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Abstract: Advances in our understanding of the role of magnetic resonance imaging (MRI) for
the detection of prostate cancer have enabled its integration into clinical routines in the past two
decades. The Prostate Imaging Reporting and Data System (PI-RADS) is an established imaging-
based scoring system that scores the probability of clinically significant prostate cancer on MRI to
guide management. Image fusion technology allows one to combine the superior soft tissue contrast
resolution of MRI, with real-time anatomical depiction using ultrasound or computed tomography.
This allows the accurate mapping of prostate cancer for targeted biopsy and treatment. Machine
learning provides vast opportunities for automated organ and lesion depiction that could increase
the reproducibility of PI-RADS categorisation, and improve co-registration across imaging modalities
to enhance diagnostic and treatment methods that can then be individualised based on clinical risk of
malignancy. In this article, we provide a comprehensive and contemporary review of advancements,
and share insights into new opportunities in this field.

Keywords: prostate MRI; cancer; deep learning; machine learning; PI-RADS; segmentation; detection;
registration; diagnosis; survey

1. Introduction

Prostate MRI has been developed into an important tool for the management of
prostate cancer (PCa). It is recommended as the first-line screening method for patients
with a clinical suspicion of prostate cancer [1]. The Prostate Imaging-Reporting and Data
System (PI-RADS) represents a comprehensive set of guidelines, standardized observations
and lexicon, which aims to stratify probability of clinically-significant prostate cancer
(csPCa) on MRI [2].

Prostate MRI and PI-RADS aim to guide biopsy by identifying the most suspicious
areas within the prostate to be targeted. MRI-guided targeted biopsy pathways have been
shown to improve the detection of clinically significant prostate cancer with a reduction in
the number of biopsy cores, compared to conventional systematic biopsy [3,4]. Improved
prostate cancer localization with MRI has facilitated investigations into focal therapy, such
as via cryotherapy, high-intensity focused ultrasound (HIFU) and brachytherapy. Focal
therapy is a promising option that is being investigated as a possible alternative to whole-
gland treatment (prostatectomy or radiotherapy) in patients with low-volume disease, and
avoids adverse effects such as incontinence, erectile dysfunction and radiation enteritis [5].

Despite vast improvements in MRI techniques, there are still limitations to prostate
MRI interpretation in clinical practice, and experience is still accumulating. This is evident
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from the fact that PI-RADS has undergone two revisions since version 1 was introduced
in 2012 (version 2 in 2015 and version 2.1 in 2019). However, differentiating cancer from
non-cancerous pathology such as benign prostatic hyperplasia or inflammation on MRI
remains challenging [6,7]. Considerable inter-observer variability also remains, even in the
latest PI-RADS version 2.1 [8,9]. Furthermore, variations in scanning parameters and image
quality between scanners make it difficult to accurately compare between MRI studies [10].

There have been efforts to address these limitations. Techniques such as quantitative
MRI analysis and computer-aided diagnosis enable a more objective analysis of prostate
MRI and have been shown to improve diagnostic accuracy and reproducibility [11–13]. In
recent years, there has been increasing interest in the use of artificial intelligence (AI) and
machine learning (ML) in radiology.

Recent studies suggest that applying ML in prostate MRI could improve diagnostic
accuracy and reduce inter-reader variability by highlighting suspicious areas on MRI,
allowing a more focused interpretation by the radiologist during conventional scan inter-
pretation [14]. ML has also been shown to be able to predict lesion aggressiveness and
treatment response [15,16]. Several studies have demonstrated comparable performances
between ML and expert radiologists in head-to-head comparisons for MRI interpreta-
tion [17,18].

The value of ML in prostate MRI could go beyond imaging interpretation and di-
agnosis. For example, in MRI–US fusion targeted prostate biopsy, the precise gland and
region-of-interest segmentation and image co-registration between MRI and US are impor-
tant for optimal biopsy. Segmentation and image fusion are usually manually performed,
which can be laborious, time-consuming, and subject to inter-operator variation. ML has
shown potential in gland segmentation and MRI–US fusion in terms of accuracy and effi-
ciency [19,20]. This can be further extrapolated to radiation therapy planning and possible
focal therapy, where precise segmentation is necessary to optimize dose to region of interest
and reduce injury to adjacent normal prostate tissue [21].

Prostate MRI interpretation is generally recognized to present a steep learning curve [22].
Through automation, ML potentially enables more consistent interpretation across readers
with various experience levels, improving inter-reader agreement, and reducing the need
for expert training in prostate MRI interpretation. This would particularly benefit surgeons
and radiotherapists who normally do not receive formal radiology training, when it comes
to the management of prostate cancer patients.

2. Machine Learning Applications to Enhance Utility of Prostate MRI: Current Status
2.1. Related Reviews

A review in 2019 [16] has demonstrated the capability of machine learning (ML) and
deep learning (DL) to process prostate MRI during different tasks, including segmentation,
cancer detection, cancer assessment, local staging, and biochemical recurrence. However,
the summary is limited and covered fewer methods published up to 2019. Others, for
example, Chaddad et al. [23], discussed the existing clinical applications, as well as machine
learning-based studies weighted more on the prostate MRI radiomics pipeline and methods
of cancer grade prediction on the Gleason score. Another review by Zeeshan et al. [24]
introduced the literature using AI to support urological disease treatments, with only a
small amount of research based on prostate MRI.

In this section, we will review the literature, studying the ML and DL applications
in prostate MRI segmentation, registration, lesion detection and scoring, and treatment
decision support, over a wider range in time. More importantly, both traditional and
recently published studies will be covered, especially focusing on clinic tasks, methods
utilized, data, and results.

2.2. Segmentation

The aim of segmentation is to define the boundary of the prostate gland, prostate
zones (central, transition, peripheral zones), and any focal lesions. Gland and lesion
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segmentation is important when performing fusion-based targeted biopsy or focal therapy,
as these clinical settings require the accurate delineation of prostate, zonal, and lesion
contours. Segmentation can be performed either manually or by ML/DL methods. In
practice, manual segmentation can be time-consuming and subjective, depending on the
experts’ perception and level of experience. This can range from highly accurate when
delineating the transition zone from the peripheral zone, to highly subjective and variable
when delineating the prostate margins from periprostatic venous plexus in the mid-gland
to apex regions (Figure 1).
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Figure 1. On MRI, the periprostatic venous plexus appears as serpinginous hyperintense structures
with foci of signal voids adjacent to the prostate (green outline), and can be closely related to the
prostate capsule (red outline). It may have similar heterogeneous appearance as the peripheral zone.
Therefore, during manual segmentation, it can be mistaken as part of the prostate to less experienced
operators.

Therefore, interest in developing accurate automatic segmentation tools has rapidly
increased. A comprehensive review [25] summarized recent ML and DL applications for
prostate MRI segmentation until December 2020, showing the important and mature status
for ML in automatic prostate MRI segmentation tasks. In this paper, we will revisit the
main methods by which segmentation can be performed by ML and DL, and review more
recent research work covered. The papers mentioned in this section are summarised in
Table 1.

The evaluating metric for segmentation is usually expressed as Dice similarity coeffi-
cient (DSC), measuring the degree of overlap between the predicted and the true masks [26].
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Table 1. Machine learning-based segmentation methods for prostate MRI. The abbreviations are shown below 1.

Publication Year Method Prostate Zone
Input Image Dimension

(Pixel/Voxel/mm) Data Source MRI Sequence(s) Sample Sizes
CV

Results
Refs.

