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Abstract: Lung cancer has one of the highest mortality rates of all cancers and poses a severe threat
to people’s health. Therefore, diagnosing lung nodules at an early stage is crucial to improving
patient survival rates. Numerous computer-aided diagnosis (CAD) systems have been developed
to detect and classify such nodules in their early stages. Currently, CAD systems for pulmonary
nodules comprise data acquisition, pre-processing, lung segmentation, nodule detection, false-
positive reduction, segmentation, and classification. A number of review articles have considered
various components of such systems, but this review focuses on segmentation and classification parts.
Specifically, categorizing segmentation parts based on lung nodule type and network architectures,
i.e., general neural network and multiview convolution neural network (CNN) architecture. Moreover,
this work organizes related literature for classification of parts based on nodule or non-nodule and
benign or malignant. The essential CT lung datasets and evaluation metrics used in the detection and
diagnosis of lung nodules have been systematically summarized as well. Thus, this review provides
a baseline understanding of the topic for interested readers.

Keywords: lung cancer; deep learning; lung nodule segmentation and classification; lung nodule
computer-aided diagnosis

1. Introduction

Lung cancer is one of the deadliest forms of cancer worldwide and represents a
significant threat to human health and life. Over the past 50 years, the incidence and
mortality rate of lung cancer have increased significantly in many countries. For example,
according to the American Cancer Society, approximately 1,898,160 new cases will be
diagnosed in 2021 and approximately 608,570 patients will die.

In general, the detection of lung cancer begins with the diagnosis of lung nodules,
which are a leading radiological indicator for early diagnosis. The degree of malignancy of
the nodule depends on its diameter. In most cases, nodules are small, rounded opacities
within the pulmonary interstitium [1], which is a collection of support tissues within the
lung that includes the alveolar epithelium, pulmonary capillary endothelium, basement
membrane, and perivascular and perilymphatic tissues [2]. Lung nodules vary widely in
terms of their shapes, sizes, and types [3]. Some nodules are spherical, with diameters from
<2 mm to 30 mm [4], whilst other nodules have complex vascular attachments located in
regions with large vessels and are challenging to detect. For instance, solid nodules (SN)
and sub-solid nodules (SSNs) have densities only slightly above that of the surrounding
lung parenchyma [5]. SNs are the most common type of nodule and contain the core
functional lung tissues, whereas SSNs are pulmonary tumors with restricted ground-glass
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opacity (GGO). SSNs can be further categorized into part-solid nodules and pure ground-
glass nodules [6]. These nodules show opacifications of a greater density than the nearby
tissues and do not obscure underlying broncho-vascular structures [7].

As nodule size is related to malignancy, accurately measuring the diameter of nodules
is critical to diagnosis. Several studies [1,8,9] have provided guidelines to this end. For
example, the End-Use Load and Consumer Assessment Program (ELCAP) database [3]
suggests a 1% malignancy rate for nodules smaller than 5 mm in diameter, 24% for nodules
between 6 mm and 10 mm, 33% for nodules between 11 mm and 20 mm, and 80% for
nodules of more than 20 mm [10]. However, errors may arise while measuring the diameter
of very small nodules.

The treatment of lung cancer nodules is relatively complex. Nearly 70% of lung cancer
patients require radiation therapy as part of their treatment, but such therapy can cause
radiation-induced lung injury, which is a limiting toxicity that may decrease cure rates
and increase morbidity and mortality. To overcome the defect of extracting additional
information from nodules and to improve the accuracy of the classification of nodules,
computer-aided diagnostic (CAD) systems are critical tools for radiologists. CAD systems
are designed to overcome observational errors, reduce false-negative rates [11], and provide
a second opinion for medical image interpretation and diagnosis [12]. Several studies have
suggested that incorporating a CAD system into the diagnostic process can improve the
performance of image diagnosis by decreasing inter-observer variation [13]. Likewise,
CAD systems: provide quantitative support for clinical decisions such as biopsy recom-
mendations [14]; assist in the performance of diagnostic checkups; reduce unnecessary
false-positive biopsies [15] and thoracotomies [12]; and can be used to differentiate between
the malignancy and benignancy of tumors [16,17].

Positive results in clinical studies have led to an upsurge in lung cancer detection
using CAD models. Adopting and using such systems can improve survival rates through
the diagnosis of lung nodules at early stages. The current computed tomography (CT)
CAD applications search for pulmonary densities with specific physical characteristics (e.g.,
sphericity) that are representative of lung nodules [11]. Thus, CT CAD applications for
lung nodule screening have become an active area of research.

Initially, lung nodule diagnosis was heavily dependent on approaches that did not
incorporate machine learning [18–24]. Later, machine learning-based approaches [25–30]
were introduced to build the optimal boundary using data [31]. Recently, much research
has been devoted to deep learning (DL)-inspired methods due to the accuracy of their
predictions. DL-based models are different from conventional CAD systems, as they can be
easily optimized and applied to a large amount of data [32]. DL relies on convolutional neu-
ral networks (CNNs) and has made a significant contribution to lung nodule diagnosis and
management [33–36]. DL has been applied to pulmonary nodule diagnosis in three mod-
ules: nodule detection, segmentation, and classification. The detection module is responsi-
ble for localizing the nodule, the segmentation module aims to contour the nodule voxels,
and the classification module predicts the nodule type (i.e., benign or malignant) [31].

