears due to the small number of cases available
in the databases. This issue is a challenge to be faced in future work since basophils are
part of a routine blood smear but are found in a shallow frequency, which prevents having
enough data to run the training of a machine learning model. It should be noted that in
the first instance, it was considered to use a generative network to increase the basophil
data. Still, the available cases were scarce; therefore, it was decided not to do so in order
not to bias the sample. On the other hand, it is necessary to remember that the proposed
model was developed to run a classification of mature leukocytes in blood smears, so it
does not include the identification of immature cells that could lead to some pathology
such as leukemia. The model would have to be extended to identify these cell subtypes. We
intend to include more images for working with this cellular subclass in the classification
model for future research.
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Figure 4. Mononuclear cells classified by the proposed multi-level convolutional neural network.
(upper-left) Lymphocytes correctly classified; (upper-right) monocytes Correctly classified; (lower-
left) lymphocytes incorrectly classified as monocytes; (lower-right) monocytes incorrectly classified
as lymphocytes.

Figure 5. Polymorphonuclear cells classified by the proposed multi-level convolutional neural
network. (upper-left) Eosinophils correctly classified; (upper-right) neutrophils correctly classified;
(lower-left) eosinophils incorrectly classified as neutrophils; (lower-right) neutrophils incorrectly
classified as eosinophils.

At the particular point of the images present in the blood smear, which is the type
of examination on which this work focuses, we have the additional difficulty that each
particulate component of the blood has its shapes, characteristics, internal arrangement,
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and even color, which are relevant for the classification. Of these components, leukocytes
(white blood cells), due to their structural complexity, represent a problem when developing
algorithms that have a good level of precision in their classification and detection of each of
the cell types that make up this group (lymphocytes, monocytes, eosinophils, segmented,
and basophils).

5. Conclusions

This paper presents a hybrid multi-level approach for automatically detecting and
classifying white blood cells into mononuclear (lymphocytes and monocytes) and polymor-
phonuclear (segmented neutrophils and eosinophils) types from blood smear images. At
the first level, a Faster R-CNN network is applied to identify the region of interest of white
blood cells, together with the separation of mononuclear cells from polymorphonuclear
cells. Once separated, two parallel convolutional neural networks with the MobileNet
structure are used to recognize the subclasses. The model achieved good performance
metrics, achieving an average accuracy, precision, recall, and F-score of 98.4%, indicat-
ing that the proposal represents an excellent tool for clinical and diagnostic laboratories.
Moreover, the proposed ML-CNN approach allows obtaining better accuracy results while
optimizing the cost of computational resources, thus allowing the creation, evaluation, and
retraining of each neural algorithm in an isolated way, without affecting those that achieve
the expected levels of performance.

For further work, on the one hand, we intend to use data augmentation tools to
include basophil images in the polymorphonuclear group in training and extend the model
for the classification of immature leukocytes. On the other hand, it is also intended to
develop machine learning techniques that include expert knowledge to improve perfor-
mance [61,62].
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