Train Val Test Acc (%) DSC (%)

2008 Nonrigid registration of prelabelled
atlas images WG 512 × 512 × 90, 271 × 333 × 86 Pv T2w 38 - 50 No - 85 [27]

2009 Level set WG Pv DWI 10 - 10 No - 91 [28]

2012 AAM WG 0.54 × 0.54 × 3 mm Pv T2w 86 - 22 5-fold 88 [29]

2007 Organ model-based, region-growing WG 3D Pv T1w, T2w 15 - 24 No 94.75 [30]

2014 RF and graph cuts WG 512 × 512 or 320 × 320 PRO12 T2w 50 - 30 10-fold - >91 (training),
>81 (test) [31]

2014 Atlas-based AAM and SVM WG 512 × 512 Pv T2w 100 - 40 leave-one-out 90 87 [32]

2016 Atlas and C-Means classifier WG, PZ, TZ Varying sizes PRO12, Pv T2w 30 35 No -
81 (WG),
70 (TZ),
62 (PZ)

[33]

2016 Volumetric CNN WG 128 × 128 × 64 PRO12 T2w 50 - 31 No - 86.9 [34]

2017 FCN WG, TZ 0.625 × 0.625 × 1.5 mm PRO12 T2w 50 - 30 10-fold - 89.43 [35]

2021 V-Net using bicubic interpolation WG 1024 × 1024 × 3 × 16 PRO12, Pv T2w 106 - 30 Y - 96.13 [36]

2019 Cascade dense-UNet WG 256 × 256 PRO12 T2w 40 - 10 5-fold - 85.6 [37]

2021 3D-2D UNet WG - Pv T2w 299 - 5-fold - 89.8 [38]

2020 convLSTM and GGNN WG 28 × 28 × 128 PRO12, ISBI13, Pv T2w 140 - 30 No - 91.78 [39]

2020 Transfer learning, data augmentation,
fine-tuning WG, TZ - Pv T2w 684 - 406 10-fold - 91.5 (WG), 89.7 (TZ) [40]

2021 Federated learning with AutoML WG 160 × 160 × 32 MSD-Pro, PRO12, ISBI13, PROx T2w 344 46 96 No - 89.06 [41]

2020 Anisotropic 3D multi-stream CNN WG 144 × 144 × 144 PRO12, Pv T2w 87 30 19 4-fold - 90.6 (base), 90.1
(apex) [42]

2020 MS-Net WG 384 × 384 Pv T2w 63 - 16 No - 91.66 [43]

2017 FCN WG, TZ 144 × 144 × 26 PRO12, Pv DWI 141 - 13 4-fold 97 93,88 [44]

2020 Transfer learning WG, TZ 1.46 × 1.46 × 3 mm Pv DWI 291 97 145 No - 65 (WG),
51 (TZ) [45]

2019 Cascaded U-Net WG, PZ 192 × 192 Pv DWI 76 36 51 No - 92.7 (WG), 79.3 (PZ) [46]

2021 Three 3D/2D UNet pipeline WG, PZ, TZ 256 × 256 × (3 mm) Pv T2w 145 48 48 No - 0.94 (WG), 0.914 (TZ),
0.776 (PZ) [47]

2021 U-Net, ENet, ERFNet WG, PZ, TZ 512 × 512 PROx T2w 99 - 105 5-fold -

ENet (best):
91 (WG),
87 (TZ),
71 (PZ)

[48]

2021 Transfer learning, aggregated
learning, U-Net WG, PZ, CG 192 × 192, 192 × 192 × 192 ISBI13 T2w 5–40 - 20 5-fold -

73 (PZ),
83 (CG),
88 (WG)

[49]

2018 PSNet WG 320 × 320 × 512 × 512 PRO12, ISBI13 T2w 112 - 28 5-fold - 85 [50]

1 Val = validation, CV = cross–validation, Acc = accuracy, DSC = dice similarity coefficient, Refs. = reference, - = not reported. For datasets, Pv = private, PRO12 = PROMISE12 [51], ISBI13
= NCI-ISBI 2013 Challenge [52], MSD-Pro = MSD Prostate [53], PROx = PROSATETx Challenge [15]. For prostate zones, WG = whole gland, TZ = transition zone, PZ = peripheral zone.
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2.2.1. Traditional Machine Learning Methods

Traditional segmentation methods can be summarized as atlas-based models, de-
formable models, and feature-based ML methods. “Atlas” is a collection of manually
segmented structures, which serves as a reference to be registered with additional or new
patient images on longitudinal follow-up. A study in 2008 [27] applied the inter-subject
registration of Atlas images for pelvic MR images. The deformed images were fused using
various voting techniques, to generate a consensus label for the segmentation of new pa-
tients’ images, resulting in a DSC of 0.85. Deformable models, like level sets [28] and active
appearance models (AAMs) [29], make use of prior geometric or statistical knowledge for
segmentation. In 2007, Pasquier et al. [30] applied a statistic model for prostate gland seg-
mentation and region-growing methods for rectum and bladder segmentation. In 2009, Liu
et al. [28] used prior shape information for level set, a numerical technique, yielding a mean
DSC of 0.91. Another approach uses feature-based machine learning methods to cluster the
image into prostate and background regions. ML classifiers, such as random forest (RF)
and support vector machine (SVM), widely adopted for binary or multi-class classification
are applied here for assigning membership values to either the target or background group.
For example, Mahapatra et al. [31] used two sets of RF for the identification of super-voxels
and the classification of prostate voxel using surrounding features. A graph cut method is
used based on the RF output as cost function, resulting in a Dice metric of more than 0.81
on the test set.

Hybrid methods are also common, which combine different models, including some
of the aforementioned methods, to achieve improved performance. For instance, in 2014,
Cheng et al. [32] combined atlas-based AAM for registration, and SVM for classification,
to achieve a relatively high segmentation result (accuracy 90%) on prostate delineation.
Later, in 2016, Chilali et al. [33] developed a prostate and zonal segmentation model using
atlas images and C-means clustering, achieved mean Dice accuracy values of 0.81, 0.70, and
0.62, for the prostate, the transition zone, and peripheral zone segmentation, respectively.
Regardless of their differences, all these methods ultimately required manual ground truth
segmentation by experts, in order to achieve reasonably accurate modelling results.

2.2.2. Deep Learning-Based Methods

Recently, deep convolution neural networks (deep CNNs) for prostate segmentation
have been developed, and demonstrate better segmentation accuracy than using conven-
tional ML methods [25,54]. This is due to their ability to learn the appropriate features of
input images, and their enhancement with data augmentation methods that provide more
data to train the network. The review [25] classified the DL algorithms into four groups
according to the segmentation techniques used. They are: feature encoder, up-sampling, the
resolution increment of features, and regional proposal-based techniques. Another review
published in 2020 [55] listed the deep learning-based prostate MRI and CT segmentation
methods, with fewer papers covered than in [25] (19 vs. 110) for MRI segmentation. The
papers were classified based on methods applied through the DL-based segmentation
process (e.g., data pre-processing, loss function, optimizer, ground truth, post processing).

The fully convolutional network (FCN) [56] is the most widely used method for
semantic segmentation with the employment of skip connection, pooling, and up-sampling.
U-Net [57] is a further extension of FCN. With a regular CNN followed by up-sampling
that increases the size of the feature map, it demonstrated striking performance, and has
been widely used in prostate and zonal segmentation. In 2016, Milletari et al. [34] took
the idea of U-Net architecture to develop a volumetric FCN (V-Net), to segment prostate
volumes from MRI. To date, many novel variations of deep learning have been applied to
improve the segmentation performance by modifying FCN, U-Net, or V-Net. For example,
Yu et al. [35] introduced the long and short residual connections into 3D FCN, Tian et al. [50]
fine-tuned an FCN that has been pre-trained using a large dataset, and Li et al. [37] added
dense blocks and transition layers to two cascaded U-Net models. Recently, Jin et al. [36]
improved V-Net using bicubic interpolation and achieved DSCs of 0.975 and 0.983 on two
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public datasets. Ushinsky et al. [38] introduced a novel 3D-2D U-Net CNN which was
trained on 3D images, and completed object detection and segmentation on 2D images,
resulting in a DSC of 0.898.