Previous studies have conducted reviews of the research on pulmonary nodule de-
tection techniques [31,32,37–43], with a range of objectives. However, the objective of this
review article is to focus on the segmentation and classification modules of the pulmonary
CAD system. The segmentation and classification tasks are the core components of a CAD
system and ease the final decision-making regarding lung nodule, non-nodule, lung nodule
type, and size. Furthermore, this work classifies the lung nodule segmentation literature
based on different network architectures (general neural network and multiview CNN
architecture), which will provide a clear understanding and intuition to a new researcher
in the field for future research. For this purpose, the intended review study describes some
recent and previous publications from reputable databases, including IEEE Xplore, Web of
Science, PubMed, ScienceDirect, and Scopus, that have addressed the difficulties involved
in diagnosing lung nodules.
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The rest of the paper is organized as follows: Section 2 provides an overview of a
CAD framework; Sections 3 and 4 describe the primary datasets and various evaluation
metrics; and Sections 5 and 6 outline the research on segmentation and classification
approaches, respectively.

2. General CAD Framework for Detection and Diagnosis of Pulmonary Nodules

Different CAD systems comprise different elements. The most common components
of a CAD system are data acquisition, pre-processing, lung segmentation, lung nodule
detection, false positive (FP) reduction, lung nodule segmentation, and lung nodule clas-
sification [42,44]. In the data acquisition step, the images used by the CAD system are
collected. CT is a preferred choice for early nodule screening for this purpose, due to its
high sensitivity and relatively low cost [45]. The pre-processing step involves the elimi-
nation of noise, artifacts, and other useless information from the images, thus improving
the image quality for the subsequent steps. During lung segmentation, clinicians identify
the boundaries of the lung from surrounding thoracic tissue in the CT images [46]. The
detection step involves the localization of the lung nodule or mass and is followed by the FP
reduction step [47]. The false-positive step is an essential process and involves identifying
true lung nodules from the detected candidate nodules. In the lung nodule segmentation
step, each nodule is segmented from the lung parenchyma. Then, in the feature extraction
step, the characteristics of the nodule are quantified. These features are further used in the
nodule classification step. Nodule classification is the final, and most vital, component of a
CAD system and involves the differentiation of benign and malignant nodules. A typical
pipeline of a lung nodule CAD system is depicted in Figure 1.
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3. Datasets

DL models rely heavily on datasets. This is because the effective performance of the
advanced learning algorithms is achieved using high-quality training datasets. However,
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high-quality, labeled training sets are usually complicated and expensive to produce. As a
result, few public databases are available to support the development of lung nodule CAD
systems. Indeed, whilst some organizations have made significant contributions to the
formation of public datasets to facilitate research on the diagnosis of lung nodules using CT,
these datasets do not adopt a standardized format for the storage of nodule information,
and their labeling procedures also vary. For instance, some datasets are labeled using the
coordinates of the vertices of the polygon, while other datasets are labeled according to the
form of the center and radius of the nodule. A selection of databases used for lung nodule
diagnosis research are briefly described below.

LIDC-IDRI: The Lung Image Database Consortium and Image Database Resource
Initiative (LIDC-IDRI) contains 1018 CT scans with marked-up annotated lesions in DICOM
format. The diagnostic annotations are provided in XML format. For each CT scan, four
experienced thoracic radiologists performed a two-stage annotation and revision procedure.
In the first phase, the radiologists independently assessed each CT scan and labeled lesions
as “nodule ≥ 3 mm,” “nodule = 3 mm,” or “non-nodule ≥ 3 mm”. After that, each
radiologist independently reviewed the labels of the other lesions and gave their final
diagnosis [48].

LUNA16: The extensive Lung Nodule Analysis 16 (LUNA 16) dataset is derived from
LIDC-IDRI. It includes 36,378 annotations by radiologists on 888 selected CT scans. The
authors only considered annotations categorized as nodules that were ≥3 mm as relevant
lesions; nodules that were <3 mm and non-nodule lesions were not regarded as relevant
for lung cancer screening protocols. A total of 1186 nodules were considered to be positive
examples (i.e., the lesions that the algorithms should detect). Other nodules, i.e., those
with different diameters, were regarded as irrelevant findings, and the marks on such
locations were not counted as either FPs or true positives; rather, the irrelevant findings
were excluded from the evaluation altogether [49].

Ali Tianchi: This dataset was developed by the Ali Tianchi Medical AI Competition
and includes information on the nodules of 1000 patients. All the nodules were marked
and confirmed by three doctors, except for the nodules analyzed by pathology. Nodules
of 5–10 mm account for 50% of the dataset, and nodules of 10–30 mm account for the
remaining 50%. Information on the position and size of the marked nodules is stored in
CSV format.

NSCLC: The Non-Small Cell Lung Cancer (NSCLC) dataset contains information
from 211 patients and 1355 CT images, with the images of 144 patients being obtained
from axial CT imaging using an automatic segmentation algorithm. All the obtained
segmentations were reviewed by thoracic radiologists, each of whom had more than
five years of experience. The nodule annotations are stored in AIM format [50].

ELCAP: The Early Lung Cancer Action Program (ELCAP) database consists of a
dataset of 50 low-dose documented whole-lung CT scans for detection purposes. The CT
scans were obtained in a single breath-hold with a 1.25 mm slice thickness. The dataset also
provides the locations of nodules between 2 mm and 5 mm in diameter that were detected
by a radiologist [3].