When performing segmentation, the multi-modal 3D MR images can either be used
directly or cropped into 2D slices as input for the DL model. Neither approach is without
limitations. Splicing the 2D segmentation from 3D results may cause jaggedness and faults,
whereas the amount of 3D MRI data is usually not sufficient to train the deep 3D neural
network, leading to struggles in increasing segmentation accuracy.

To learn about better correlation between neighbour image slices in 2D segmentation,
Tian et al. [39] proposed a convolutional long short-term memory model (convLSTM),
which enables the model to capture the spatial relation between neighbouring vertices.
To solve the problem of a lack of MRI data for a deep learning network, several methods
have been proposed. Sanford et al. [40] showed that the combination of transfer learning,
data augmentation, and test time fine-tuning could benefit prostate segmentation. Roth
et al. [41] combined federated learning (FL) and automated machine learning (AutoML) [58]
to increase data diversity, achieving an average Dice score of 0.89. Meyer et al. [42] proposed
an anisotropic multi-stream segmentation CNN to process additional scan directions (dual-
plane and triple-plane), rather than simply axial scans, which significantly improved (p <
0.05) over segmentation on a plain axial view (base DSC 0.906 vs. 0.898, apex DSC 0.901 vs.
0.888). Liu et al. [43] proposed an MS-Net for segmentation from multiple sources of data
using a knowledge transfer method. An overall AUC of 0.9166 was achieved across three
sites.

Amongst the myriad of possible approaches, we anticipate that FCN-based U-Net ar-
chitecture will continue to be applied as a backbone in most segmentation tasks, while data
augmentation and transfer learning could effectively improve segmentation performance.
That said, head-to-head comparisons of some of the more robust and mature methods will
become necessary in the future.

2.2.3. Zonal Segmentation

While the majority of current works have focused on whole prostate gland segmenta-
tion, some other studies have focused instead on the internal structure of the prostate, such
as the delineation between the peripheral zone (PZ) and the transition zone (TZ). PZ is the
origin of most carcinomas, while cancers in TZ, though less common, are more difficult
to detect, due to concomitant benign prostatic hyperplasia (BPH). This has led to distinct
clinical evaluation criteria for the different zones on the widely used PI-RADS. In order to
train machines towards accurately segmenting tumours, it is necessary to segment different
zones inside the prostate gland first.

Clark et al. [44] combined VGG ConvNet [59] and U-Net-based architecture for whole
gland (WG) and TZ segmentation. Motamed et al. [45] applied transfer learning and fine-
tuning on a modified U-Net architecture for WG and TZ segmentation. Zhu et al. [46] used
K-means clustering for coarse segmentation, and a cascaded U-Net model for WG and PZ
segmentation. The algorithm achieved higher DSC than U-Net (0.93 vs. 0.87 and 0.79 vs.
0.67 for WG and PZ, respectively). In 2021, Bardis et al. [47] used a three 3D-2D U-Net
models pipeline to first localize the prostate square shape zone, then segment prostate WG
and PZ vs. TZ, achieving DSC 0.94, 0.914 and 0.776 for WG, TZ and PZ, respectively.

Recently, several studies have compared different deep CNN models on zonal seg-
mentation. Cuocolo et al. [48] compared three deep learning methods, UNet, an efficient
neural network (ENet) [60], and efficiently residually factorize ConvNet (ERFNet) [61] in
the PROSTATEx public dataset. ENet (0.91, 0.87, 0.71) and UNet (0.88, 0.86, 0.70) were more
accurate than ERFNet (0.87, 0.84, 0.65) in terms of DSC (for WG, TZ and PZ, respectively),
while ENet outstood the other two methods, with faster convergence speed and fewer pa-
rameters. Saunders et al. [49] compared the performance of independent training, transfer
learning, and aggregated learning based on 3D and 2D U-Net models, on the premise of
limited training data. In addition, 3D U-Net was found to be more robust to a small sample



Diagnostics 2022, 12, 289 7 of 27

size (five training cases) than 2D U-Net by an average DSC of 0.18, while transfer learning
and aggregated learning (similar DSC: 0.73, 0.83, 0.88 for PZ, CG, WG, respectively) both
outperformed independent training (DSC 0.65, 0.77, 0.83) when using five internal training
cases. Predictably, automated segmentation between PZ and TZ can become challenging in
cases where tumours span across both zones, since false positives like prostatitis in the PZ
reduce its normal high T2 signal to become isointense to the TZ, whereas severe benign
prostatic hypertrophy in the TZ compresses the PZ, reducing the ability to discriminate
between the two zones (Figures 2–4).
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Figure 3. Prostatitis typically appears as diffuse hypointensity in the peripheral zone on T2-weighted
imaging (star), resulting in an almost similar signal to stromal nodules related to benign prostatic
hyperplasia in the transition zone (arrowhead). This may make differentiation between peripheral
and transition zone difficult, and zonal segmentation challenging.
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2.3. Image Registration

The aim of image registration is to transform different types of images into the same
coordinates to ensure spatial correspondence. For interventions such as transrectal biopsy,
focal therapy and high dose rate (HDR) brachytherapy procedures, the fusion of MR images
with real-time ultrasound images facilitates accurate localisation for needle placement [62].
For patients who have undergone radical prostatectomy, correlating pre-surgical MRI with
whole-mount histopathology images could provide high-resolution information on the
extension of cancer [63]. Moreover, dominant intraprostatic lesion (DIL) delineation from
MRI (mpMRI) to CT images during radiation therapy also needs accurate MRI–CT image
registration.

For feature-based registration, the relatively sparse features need to be consistently
matched between two imaging modalities. Manually obtaining landmarks from both
modalities is strenuous and often impossible during intervention. Cognitive fusion is pos-
sible, but it generates a steep learning curve for procedurists. Meanwhile, further research
is required to determine if software-based fusion is superior to cognitive fusion [64].

To date, ML- and DL-based approaches have been applied to the task of registration
between mpMRI and other types of images. We will discuss the three most popular
areas, MRI–ultrasound (MRI–US), MRI–histopathology, and MRI–CT registration. The
studies mentioned in this section are summarised in Table 2. For quantitative validation,
target registration error (TRE) is the most frequently used measurement, calculated as the
root-mean-square distance over all pairs of corresponding landmarks in the registration
image pairs for each patient. There are three types of image registration (rigid, affine, and
deformable registration) depending on the transformations applied [65].
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Table 2. Machine learning-based MR image registration methods. The abbreviations are shown below 2.

Publication Year Approach Registration Type Registration
Modalities ML/DL Method Auto-Seg Sample Size CV

Results
Refs.

TRE (mm) DSC% MSD (mm) HD (mm) Error (%)

2002 Knowledge-based Deformable MRI–TRUS
homogeneous

Mooney-Rivlin model,
Linear least squares fitting

N 25 simulations of
TRUS No - - - - 26.7 [66]

2011 Knowledge-based non-rigid, deformable MRI–TRUS PCA N 5 patients Leave-one-out 5.8 - - - - [67]

2012 Knowledge-based non-rigid, deformable MRI–TRUS PCA N 8 patients Leave-one-out 2.4 - - - - [68]

2016 Knowledge-based non-rigid, deformable MRI–TRUS PCA, surface point matching N 1 MRI dataset and 60
TRUS datasets Leave-one-out 1.44 - - - - [69]

2018 Weakly supervised Deformable MRI–TRUS CNN N 111 pairs 10-fold 9.4 73 - - - [70]

2018 Weakly supervised non-rigid, deformable MRI–TRUS CNN N 76 patients 12-fold 3.6 87 - - - [71]

2018 Unsupervised Affine MRI–TRUS GAN, CNN N 763 pairs No 3.48 - - - - [72]

2020 Weakly supervised Affine and nonrigid,
deformable MRI–TRUS FCN, 3D UNet Y 36 pairs Leave-one-out 2.53 91 0.88 4.41 - [73]

2021 Weakly supervised Deformable MRI–TRUS 3D UNet Y 288 patients No - 87 - 7.21 [74]

2020 Supervised Rigid, Deformable MRI–TRUS UNet, CNN Y 12 patients No 2.99 - - - - [75]

2018 Knowledge-based and
DL Non-rigid, deformable MRI–TRUS 3D encoder-decoder N 108 pairs 12-fold 6.3 82 - - - [76]

2020 Knowledge-based and
DL non-rigid, deformable MRI–TRUS CNN, 3D Point Cloud Y 50 patients Leave-one-out 1.57 94 0.90 2.96 - [77]

2019 Supervised Rigid, deformable MRI–CT RF based on an Auto-context
model N 17 treatment plans

from 10 patients No - - - - <1 [78]

2020 Knowledge-based Rigid, Affine, and
Deformable MRI–histology images - N 157 patients No - 97 - 1.99 - [79]

2021 Knowledge-based Rigid, deformable MRI–CBCT CNN, 3D Point Cloud Y 50 patients 5-fold 2.68 93 1.66 - - [80]

2021 Unsupervised Affine, Deformable MRI–histology image CNN N 99 patients (training),
53 patients (test) No - 97.5, 96.1, 96.7 - 1.72, 1.98, 1.96 - [81]

2017 Unsupervised Rigid, affine, deformable MRI–histology image Multi-image
super-resolution GAN N 533 patients 5-fold - 95 (prostate), 68

(cancer) - - - [59]

2 Auto-Seg = auto-segmentation, CV = cross-validation, TRE = target registration error, DSC = dice similarity coefficient, MSD = mean surface distance, HD = Hausdorff distance, Refs. =
reference, MRI–TRUS = MRI–transrectal ultrasound, - = not reported.
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2.3.1. MRI–US

Generally, transrectal (TR), or transperineal (TP), ultrasound images serve as the main
guidance for prostate biopsies. However, they display poor contrast between healthy
and cancerous regions. On the other hand, MRI, or mpMRI, is currently the mainstay for
the detection and localization of PCas, and MRI-guided targeted biopsy pathways have
been shown to increase the detection of clinically significant prostate cancer [4]. However,
in-bore MRI-based interventions are cumbersome and consume valuable magnet scan time.
As a result, MRI–US fusion techniques are increasingly favoured (Figure 5).
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pre-operative prostate MRI (bottom image) and real-time ultrasound (top image).

Traditional ML approaches for MR-US registration have mainly been based on biome-
chanical models and statistical deformation models. In 2002, Mohamed et al. [66] first
proposed a finite-element (FE) analysis to simulate the prostate deformation model in-
duced by the transrectal ultrasound probe. Principal component analysis (PCA) and linear
least square fitting were applied to construct deformed prostate shapes from CT or MRI.
Thereafter, Hu et al. [67,68] incorporated biomechanical parameters with random sampling
and PCA. However, the randomly sampled biomechanical parameters may greatly differ
from the real values of the patient, and hence, may not be appropriate for general usage.
Subsequently, Wang et al. [69] proposed a patient-specific deformable registration model
using a hybrid surface point matching method. Their model achieved a TRE around 1.44
mm. Nevertheless, all the above-mentioned methods relied on rigid surface registration
and required prostate surface segmentation for initialization, while the biomechanical
models are not readily available for practical clinical application.

Recently, deep learning models have been introduced for image registration. The
principle is using the fixed and moving images to train the deep learning network to
predict the appropriate transformation matrix between them. However, supervised deep
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learning is currently difficult to apply here, due to the unavailability of ground truth
deformation.

To tackle this issue, ongoing research focuses on weakly supervised or unsupervised
deep learning models. Hu et al. [70,71] proposed a weakly supervised learning method
with CNN using manually labelled anatomical structures. Yan et al. [72] proposed a multi-
modality generative adversarial network (GAN) network. An unsupervised DL network
enabled the simultaneous training of CNNs for transformation parameter estimation
and registration quality evaluation. Zeng et al. [73] proposed a weakly supervised MRI–
transrectal ultrasound (MRI–TRUS) registration method that first segmented MRI and
TRUS prostate, and then applied affine and non-rigid registration using FCN, 2D CNN and
3D U-Net. The method produced a mean TRE of 2.53 mm. Similarly, Chen et al. [74] in 2021
also employed a segmentation model before the registration of MR images to the treatment
planning US images after the needle insertion for HDR brachytherapy.

To overcome the problem of rigid alignment error and organ deformation in real-time
intervention, Bhardwaj et al. [75] proposed a 2D/3D DL-based constraint registration
for real-time rigid and deformable error correction, achieving a TRE of 2.988 mm on
clinical data. Biomechanical properties combined with DL networks also demonstrated
effectiveness in several studies. Hu et al. [76] applied biomechanical FE simulations to
regularize the registration in an adversarial learning approach, resulting in a registration
error of 6.3 mm and a DSC of 0.82. Yang et al. [77] proposed a framework that first
segmented the MRI and TRUS images, and then applied a point-cloud-based network
with a built-in biomechanical constraint for registration. The model achieved a 1.57 mm
TRE and a 0.94 DSC, approaching what could be implemented into a clinical routine. It
is predicted that these techniques will significantly advance our ability to perform the
accurate placement of needles for tissue sampling or local ablation (such as cryotherapy),
where MR images can be a used as ground-truth, and fused with real-time TRUS, on which
considerable deformation of the gland occurs during the procedure.

2.3.2. MRI–Histopathology

For patients who have undergone radical prostatectomy (RP), the whole-mount
histopathology images can be correlated with pre-surgical MRI, such that cancers (and their
attending Gleason grades) are accurately mapped. Developing such mapping between
histopathology images and MRI could improve the existing MRI interpretation, as well as
facilitating the machine learning methods to identify prostate cancer on MRI by providing
accurate cancer labels, which will be introduced in the next section. Rusu et al. [79] devel-
oped RAPSODI for the registration of radiology and pathology images. The framework
created a digital representation of tissue from the histopathology specimen to provide
cancer labels for MRI. In 2020, Shao et al. [81] applied mono-modal MR and histopathology
image pairs to a DL network for the estimation of affine and deformable transformation,
which was then applied for mapping the cancer labels onto MRI. The method performed
similarly to RAPSODI. However, these strategies assumed slice-to-slice correspondence
between histopathology and MR images, which would require a significant alteration to
the clinical workflow, which is typically not practiced in most centres performing RP. Sood
et al. [82] introduced a novel framework without the need for slice-to-slice correspondence
using a GAN-based network. The learned information from 3D MRI and histopathology
slices was applied for mapping the extent of cancer onto MRI. The model achieved a 3D
DSC of 0.95 for prostate gland and 0.68 for cancer. Advancements in this domain will
invariably allow for a better understanding of treatment response to local ablative thera-
pies, where the intent is to concentrate treatment dose to the tumour site, and spare the
non-tumorous areas.