ANODE09: This dataset belongs to the 2009 Automated Nodule Detection Database,
which contains 55 CT scans, each with a slice thickness of approximately 1.0 mm. However,
in the dataset, only five scans of 512× 512 pixels were annotated; the other 55 scans were left
unmarked to test the models. The annotated scans comprise 39 nodules and 31 non-nodules [51].

Table 1 summarizes the cited datasets and their detailed composition.
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Table 1. Cited datasets and their composition.

Dataset The Number of CT Scans The Number of Nodules Annotation

LIDC-IDRI 1018 36,378
√

LUNA16 888 13,799
√

Ali Tianchi 1000 1000
√

NSCLC 211 -
√

ELCAP 50 -
√

ANODE09 55 (only 5 CT scans) 39
√

4. Lung Nodule Evaluation Metrics

Existing research has recognized the critical role played by evaluation metrics, which are
used to measure the performance of the developed diagnostic models. The models for the
detection and classification of lung nodules are mostly assessed according to sensitivity (SEN),
specificity (SPEC), accuracy (ACC), precision (PPV), F1-score, receiver operating characteristic
(ROC) curve, free-response operating characteristic (FROC), and area under the ROC curve
(AUC), but the competition performance metric (CPM) can also be used to assess their perfor-
mance [27]. The various metrics used to evaluate the performance of lung cancer algorithms
are summarized in Table 2.

Table 2. Various evaluation metrics used for lung cancer/nodule diagnosis.

Metric Brief Expression

Sensitivity (SEN) Measures the proportion of positives that are
correctly identified SEN = TP

TP+FN

Accuracy (ACC) Classification accuracy of the classifier ACC = TP+TN
TP+FN+FP+TN

Positive predictive value (PPV) The proportions of positive results in statistics and
diagnostic tests that are truly positive PPV = TP

TP+FP

Dice Similarity Coefficient (DSC) A statistics used to gauge the similarity of
two samples. DSC = 2TP

2TP+FP+FN

Intersection over Union (IoU)
The IoU measurement gives the similarity between
the predicted area and the real area of the objects

present in the set of images
IoU = TP

TP+FP+FN

F1-Score Used in statistics to measure the accuracy of a
binary classification model F1 =

2(SEN+PPV)
(SEN+PPV)

Receiver Operating Characteristic (ROC)
A curve depicting the relationship between the
sensitivity and specificity (Y-axis is TP rate and

X-axis is the FP rate)
-

Free Receiver Operating Characteristic
(FROC)

Similar to the ROC curve, differing only in the
X-axis. The X-axis is the FP rate per image

(or per scan)
-

Area Under Curve (AUC) Total area under the ROC curve -

Competition Performance Metric (CPM) Average of the Sensitivity at seven defined FP rates
in the FROC curve: 1/8,1/4,1/2,1,2,4,8 FPs/scan -

Mean Average Precision (mAP) Mean Average Precision -

Note: TP: true positive; TN: true negative; FN: false negative; FP: false positive.

5. Lung Nodule Segmentation

The accurate segmentation of lung nodules is challenging due to their small size,
especially at the edge of the lung and near the blood vessels. Lung nodule segmentation
is relatively broad and varies in terms of architecture, image pre-processing, and training
strategy [52]. For instance, some DL-based nodule segmentation approaches are based on
multiview neural network architecture, whilst others are based on general neural network
architecture. Approaches that are based on multiview neural network architecture consider
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multiple views of lung nodules and combine them as an input to neural networks. General
neural network architecture, on the other hand, builds on traditional CNN networks by
changing or adding some blocks.

Thus, this section, categorizes the literature on segmentation into two key approaches
to pulmonary nodule segmentation: general neural network architecture and multiview
architecture (i.e., multiscale problems). Moreover, the type and shape of a lung nodule
significantly affect the choice of segmentation method for nodule detection. Therefore, this
section also focuses on the different segmentation methods that are proposed for different
types and sizes of nodules.

5.1. General Neural Network Architecture

Most published studies combined the conventional convolution network (CNN) ar-
chitecture with neural network blocks for lung nodule segmentation. U-Net and Fully
Convolutional Neural Networks (FCN) architectures are two basic structures that are
frequently used. Numerous works have shown that convolutional neural networks archi-
tecture can significantly improve the performance of lung segmentation [53–60], especially
semantic segmentation networks such as FCN [61] and U-Net [62]. Such networks imple-
ment two key steps. First, the image feature maps are extracted using a down-sampling
process to filter the unnecessary information, whilst the important information is retained.
Second, the resulting feature maps are then amplified through an up-sampling process to
achieve a higher-resolution display image.

Inspired by these networks, many segmentation studies modified and fine-tuned
their models by leveraging the basic CNN architecture or changing or adding blocks to
that CNN architecture. Huang et al. [57] proposed a system with four major modules:
candidate nodule detection with faster regional-CNN (R-CNN), candidate merging, FP
reduction using a CNN, and nodule segmentation using a customized FCN. Their model
was trained and validated on the LIDC-IDRI dataset and achieved an average of 0.793 DSC.
Tong et al. [59] utilized the U-Net architecture to perform the lung nodule segmentation.
Their proposed method improved network performance by combining the U-Net with
a residual block. Moreover, the lung parenchyma was extracted using a morphological
method and the image was cropped to 64 × 64 pixels as an input to their improved
network. The proposed model was trained and validated on the LUNA16 dataset and
achieved 0.736 DSC. Usman et al. [56] proposed a dynamic modification region of interest
(ROI) algorithm. This approach used Deep Res-UNet as the foundation for locating the
input lung nodule volumes and improving lung nodule segmentation. Their method was
divided into two stages. In the first stage, the Deep Res-Net was used for training and
predicting the axial axis of the CT images. The second stage then focused on the new ROI
in the CT image and used the deep Res-UNet architecture for the coronal and sagittal axes
to train the network. The second stage also integrated the prediction results from the first
stage into the final 3D results. Ultimately, the proposed method achieved 87.55% average
DSC, 91.62% SEN, and 88.24% PPV.