2.3.3. MRI–CT

Co-registration MRI with computed tomography (CT) is promising for radiation
therapy planning and delivery for patients with prostate cancer. This method would
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combine the superior soft tissue delineation by MRI with the lower cost CT-based linear
accelerator (Linac) units for optimal dose delivery in a localized disease. In 2019, Ghazal
et al. [78] used RF based on an auto-context model to create synthetic CT images from
MR images for dose calculations, resulting in more than 99% pass rate in gamma analysis.
Recently, Fu et al. [80] used a 3D point cloud matching network after segmentation of MR
and CBCT for registration. Their TRE was 2.68 mm, and the DSC was 0.93. In practice,
there is a relatively urgent need for the clinical implementation of this technique, given the
substantially higher cost of MRI-based Linacs, and the increasingly advanced capability
of current radiotherapy machines in delivering modulated treatment doses to reduce
the detrimental side effects of regional non-tumorous tissue damage. ML-/DL-based
techniques in these clinical settings would also be particularly useful to facilitate treatment
planning and diagnosis for surgeons, pathologists and radiotherapists who do not usually
receive formal radiology training, and may not be familiar with MRI interpretation.

2.4. Lesion Detection and Characterization

Ultimately, the optimal clinical treatment of prostate cancer requires the accurate
grading and staging of disease. Prostate cancers can be divided into clinically significant
and clinically insignificant cancers based on grade (Gleason score) and aggressiveness [83].
Clinically significant cancers (csPCa) would usually require definitive treatment, such
as surgery or radiotherapy, while clinically insignificant cancers can be managed with
active surveillance. Currently, the prostate imaging-reporting and data system (PI-RADS)
is the main scoring system to indicate the probability of csPCa on MRI. However, even
with the current version PI-RADS v2.1, there remains considerable inter/intra-reader
disagreement [84,85]. Hence, many ML and DL methods have been developed for refining
the differentiation between csPCa and non-csPCa, improving PI-RADS categorization, as
well as possibly predicting Gleason score (GS). A recently published review [86] introduced
prostate lesion classification and detection studies proposed between 2018 and February
2021. The study showed that most ML-/DL-based approaches have been conducted for
the task of PCa lesion classification (either two classes or multi-classes according to lesion
aggressiveness), followed by lesion detection (detection and localization of lesion).

In this section, we summarize the studies using ML and DL for prostate lesion de-
tection and lesion scoring with the utilization of MRI. Lesion detection was treated as
differentiating csPCa with non-csPCa, as well as lesion region detection, while lesion scor-
ing predicts PI-RADS or Gleason score /grade. The studies covered in this section are
summarized in Table 3.
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Table 3. Machine learning methods for lesion detection and characterization. The abbreviations are shown below 3.

Publication
Year

Application Method
Serum PSA

(ng/mL) Prostate Zone Data Source
MRI

Sequence(s)

Sample Sizes:
CV Ground-Truth

Non-MRI Data Features
(If Any)

Results
Refs.

Train Val Test Acc, AUC (%) Ssv, Spc (%) Kap, DSC (%)

2018 Detecting csPCa in
AS patients MRMR, QDA, RF, SVM 6.96 ± 5.8 WG Pv T2w, ADC 31 - 25 3-fold

(training)
PI-RADS score and

biopsy - 72, - - - [87]

2019 Differentiating csPCa
and non-cs PCa

MRMR and LASSO
algorithm >10 WG Pv T1w, T2w,

DWI, ADC 187 - 93 10-fold Gleason Score - -, 82.3 84.1, 72.7 - [88]

2019 Differentiating TZ
Pca from BPH

Logistic Regression and
SVM - TZ Pv T2w, ADC 105 - No - - -, 98.9 93.2, 98.4 84 (tumour),

87 (BPH) [89]

2021 Prediction of csPCa
(PI-RADS ≥ 4) Textured-DL and CNN 4.7–8.7 WG Pv T2w, ADC 239 42 121 No PI-RADS score - -, 85 -, 70 - [90]

2020
Differentiating

csPCA and non-cs
Pca

3D CNN - WG PROx
ADC, DWI,

K-trans (from
DCE)

175 - 25 8-fold PI-RADS score Location of lesion center -, 89.7 81.9, 86.1 - [91]

2017 Differentiating csPCa
and non-cs Pca

Transfer learning,
ImageNet - WG PROx T2W, DWI,

ADC, DCE 330 - 208 k-fold PI-RADS score - -, 83 - - [92]

2019
Classifying

low-grade and
high-grade Pca

Transfer learning,
AlexNet NN - WG Pv, PROx-2 T2w, ADC 110 66 44 No Gleason Score - 86.92, - - - [93]

2019 Prediction of csPCa
(PI-RADS ≥ 4) Transfer learning 7.9 ± 2.5 WG Pv T2w, ADC 169 47 No PI-RADS score Zonal information 72.3, 72.6 63.6, 80 - [94]

2015 PZ cancer detection Regression, SVM 4.9–8.6 PZ Pv T2w, ADC 56 56 Yes prostectomy - -, 91 97 - [95]

2018
Predictive maps of

epithelium and
lumen density

Least square regression - WG Pv T2w, ADC,
ECE 20 - 19 No prostectomy -

-,
77(epithelium);

84 (lumen)
- [96]

2021 Pca detection and
segmentation

Growcut, Zernik, KNN,
SVM, MLP - PZ, TZ Pv T2w 217 - 54 No prostectomy

Clinical and
histopathological

variables
80.97, - - 79 [97]

2020 Pca detection and
segmentation 3D CNN - WG Pv T2w, DWI,

ADC 116 - 155 3-fold biopsy Location of lesion -, 0.65–0.89 82–92, 43–76 - [98]

2021 Pca differentiation
and segmentation SPCNet 6.8–7.1 WG Pv T2w, ADC 102 - 332 5-fold prostectomy - -, 0.75–0.85 - - [99]

2021 Pca detection and
classification Cascaded DL 4.7–9.9 WG Pv, PROx T2w, ADC 1290 - 150 5-fold PI-RADS score - 30.8, - 56.1, - 35.9 [100]

2021 Pca segmentation Transfer learning, CNN,
Test time augmentation 2.1–18 WG Pv, PROx T2w, DWI and

DCE
16,
16 - 16 Leave-one-out prostectomy - - - 59 [54]

2018 Pca segmentation Encoder–decoder CNN - WG, PZ, CG I2CVB T2w 1413 236 707 10-fold Radiologist segmented
results - 89.4, - - - [101]

2017 Improve PI-RADS v2 RBF-SVM, SVM-RFE 12.5–56.1 WG, TZ, PZ Pv T2w, DWI,
DCE 97 - - Leave-one-out PI-RAD scores - -, 98.3 (PZ);

96.8 (TZ)

94.4 (PZ); 91.6
(TZ), 97.7 (PZ);

95.5 (TZ)
- [102]

2020 Prediction of
PI-RADS v2 Score Resnet34 CNN - WG Pv, PROX T2W, DWI,

ADC, DCE 482 137 68 No PI-RADS score - - - 40, - [17]

2019
Pca detection,

prediction of GGG
score

Unet, batch
normalization, ordinal

regression
- WG PROX-2 T2w, ADC 99 - 63 5-fold Gleason score - - - 32.1 [103]



Diagnostics 2022, 12, 289 14 of 27

Table 3. Cont.

Publication
Year

Application Method
Serum PSA

(ng/mL) Prostate Zone Data Source
MRI

Sequence(s)

Sample Sizes:
CV Ground-Truth

Non-MRI Data Features
(If Any)

Results
Refs.