Zhao et al. [60] proposed the implementation of a patch-based 3D U-Net and contextual
CNN to automatically segment and classify lung nodules. This process began with a 3D
U-Net architecture being used to segment the lung nodules, before generative adversarial
networks (GANs) [63] were used to enhance the 3D U-Ne, and, finally, the contextual
CNN was used to reduce the lung nodule segmentation FPs and improve the benign and
malignant classification. This method achieved good results in segmenting lung nodules
and classifying nodule types. Kumar et al. [55] utilized V-Net [64] for their lung nodule
segmentation model. The proposed architecture adopted a 3D CNN model, using only the
convolutional layers and ignoring the pooling layers. This model was evaluated on the
LUNA16 dataset and achieved a DSC of 0.9615. Pezzano et al. [65] proposed a lung nodule
segmentation network that added Multiple Convolutional Layer (MCL) blocks to the U-Net.
The proposed network architecture was also divided into two phases, as opposed to being
an end-to-end network. In the first phase, the researcher- trained model obtained the initial
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results; then, in the second phase, a morphological method was used for post-processing in
order to highlight the nodules at the lung edges. The proposed architecture was trained and
validated on the LIDC-IDRI database. The model achieved an 85.9% sensitivity, a 76.7% IoU,
and an 86.1% F1-score. Keetha et al. [54] proposed a resource-efficient U-Det architecture
by integrating U-Net with Bi-FPN (implemented in Efficient-Det). The proposed network
was trained and tested on the LUNA dataset and achieved an average DSC of 82.82%, an
average SEN of 92.25%, and an average PPV of 78.92%.

5.2. Multiview CNN Architecture

Many research studies have proposed new architectures by taking multiple views of
lung nodules as inputs to neural networks to achieve improved results [53,66–70]. These
segmentation methods are primarily based on CNN networks and combine multiscale or
multiview methods to train the neural networks. The structures of the different networks
are depicted in Figure 2.
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For instance, Zhang et al. [71] used a conventional method for nodule segmentation
with a multiscale Laplacian of Gaussian filter to detect nodules. The proposed method
was evaluated on the LUNA16 dataset and achieved a detection score of 0.947. Similarly,
Shen et al. [70] considered different scales at feature levels in a single network and proposed
the use of a multicrop CNN (MC-CNN) to automatically extract salient nodule information
by employing a novel multicrop pooling strategy. Dong et al. [67] proposed a multiview
secondary input residual (MV-SIR) CNN model for 3D lung nodule segmentation. Their
approach achieved good results, with an 0.926 average DSC and 0.936 PPV.

Cao et al. [72] constructed a dual-branch residual network (DB-ResNet) and obtained
improved lung segmentation results, with an average SEN of 89.35% and an average DSC
of 82.74%. The proposed method employed two newly integrated schemes. First, it used the
multiview and multiscale features of different nodules in CT images; second, it combined
the intensity features with a CNN. Recently, Wu et al. [53] developed an interpretable,
multitask learning CNN–joint learning for pulmonary nodule segmentation attributes and
malignancy prediction (PN-SAMP) based on the U-Net architecture. The model achieved
an average DSC of 73.89% and an average SEN of 97.58%. Finally, Wang et al. [69] proposed
a central-focused CNN (CF-CNN) to segment lung nodules. Their architecture comprised
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two stages that used the same neural network to extract features and then merge those
features. In addition, the authors used central pooling to preserve more of the features of
the lung nodules. The model was tested on the LIDC-IDRI dataset and achieved an average
DSC of 82.15% and an average SEN of 92.75%.

5.3. Segmentation Based on Lung Nodule Type

As mentioned above, pulmonary nodules have different types, shapes, and clinical
features. Thus, the procedures used to detect nodules, as well as the associated challenges
of such procedures, vary from case to case. In this section, we begin to address this
issue by summarizing some of the works that have considered variations based on type.
Table 3 shows the related methods and summarizes their key highlights.

Generally, lung nodules that are close to blood vessels and pleura are most challeng-
ing to detect. Thus, increasing the detail of the boundary nodules is core for all models.
Pezzano et al. [65] proposed a network structure based on U-Net to segment lung nodules.
The authors developed the multiple convolutional layers (MCL) module to fine-tune the
details of the boundary nodules and post-process the nodule segmentation results. Mor-
phological methods were used to strengthen the detail of the edge nodules. Dong et al. [67],
meanwhile, proposed a model that incorporated features of voxel heterogeneity (VH) and
shape heterogeneity (SH). VH reflects differences in gray voxel value, while SH reflects the
characteristics of a better nodule shape. The authors found that VH can significantly learn
gray information, whereas SH can better learn boundary information.

In addition, for juxta-pleural and small nodules, Cao et al. [72] proposed the DB-
ResNet and presented a central intensity-pooling layer (CIP), which preserved the intensity
features centered on the target voxel rather than the intensity information. For well-
circumscribed nodules, Huang et al. [57] proposed a system that included segmentation
and classification. In the segmentation step, the authors demonstrated that the model had
a segmentation effect that was superior to that of other models.