Train Val Test Acc, AUC (%) Ssv, Spc (%) Kap, DSC (%)

2019
Pca segmentation,
prediction of GS

Score

multi-class CNN
(Deeplab) - WG Pv T2w, DWI 417 - - 5-fold Gleason score - -, 80.9 88.8, - - [104]

2021 Prediction of GGG
score Unet, ordinal regression - WG, TZ, PZ PROX-2 T2W, DWI,

ADC 112 - 70 5-fold GGG Zonal information - - 13, 37 [105]

2019 Prediction of GGG
score KNN - TZ, PZ Pv T2w, DCE,

DWI, ADC 112 - 70 3-fold GGG Texture features, zonal
information

-, 92 (PZ); 87
(TZ) - - [106]

2018 Prediction of GGG
score

Stacked sparse
autoencoders - WG PROX-2 T2w, DWI,

ADC, 112 - 70 3-fold GGG Hand-crafted texture
features 47.3, - - 27.72, - [107]

2021 Lesion detection and
classification Cascaded DL 4.7–9.9 WG Pv, PROX T2w, ADC 1290 - 150 5-fold PI-RADS score - 30.8, - 56.1, - -, 35.9 [100]

3 Val = validation, CV = cross-validation, Acc = accuracy, AUC = area under ROC curve, Ssv = sensitivity, Spc = specificity, Kap = Kappa score, DSC = dice similarity coefficient, Refs. =
reference, - = not reported. csPCa = clinically-significant prostate cancer, GGG = Gleason grade group. For prostate zones, WG = whole gland, PZ = peripheral zone, TZ = transition zone.
For data source, Pv = private, PROx = PROSATETx Challenge [15], PROx-2: PROSATETx-2 challenge [15], I2CVB: I2CVB Benchmark dataset [108].
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2.4.1. Lesion Detection

The radiomics feature is defined as the quantified and high-dimensional medical
imaging features extracted using ML [109]. Recent studies mainly follow the procedure
that first extracts predictive radiomic features that are highly correlated with the presence
of csPCa, then applies the extracted features to ML-based classifiers for distinguishing
clinically significant and non-significant Pcas. For example, Algohary et al. [87] and Min
et al. [88] applied the minimum redundancy maximum relevance (MRMR) method for
feature extraction, while the latter further used the least absolute shrinkage and selection
operator (LASSO) algorithm [110], which selects strongly correlated features via shrinking
their respective regression coefficients. Wu et al. [89] applied mpMRI and radiomic features
to logistic regression (LR) and SVM models for diagnosing Pca in the TZ only (AUC 0.989
and 0.949 for LR and SVM, respectively), and differentiating TZ Pca with stromal BPH
(AUC 0.976). Texture analysis has the advantage of reproducibility and the ability to detect
image features that may be beyond the limits of visual analysis by the human eye, and
hence, can also be a useful tool to quantitatively describe the tumour heterogeneity [111].
Textured-DL [90], consisting of a 3D grey-level co-occurrence matrix extractor and a CNN
to differentiate csPCa and non-csPCa, showed significantly higher AUC (0.85) than the
PI-RADS-based classification (0.73).

Very recently, Aldoj et al. [91] tested different combinations of distinct MRI (3D)
sequences as input to a 3D CNN, to find the best combinations for Pca classification. The
location of lesion was pre-required as an input. Eventually, the ADC, DWI, and K-trans
input combination performed the best, with an AUC of 0.897. This technique has the
advantage of accurately combining image inputs from different MRI pulse sequences and
meta-data, something which is virtually impossible for a human reader.

Unfortunately, DL networks on medical imaging suffer from a small number of la-
belled datasets, and even more so when seeking to develop algorithms to delineate the
foci of clinically significant disease on MRI. Transfer learning is one means to overcome
this problem, by enabling knowledge gained from large datasets in other images, to be
transferred to smaller relevant datasets.

Chen et al. [92] performed the transfer learning of two ImageNet pre-trained models
for feature extraction and lesion classification. The prior feature extraction layers were
frozen from further training. They obtained AUCs of 0.81 and 0.83 for the two pre-trained
models. Yuan et al. [93] established three pre-trained architectures to compute features
from three sequences of mpMRI. Their model achieved an accuracy of 86.92% for prostate
cancer classification. Separately, Zhong et al. [94] applied a deep transfer learning (DTL)-
based model using two ResNets. The AUC for the DTL model was the highest (0.726)
compared with the same DL model architecture trained from scratch (0.687) and PI-RADS
v2 classification (0.711).

Other than classifying pre-defined ROIs on prostate MRI, several studies have been
further developed to automatically detect and segment suspicious Pca areas. In 2015,
Giannini et al. [95] used SVM to create a malignancy probability map for all voxels of the
prostate, yielding a voxel-wise segmentation AUC of 0.91. Another study [96] employed
a least square regression model to generate the segmentation of epithelium and lumen
maps, resulting in an AUC of 0.79. To detect csPCa in low risk patients who opt for active
surveillance, Arif et al. [98] used low risk Pca patients’ data to train a U-shaped 3D CNN
model for lesion segmentation, achieving an AUC from 0.65 to 0.89 for lesion volumes
ranging from > 0.03 to > 0.5 cc. Recently, Zhang et al. [97] combined GrowCut techniques to
segment prostate cancer from MRI images, Zernik feature selection to extract features from
images, and ensemble learning techniques including KNN, SVM, and MLP to determine
and diagnose the lesions. They improved the accuracy by 20% compared to other methods
with similar approaches (accuracy 80.97%). Seetharaman et al. [99] introduced the Stanford
Prostate Cancer Network (SPCNet) to learn features specific to each sequence of MRI
mapped with histopathology images, achieving a AUC of 0.86–0.89 to detect aggressive
cancers and 0.75–0.85 to detect clinically significant lesions.
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2.4.2. Lesion Scoring (PI-RADS and Gleason Score)

Due to the overlap between Pca lesions and false positive diseases such as BPH and
prostatitis, a key tenet of PI-RADS has been to stratify lesions based on the probability of
malignancy, rather than taking a binary approach to image-based diagnosis. DL approaches
encode ground truth scores and MRI features for multi-class prediction. Sanford et al. [17]
used Resnet34 CNN to predict the PI-RADS scores of manually segmented lesions. The
predicted PI-RADS scores were associated with the expert radiologist’s, with a kappa score
of 0.40. de Vente et al. [103] and Cao et al. [104] applied ordinal encoding [112], which
utilizes the ordinal nature of Gleason score (GS) to CNN models for predicting the GS of
Pca. A novel study in 2018 [107] determined the Gleason grade (GG) in Pca using stacked
sparse autoencoders (SSAE) and a SoftMax classifier. The algorithm won first place in the
PROSTATEx-2 2017 challenge, with a kappa score of 0.2326.

As mentioned earlier, lesions have different characteristics in different prostate zones.
Several methods used zonal specific imaging features to different ML/DL classifiers for
Pca scoring. For example, Jensen et al. [106] and de Vente et al. [105] applied a k-nearest
neighbour classifier and a U-Net-based model, respectively, for GG prediction, and Wang
et al. [102] employed the SVM-RFE model for PI-RADS score prediction. Their results
showed that zonal specific information and radiomic features could significantly improve
the prediction of aggressive scores for prostate lesions.

2.5. Treatment Decision Support

To patients with newly diagnosed prostate cancer, the role of MRI is to help determine
the best treatment option for the patients. For example, the presence of locally advanced
disease with extra-prostatic extension of disease (EPE) and the invasion of the neurovas-
cular bundles will increase the complexity of surgical resection, but remain amendable to
radiation therapy. In metastatic bone or nodal disease, systemic hormonal therapy is pre-
ferred. To date, machine learning-based methods for improving treatment prediction have
been limited to determining the presence of EPE and estimating biochemical recurrence
risk. The studies mentioned in this section are summarized in Table 4.
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Table 4. Machine learning methods for treatment aiding. The abbreviations are shown below 4.

Publication Year Application Method Input Feature Sample Size Ground-Truth MRI Sequence (s) CV
Results

Refs.
Acc (%) AUC (%) C-Index

2019 EPE Detection Bayesian Network,
Texture analysis Index lesions from biparametric MRI 39 Prostectomy T2w, ADC No 82 88 - [113]

2020 ECE Prediction LASSO regression ROIs of T2W images 119 Prostectomy T2w, DWI, DCE 10-fold - 82.1 - [114]

2020 EPE Detection LASSO regression Radiomic features, patients’ clinical and
pathological variables 115 Prostectomy T2w, ADC, DWI, DCE No 81.8 86.5 - [115]

2020 EPE Prediction

Combination of RF
model, radiology
interpretation and
clinical nomogram

MR radiomic features 228 Prostectomy T1w, T2w, DWI, DCE 10-fold - 79 - [116]

2021 EPE Detection SVM Radiomic feature from MRI index
lesions 193 Prostectomy T2w, ADC 10-fold 79 - - [117]

2009 BCR Prediction Cox regression GS and clinical variales 610 BCR defined by NCCN
guideline T2w, DWI, ADC, DCE No - - 0.776 (5-year), 0.788

(10-year) [118]

2015 BCR Prediction

Univariate and
multivariate analyses

using Cox’s
proportional hazards

model

PI-RADSv2 score, surgical parameters 158 Two consecutive PSA
≥ 0.2 ng/mL T2w, DWI, DCE No - - - [119]

2019
pre-biopsy mpMRI to
improve preoperative

risk model
Cox regression pre-biopsy mpMRI score 372 Two consecutive PSA

≥ 0.1 ng/mL T1w, T2w No - - - [120]

2010 BCR Prediction Univariate and
multivariate analyses

Clinical variables and tumour ADC
data 158 PSA ≥ 0.2 ng/mL ADC, DWI No - 75.5 - [121]

2019 BCR and bRFS
Prediction

Univariate and
multivariate Cox

regression
IBSI-compliant radiomic features 107 Two consecutive PSA

≥ 0.2 ng/mL T2w, ADC No - 76 - [122]

2016 BCR Prediction SVM Clinicopathologic and bpMRI variables 205 PSA ≥ 0.2 ng/mL T2w, DWI, DCE 5-fold 92.2 - - [123]

2018
Identify predictive

radiomic features for
BCR

SVM, Linear
discriminant analysis

and RF

Radiomic features from pretreatment
bpMRI 120

PSA > 0.2 ng/mL
(post-RP) and PSA >2

ng/mL (post-RT)
T2w, ADC 3-fold - 73 - [124]

2021 BCR Prediction Radiomic-based DL Quantitative features of MRI 485 PSA ≥ 0.2 ng/mL T1w, T2w, DWI, ADC No - - 0.802 [125]

2018 Post-Prostatectomy
Pathology prediction RF Demographics, PSA trends, and

location-specific biopsy findings 1560 Prostatectomy - - - 75 (OCD), 73 (ECE), 64
(pN+) - [126]

2019 IMRT response
prediction

Univariate radiomic
analysis, ML

classification models

pre-/post-IMRT mpMRI radiomic
features 33 Change of ADC values

before and after IMRT. T2w, ADC 10-fold - 63.2 - [127]

2004 BCR Prediction ANN MRI findings, PSA, biopsy Gleason
score 210 PSA level ≥ 0.1 ng/mL T2w, DWI, ADC, DCE 5-fold - 89.7 - [128]

4 CV = cross-validation, Acc = accuracy, AUC = area under ROC curve, C-Index = concordance index [129], Refs. = reference, - = not reported. bRFS = biochemical recurrence free
survival, RP = radical prostatectomy.
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2.5.1. EPE Prediction

MpMRI plays an important role in the local staging of prostate cancer. However,
for the diagnosis of EPE, MRI has variable sensitivity, reportedly as low as 0.57 [130].
The accuracy of diagnosis strongly correlates with the experience level of radiologists
interpreting the scans [131].

Recently, a radiomic-based EPE prediction has emerged. Stanzione et al. [113] pre-
dicted EPE using texture features extracted from manually segmented mpMRI maps of
index lesions. Comparing different feature selection models and ML classifiers, the Bayesian
network performed best with correctly classified instances of 82% and an AUC of 0.88.
Similarly, Ma et al. [114] and Xu et al. [115] extracted radiomic features from mpMRI,
using LASSO logistic regression for predicting extracapsular extension (ECE) and EPE,
yielding AUCs of 0.83 and 0.865, respectively. Losnegård et al. [116] combined RF analysis
with radiology interpretation and the MSKCC nomogram, resulting in an AUC of 0.79
for EPE prediction. Cuocolo et al. [117] applied SVM to train and test data from three
different institutions, and resulted in an overall accuracy of 83%. Because the real-world
implementation of ML algorithms often suffers from a drop in diagnostic performance,
more extensive validation and testing of the aforementioned models are required.

2.5.2. Biochemical Recurrence Prediction

Biochemical recurrence (BCR) is used for assessing the outcome of radical prostatec-
tomy. It indicates an increase in the PSA level of patients who have undergone radiotherapy
or surgery for PCa [132]. Pre-operative BCR prediction could help urologists and patients
to decide on an acceptable treatment option, while post-operative BCR prediction enables
an optimal surveillance.

Currently, GS, preoperative PSA and pathological stages are the main parameters used
to predict the risk of BCR. For higher accuracy and specificity, multivariate LR models such
as nomograms [133] have been used to improve prediction. Although several nomograms
for predicting BCR have been internationally validated, these tools have been developed
with limited (often single institutional) datasets, and therefore limited accuracy [134]. MRI
has been increasingly employed as an adjunct tool for improving the performance of
BCR prediction. However, the clinical application of MRI can be limited by inter-reader
variability, and the occasional degraded image quality from magnetic field-related artefacts.
Despite these challenges, several traditional ML models have been designed to find the
remarkable features in MRI for BCR prediction.

Incorporating MRI findings into traditional regression methods has been found to be
useful for BCR prediction, in some studies. Fuchsjäger et al. [118] converted MRI findings
into a scoring system using Cox proportional hazards regression, and added the scores to
published preoperative nomograms for BCR prediction. The model resulted in a C-index
of 0.776 for 5-year BCR prediction and 0.788 for 10-year prediction. A later study [119]
applied univariate and multivariate analyses using the Cox proportional hazards model
to find the correlation between the PI-RADSv2 score and BCR. It is worth noting from
this study that patients with PI-RADS < 4 did not suffer from BCR, indicating that PI-
RADSv2 may be useful to predict PCR after RP for PCa. More recently, Capogrosso
et al. [120] used 372 patients’ data for Cox regression, for assessing the association between
the pre-biopsy mpMRI score and the risk of postoperative BCR. However, the authors
did not demonstrate significant improvement after adding the pre-biopsy mpMRI score
to the existing predictive models, probably due to the insufficient data size. A better
understanding of what constitutes important MRI features would likely improve the yield
that MRI brings into predictive models.

Rather than simply relying on mpMRI scoring systems, which aggregate rather than
provide sufficient emphasis on specific important imaging features, radiomic features
have been employed with some promise of success. Using Cox regression analysis, Park
et al. [121] analysed all clinical variables and tumour ADC data, and found that tumour
ADC was the only independent predictive factor for PCR, with an AUC 0.755. The finding
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was later proven by Bournonne et al. [122], who extracted IBSI-compliant radiomic fea-
tures [135] from mpMRIs, and found that one feature (SZEGLSZM) from ADC maps was
predictive of BCR and bRFS after prostatectomy with an AUC of 0.76. Zhang et al. [123]
found that the imaging-based approach using SVM was superior to LR analysis in predict-
ing PCa outcome (accuracy 92.2% vs. 79.0%). Another study [124] employed SVM and
linear discriminant analysis on radiomic features extracted from T2-weighted and ADC
images, with a similar AUC of 0.73.