However, the above methods exhibited slightly worse performance for the juxta-
pleural, juxta-vascular, and ground-glass opacity nodules. Thus, to improve the perfor-
mance of the model with respect to these types of nodules, AI-Shabi et al. [73] proposed
the use of residual blocks with a 3 × 3 kernel size to extract local features and non-local
blocks to extract global features. The proposed method managed to avoid many param-
eters and thus performed to a high standard. The LIDC-IDRI dataset was used for the
training and testing. The proposed model achieved outstanding results as compared to
DenseNet and ResNet in terms of transfer learning, scoring an AUC of 95.62%. Recently,
Aresta et al. [58] constructed iW-Net, which comprised nodule segmentation and elements
of user intervention. The proposed architecture performed well on large nodules without
any user intervention. However, when user intervention was incorporated, the quality of
the nodule segmentation in non-solid and sub-solid abnormalities improved significantly.

Table 3. Deep learning-based lung nodule segmentation architectures and their key information.

Study Year Architecture Dataset Approach Performance

Pezzano
et al. [65] 2021 CoLe-CNN LIDC-IDRI

2D
Based U-Net

Inception-v4 architecture
Mean Square Error

function

F1 = 86.1
IoU = 76.6

Dong
et al. [67] 2020 MV-SIR LIDC-IDRI

2D/3D
Residual block

Secondary input
Multi views

Voxel heterogeneity (VH)
Shape heterogeneity (SH)

ASD = 7.2 ± 3.3
HSD = 129.3 ± 53.3

DSC = 92.6 ± 3.5
PPV = 93.6 ± 2.2

SEN = 98.1 ± 11.3
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Table 3. Cont.

Study Year Architecture Dataset Approach Performance

Keetha
et al. [54] 2020 U-DNet LUNA16

2D
Based U-Net

Bi-FPN
Efficient-Det

Mish activity function

DSC = 82.82 ± 11.71
SEN = 92.24 ± 14.14
PPV = 78.92 ± 17.52

Cao et al.
[72] 2020 DB-ResNet LIDC-IDRI

2D/3D
ResNet

CIP
Multiview
Multiscale

Central Intensity-Pooling

DSC = 82.74 ± 10.19
ASD = 19 ± 21

SEN = 89.35 ± 11.79
PPV = 79.64 ± 13.34

Kumar el
al. [55] 2020 V-Net LUNA16

3D
V-Net
PReLU

Only fully convolutional
lays

DSC = 96.15

Usman
et al. [56] 2020

Adaptive ROI
with Multi-view

Residual
Learning

LIDC-IDRI

2D/3D
the Deep Residual U-Net

Adaptive ROI
Multiview

SEN = 91.62
PPV = 88.24
DSC = 87.55

Tang et al.
[74] 2019 NoduleNet LIDC-IDRI

3D
Multitask

Residual-block
Detection, FPR,
segmentation

Different loss function

DSC = 83.10
CPM = 87.27

Huang
et al. [57] 2019 Faster R-CNN LUNA16

2D
Faster RCNN
Merge overlap
FP reduction
Based FCN

ACC = 91.4
DSC = 79.3

Aresta
et al. [58] 2019 iW-Net LIDC-IDRI

3D
Based U-Net

two points in the nodule
boundary

none heavy
pre-processing steps

augmentation

IoU = 55

Hesamian
et al. [75] 2019 Atrous

convolution LIDC-IDRI

2D
Atrous convolution
Residual Network

Weight loss
Normalize to 0, 255

DSC = 81.24
Precision = 79.75

Liu et al.
[76] 2018 Mask R-CNN LIDC-IDRI

2D
Backbone: ResNet101,

FPN
transfer learning

RPN
FCN

73.34 mAP
79.65 mAP

Khosravan
et al. [77] 2018

Semi-supervised
multitask
learning

LUNA16

3D
Data augmentation

Semi-supervised
FP reduction

SEN = 98
DSC = 91
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Table 3. Cont.

Study Year Architecture Dataset Approach Performance

Wu et al.
[53] 2018 PN-SAMP LIDC-IDRI

3D
3D U-Net
WW/WC

Dice coefficient loss
Segmentation, classification

DSC = 73.98

Tong et al.
[59] 2018 Improved

U-NET network LUNA16

2D
U-Net

Modify residual block
Obtain lung parenchyma

DSC = 73.6

Zhao et al.
[60] 2018

3D U-Net and
Contextual

Convolutional
Neural Network

LIDC-IDRI

3D
3D U-Net

GAN
Morphological methods

Residual block
Inception structure

None

Wang
et al. [66] 2017 MV-CNN LIDC-IDRI

2D/3D
Mutilview

A multiscale patch strategy

SEN = 83.72
PPV = 77.59
DSC = 77.67

Wang
et al. [69] 2017 CF-CNN LIDC-

IDRI/GDGH

2D/3D
Central pooling

3D patch
2D views

A sampling method
Two datasets

LIDC:
DSC = 82.15 ± 10.76
SEN = 92.75 ± 12.83
PPV = 75.84 ± 13.14

GDGH:
DSC = 80.02 ± 11.09
SEN = 83.19 ± 15.22
PPV = 79.30 ± 12.09

6. Classification

In addition to the above works on nodule detection, other studies have focused
on the classification of candidate nodules according to the following categories: benign,
primary cancer, and metastatic cancer. Classification tasks also incorporate FP screening or
reduction, which can improve the accuracy of classification. Therefore, nodule classification
is essential because it assists doctors in diagnosing benign and malignant nodules, thus
improving the overall efficiency of diagnoses. For this purpose, deep neural networks are
used to analyze various characteristics of lung nodules, such as their shape and location.
Neural networks are further used to analyze the input lesion area and to predict the final
results. This section therefore provides a brief overview of the existing literature to illustrate
the various techniques that have been developed to support malignancy detection and the
classification of lung nodules.

6.1. Classification as Nodule or Non-Nodule

When searching for candidate nodules, the presence of blood vessels and other soft
tissues can lead to the detection of FPs. Adopting effective classification techniques can
reduce FP detection and, thus, significantly improve the accuracy of nodule identification
and reduce the difficulty of subsequent tasks. For example, Wu et al. [78] developed a
deep residual network to classify lung nodules. For this, the authors adopted a transfer-
learning-based 50-layer Res-Net structure with global average pooling. The Principal
Component Analysis (PCA) technique was used to reduce the feature size and number
of parameters. The architecture was trained and tested on the LIDC-IDRI dataset. It
achieved an accuracy of 98.23%, a sensitivity of 97.7%, a specificity of 98.35%, and an
F1-score of 98.06%. Tran et al. [79] proposed an LdcNet model to improve the accuracy of
the classification of pulmonary nodules. They used a 15-layer 2D CNN and employed Focal
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loss to classify the pulmonary candidates as nodule or non-nodule. They also used data
extracted from the LIDC-IDRI and LUNA16 data sets. Their model achieved an accuracy of
97.2%, a sensitivity of 96.0%, and a specificity of 97.3%.

Li et al. [80] used CNN and a fully connected layer to classify pulmonary nodules.
They divided the input patch into 32 × 32 and 64 × 64 sections using the nodule size and
trained two identical networks. The proposed network was trained on 62,492 ROI samples,
including 40,772 nodules and 21,720 non-nodules, from the LIDC-IDRI dataset. It achieved
an accuracy of 86.4% and a sensitivity of 89.0%. Mastouri et al. [81] proposed a network to
classify lung nodules, known as bilinear CNN (BCNN). Their network used VGG-16 and
VGG-19 as the training network to extract the relevant features, while an SVM classifier
was utilized for the nodule classification. The additional ablation experiments conducted
by the authors on the LIDC-IDRI dataset demonstrated that the SVM classifier performed
better than soft-max, KNN, and other classifiers. Additionally, using VGG-16 + VGG-19
was shown to be superior to using a single network (e.g., VGG-16 + VGG-16). Ultimately,
the proposed network achieved an accuracy of 91.99% and an AUC of 95.9%. Finally,
Yang et al. [82] suggested using a two-stage CNN (2S-CNN) to classify the candidates into
nodules/non-nodules, leading to a classification accuracy of 89.6%.

6.2. Classification as Benign or Malignant

Given that lung nodules have various types and shapes, radiologists find it challenging
to classify them as benign or malignant based on CT images—a topic that numerous studies
have focused on. Table 4 summarizes the methods adopted in each study.

For example, Ali [83] proposed using a transferable texture CNN to improve the
classification of pulmonary nodules in CT scans. The proposed approach used the LIDC-
IDRI and LUNGx datasets for training and validation. Furthermore, a transfer learning
technique was used to extract the weights of some layers of the training model to retrain the
LUNGx dataset using the proposed architecture. The trained model achieved an accuracy
of 97.69%, an error rate of 3.3%, an AUC of 99.11%, and a sensitivity of 97.19% on the
LIDC-IDRI dataset. It achieved excellent results, with a 90.91% accuracy, 91.37% sensitivity,
and 94.14% AUC on the LUNGx dataset.

Al-Shabi et al. [73] proposed combining a deep local-global network with residual
and non-local blocks to extract the global features with few parameters. Their proposed
network successfully analyzed the shape and size of the nodules. The architecture training
and testing were performed using the LIDC-IDRI dataset. Their results produced an AUC
of 95.62%, an accuracy of 88.46%, a sensitivity of 88.66%, and a precision of 87.38%. In
another study [84], also led by Al-Shabi, gated dilated networks were used to classify
nodules as malignant or benign. The proposed network incorporated a context-aware
sub-network that analyzed the input features and guided the features to a suitably dilated
convolution to reduce the parameters. The framework achieved better recognition of
medium-sized nodules, based on an evaluation using the LIDC-IDRI dataset. Similarly,
another model, MoDenseNet [85], used a two-pathway 3D CNN architecture with dense
blocks to classify nodules as malignant or benign. Patches of the same nodule at different
scales (e.g., 50 × 50 × 5, 100 × 100 × 10) were used as the network’s inputs. Finally, the
intermediate and final feature maps were concatenated and classified into the prediction
results. The proposed model was trained on 686 lung nodules from the LIDC-IDRI dataset.
The testing results produced a TPR of 90.47%, a TNR of 90.33%, a PPV of 90.55%, an AUC
of 95.48%, and an accuracy of 90.40%.