There are fewer studies using DL to analyse MRI for BCR prediction. Early in 2004,
Poulakis et al. [128] compared the artificial neural network (ANN) with classical regression
and the Kattan nomogram model in a utilization of pelvic coil MRI, resulting in a signifi-
cantly more accurate performance than the two other models (AUC 0.897 vs. 0.738, 0.728)
in predicting BCR. Recently, Yan et al. [125] proposed a DL-based algorithm that consecu-
tively extracted quantitative features from MRI and predicted BCR risk. Their model was
validated in two independent cohorts, and achieved a C-index of 0.802 in both primary and
validating cohorts, showing significant potential for DL-based BCR prediction. Importantly,
when comparing various approaches incorporating MRI information (PI-RADS grade vs.
specific imaging feature, use of DL) into these predictive models, diagnostic performance
(AUC) cannot be interpreted en face, and a head-to-head comparison of the various ap-
proaches would be better to deepen our understanding of which approach to employ for
clinical use.

2.5.3. Histological and Outcome Predictions

Often, MRI is not able to accurately depict the extent of disease burden in PCa;
notably, the presence of lymph node metastases—an important predictor of disease-free
and overall survival. Kang et al. [126] compared the performance of RF and Kattan pre-
operative nomogram (KN) in the prediction of organ-confined disease (OCD), EPE and
lymph node metastasis using 1560 patients’ data, and found that RF may outperform
KN slightly (AUC 0.75 vs. 0.69) when the positive and negative outcomes are balanced.
Abdollahi et al. [127] utilized pre- and post- operative MRI radiomic features and ML
classification methods to predict intensity-modulated radiation therapy (IMRT) response,
GS and PCa stages, showing that non-invasive radiomic features from MR images and ML
approaches are easy methods for guiding PCa diagnosis and therapy. Detailed information
pertaining to tumour stage, treatment regime and subsequent treatment response can be
prospectively amassed for the purposes of developing sophisticated predictive models that
could allow for better individualized treatment and surveillance. This will require foresight
by healthcare providers in setting up the necessary IT infrastructure to enable relevant big
(structured and unstructured) data to be mined and analysed in an informative manner.

3. Machine Learning Applications to Enhance Utility of Prostate MRI: Limitations

Multiple studies have shown potential in the application of ML-/DL-based methods
in prostate MRI. There is good reproducibility in prostate gland and zonal segmentation,
satisfactory registration between MRI and ultrasound or CT, and comparable performance
with expert reads in the detection of clinically significant prostate cancer. However, applica-
bility may be limited by relatively small validation and test datasets, as well as considerable
heterogeneity across many of these studies. Furthermore, there is often difficulty obtaining
ground truth validation for segmentation and image registration techniques. While the
automation of these processes improves time management and allows procedurists to focus
on more urgent tasks, more head-to-head comparisons, for example comparing automated
vs. expert-read lesion detection and lesion scoring, are needed to compare the diagnostic
performance of ML/DL-based methods with conventional interpretation, or demonstrate
the added advantage of ML-/DL-based methods over manual interventions.

There remain two potential clinical questions that could be addressed by DL/ML in
the future. First, patients with low-risk prostate cancer can undergo active surveillance
(AS), where upfront definitive treatment such as surgery or radiotherapy is deferred until
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there is evidence of disease progression. Prostate MRI is increasingly being integrated
into active surveillance protocols for this group of patients, where the aim is to determine
radiologic change between interval surveillance MRI scans which would suggest disease
progression [136]. ML has been utilised to predict the probability of disease progression for
patients on AS, based on clinical criteria such as age, family history, serum PSA, and tumour
volume [137]. However, to our knowledge, ML/DL methods in prostate MRI have yet to
be incorporated into active surveillance strategies. The detection of a significant change
between surveillance MRI can be challenging for even the most experienced radiologist,
and ML/DL methods would be very helpful in this setting. Second, patients diagnosed
with BCR often undergo a prostate MRI to evaluate for local recurrence. Post-treatment
MRI appearance in this group of patients who have either undergone surgery, radiotherapy
or focal therapy will differ considerably from pre-treatment MRI. To our knowledge, there
are no published studies evaluating ML/DL in a post-treatment MRI scan for the detection
of local recurrence. The assessment for local recurrence can be challenging for radiologists,
given the variable morphological features on MRI. ML/DL applications will also be very
helpful in this setting.

4. Future Opportunities

With the above advances in ML techniques, it is foreseeable that a combination of
various approaches could ultimately reproduce a radiologist’s role in MRI prostate inter-
pretation. Alkadi et al. [101] developed a DL encoder–decoder architecture that could
concurrently segment the prostate, define its anatomical structure, and mark out suspicious
lesions. With an employment of 3D spatial information from MR series, their accuracy for
cancer detection was 0.894. Recently, Mehralivand et al. [100] proposed a cascaded DL
model for lesion detection and scoring on bpMRI. The model contained a 3-D UNet-based
network that automatically detected and segmented prostate MRI lesions, and two 3D
residual networks that made 4-class classification to predict PI-RADS categories. The
mean DSC for lesion segmentation was 0.359. Hoar et al. [54] compared several ML and
comprehensive DL models, and found that the combination of transfer learning and test
time augmentation resulted in a significant improvement (DSC 0.59, AUC 0.93) in CNN
lesion segmentation for a small set of mpMRI data comprising 154 patients. Whereas
image segmentation and registration are relatively simpler tasks, much validation work
remains, in order to develop these lesion detection and characterization prototypes into
diagnostic tools that can meet regulatory standards and gain adoption into mainstream
clinical practice.

Federated Learning

The data sharing, privacy and security policy may limit the ML model training that
requires large (centralized) datasets. In the past few years, federated learning (FL) attracted
much attention and many interests in the area where data sharing is a concern. FL is the
technology enabling collaborative learning with de-centralized data [138]. However, it
is still in the early stage, and challenges remain for medical applications [139], mainly
due to policy and constraints on the access to learning infrastructure. The efficacy of the
FL model has to be validated with more real-world studies. A recent survey on FL [140]
summarises the related areas on data distribution, privacy protection, machine learning
model aggregation, and communication. In applications of prostate imaging, recent works
focus only on prostate segmentation [42,141], showing outperforming results over models
using single data sources. A study to use FL for COVID-19 outcome predictions based on
EMR data across over 20 countries [142] shows the potential to collectively use multiple data
sources for medical applications. Commercially, there are platforms that researchers can
use, as well as open platforms available; examples include Nvidia Clara [143], Tensorflow
Federated [144], IBM FL [145], OpenFL [146], FATE [147], XayNey [148], Baidu FL [149] et al.
We anticipate that federated learning could accelerate the development of DL algorithms in
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domains where large datasets are not feasible from single institutions alone, such as in the
case of MRI prostate.

5. Conclusions

Rapid advancements in ML and DL have led to a recent surge in interest in the domain
of computer vision in medical imaging. Prostate MRI is an ideal imaging modality for
DL applications, given that it is the mainstay of lesion detection, and in line with a trend
towards targeted biopsy and local ablative therapies to improve clinical outcomes. It has
remarkable potential to increase the manpower productivity of radiologists and radiation
oncologists over the manual segmentation of the organ, reduce interobserver variability
in lesion detection and cross-modality image co-registration, and advance the accuracy of
PIRADS through predictive analytics and federated learning for risk stratification, and the
individualized care of patients at risk and with prostate cancer.
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