Wu et al. [53] developed a classification network to concatenate the feature map of
the third layer of their proposed lung nodule segmentation network with the feature map
of the final result of the lung nodule segmentation network so as to classify nodules as
benign or malignant. Their model was evaluated on the LIDC-IDRI dataset and achieved an
accuracy of 89.33%. Zhao et al. [60] proposed using a contextual CNN to reduce FPs when
classifying nodules as benign or malignant. Moreover, they concatenated the feature map
of the contextual CNN with the feature map of the sixth layer of the CNN. The proposed
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framework performed the required classification accurately and efficiently. In another
study, a three-pathway multiview CNN model [86] was used to classify lung nodules as
benign or malignant, with a curriculum learning strategy also being adopted to enable the
network to learn more precise weightings. The model was evaluated on the LIDC-IDRI
dataset and achieved a sensitivity of 91.07%, a specificity of 88.64%, a precision of 89.35%,
an accuracy of 89.90%, and an AUC of 94.59%. Liu et al. [87] developed an MV-CNN
framework to classify pulmonary nodules. They used multichannel CT images to improve
the extraction of feature information, incorporating seven patches at different scales, and
proposed both binary and ternary classification. Furthermore, they performed multiple
experiments to prove that multichannel input performed better than single-channel input
and achieved better quantitative results compared with other models.

Shen et al. [70] proposed a multicrop pooling layer technique based on a spatial
pyramid pooling network (SPPNet) that captured nodule-centric visual features without
including a nodule classification step after segmentation. The proposed model was eval-
uated on the LIDC-IDRI dataset and achieved an accuracy of 87.14%, an AUC of 93%, a
sensitivity of 77%, and a specificity of 93%. Other methods have also been proposed to
classify lung nodules as benign or malignant. For example, one study proposed that an
auto-encoder and binary decision tree be used [88]. For this, the fully connected (FC) layer
was used to extract the features, before the binary decision tree was used to classify the
nodules; after that, the LIDC-IDRI dataset was used to evaluate the model.

In another study [89], the authors developed an unsupervised method based on a deep
sparse autoencoder (SAE) to extract the robust features from the lung. They then used a
linear support vector machine (SVM) to classify the nodules. Nasrullah et al. [90] utilized a
gradient boosting machine (GBM) and MixNet [91] to learn the complex features of nodules.
Their approach combined the advantages of dual-path networks (DPN) with residual
networks (ResNet) and Densly Connected Networks (DenseNet) to perform the lung nodule
classification tasks. Akila et al. [92] proposed an efficient deep neural network for automatic
pulmonary nodule classification with a supervised approach. Akila, therefore, employed
several deep neural networks, including RNN, LSTM, and CNN, and produced results
showing that RNN was not less suitable for learning patterns than LSTM and CNN models,
with the CNN-based classifiers achieving a 25% higher accuracy than the RNN model.
Similarly, another study [93] presented a novel interpretable deep hierarchical semantic
CNN (HSCNN) for pulmonary nodule classification. The proposed model was trained and
tested on the LIDC dataset and achieved better results than common 3D CNN approaches.
Ge et al. [94] proposed a model with DenseNet-based architecture together with 3D filters
and pooling kernels. The model achieved a classification accuracy of 92.4% on the LUNA16
dataset. Guobin [95] used a squeeze-and-excitation (SEN) network and aggregated residual
transformations (SE-ResNeXt) to perform the required classification task. The model was
evaluated on the LUNA16 dataset and achieved an accuracy of 91.67%. Yang [96] developed
a novel two-stage CNN (2S-CNN) to classify lung CT images in an approach that consisted
of two CNNs—one a basic network and the other a simplified version of GoogLeNet. The
experimental results of this study produced an accuracy of 89.6%.

In another study [97], the authors proposed a multiscale synchronized deep supervision
technique using an AlexNet network and synchronized deep supervision (SDS). The multiscale
spatial pyramid strategy was used to extract the features from lung nodules at different scales.
Another recent work [98] applied a 3D CNN (MMEL-3DCNN) to classify different types of
lung nodules. The proposed approach was built on a multimodel network architecture and
applied ensemble learning to improve the robustness of the nodule classification model. The
experimental results were verified on the LIDC-IDRI and the model obtained satisfactory
classification results. Kai [99] first constructed a residual attention network (RAN) and SEN
network to extract the spatial and contextual features of the nodules. Next, they introduced a
novel multiscale attention network (MSAN) to capture the multiscale attention features and
used a GBM algorithm to differentiate benign and malignant nodules. Experiments on the
LIDC-IDRI database achieved an accuracy of 91.9%, a sensitivity of 91.3%, an FP rate of 8.0%,
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and an F1-score of 91.0%. The detailed results comparison for segmentation and classification
models are summarized in Tables 5 and 6.

Table 4. Overview of lung nodule classification architectures and their key information.

Year Author Method Performance

2021 Ge Zhang [94]

1. 3D DenseNet
2. Dense block
3. Transition layer
4. Malignant or benign

ACC = 92.4%
SEN = 87.0%

SPEC = 96.0%

2020 Akila Agnes [92]
1. CNN
2. 2D
3. Malignant or benign

SEN = 81%
SPEC = 91.9%

Precision = 87.8%
ACC = 87.26%
AUC = 0.944

2020 Rekka Mastouri [81]

1. BCNN
2. 3D
3. VGG16
4. VGG19
5. SVM
6. Nodule or non-Nodule

ACC = 91.99%
SEN = 91.85%
SPEC = 92.27%

F1-score = 93.76%
FPR = 7.72%

2020 Hong Liu [98]

1. MMEL-3DCNN
2. VggNet
3. ResNet
4. InceptionNet
5. Multinetwork
6. Malignant or benign

SEN = 0.837%
SPC = 0.939%
ACC = 0.906%
AUC = 0.939%

2020 Kai Xia [99]

1. Residual learning
2. Dense learning
3. MSAN
4. GBM
5. 3D attention
6. Dual-path
7. Malignant or benign

ACC = 91.9%
SEN = 91.3%

FP rate = 8.0%
F1-score = 91.0%

2020 Wu et al. [78]

1. 2D
2. Migration learning
3. ResNet50
4. PCA
5. Nodule or non-nodule

ACC = 98.23%
SEN = 97.7%

SPEC = 98.35%
F1 = 98.06%

Precision = 98.64%
FPR = 1.65%

2020 Ali et al. [83]

1. 2D
2. Energy Layer
3. Transfer learning
4. Malignant or benign

ACC = 96.69% ± 0.72%
Error rate = 3.3% ± 0.72%
AUC = 99.11% ± 0.45%
SEN = 97.19% ± 0.57%

2019 Yang An [96]
1. 2S-CNN
2. Inception CNN
3. Nodule or non-nodule

ACC = 89.6%
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Table 4. Cont.

Year Author Method Performance

2019 Zhang Li [97]

1. AlexNet
2. SDS
3. MPPS
4. Malignant or benign

ACC = 93.68%
SEN = 95.17%

SPEC = 93.92%

2019 Tran et al. [79]
1. 2D
2. Focal loss
3. Nodule or non-nodule

ACC = 97.2%
SEN = 96.0%

SPEC = 97.3%

2019 Al-Shabi et al. [73]

1. 2D
2. Residual block
3. Non-Local block
4. Self-attention
5. Malignant or benign

AUC = 95.62%
ACC = 88.46%

Precision = 87.38%
SEN = 88.66%

2019 Al-Shabi et al. [84]

1. 2D
2. Multiple dilated convolutions
3. Context-Aware sub-network
4. Mid-range sized nodules
5. Malignant or benign

AUC = 93.15%
ACC = 92.57%

Precision = 91.85%
SEN = 92.21%

2019 Guobin Zhang [95]

1. SE-ResNeXt
2. SENet
3. ResNet
4. Malignant or benign

AUC = 0.9563
ACC = 91.67%

2018 Shiwen Shen [93]

1. HSCNN
2. 3D
3. Sub-task
4. Malignant or benign

AUC = 0.856
ACC = 0.842
SEN = 0.705
SPEC = 0.889

2018 Dey et al. [85]

1. 3D
2. Multiscale
3. Multioutput
4. Dense block
5. Malignant or benign

TPR = 90.47%
TNR = 90.33%
PPV = 90.55%
AUC = 95.48%
ACC = 90.40%

2018 Wu et al. [53]
1. 3D
2. 3D U-Net
3. WW/WC

ACC = 97.58%

2018 Zhao et al. [60]
1. 3D
2. CNN
3. Inception structure

None

2017 Nibali et al. [86]

1. 2D
2. ResNet18
3. Transfer learning
4. Curriculum learning
5. Malignant or benign

SEN = 91.07%
SPEC = 88.64

Precision = 89.35%
AUC = 94.59%
ACC = 89.90%
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Table 4. Cont.

Year Author Method Performance

2017 Liu et al. [87]

1. 2D
2. Multiscale
3. Multichannel
4. Binary/Ternary classification
5. Malignant or benign

SEN = 90.18%
SPEC = 100%

Error rate = 5.41%
AUC = 0.981

2016 Li et al. [80]

1. 2D
2. CNN
3. Multiscale
4. Two networks
5. Nodule or non-nodule

ACC = 86.4%
SEN = 89.0%

2016 Shen et al. [70]

1. 3D
2. CNN
3. Multi-crop pooling layer
4. Malignant score

ACC = 87.14%
AUC = 0.93
SEN = 0.77

SPEC = 0.93

2015 Kumar et al. [88]

1. 2D
2. CNN
3. Binary decision tree
4. Malignant or benign

ACC = 75.01%
SEN = 83.35%

FP = 0.39 FP/patient

Table 5. Results comparison of nodule segmentation models.

Year Author Dataset PPV (%) SEN (%) DSC (%) IOU Architecture Approach

2020 Dong et al. [67] LIDC-IDRI 93.6 98.10 92.6 - Multiview
2020 Cao et al. [72] LIDC-IDRI 79.64 89.35 82.74 - Multiview
2017 Wang et al. [66] LIDC-IDRI 77.59 83.72 77.67 - Multiview
2017 Wang et al. [69] LIDC-

IDRI/GDGH 75.84 92.75 82.15 - Multiview

2017 Shen et al. [70] Random
datasets 87.14 0.77 - - MC-CNN Multiview

2021 Pezzano et al.
[65] LIDC-IDRI - - - 76.6 Nodule type General

2020 Keetha et al.
[54] LUNA16 78.92 92.24 82.82 - U-Net et al. General

2020 Kumar et al.
[55] LUNA16 - - 96.15 - U-Net et al. General

2020 Usman et al.
[56] LIDC-IDRI 88.24 91.62 87.55 - General

2019 Huang et al.
[57] LUNA16 - - 79.3 - U-Net et al. General

2018 Wu et al. [53] LIDC-IDRI - - 73.98 - U-Net et al. General
2018 Tong et al. [59] LUNA16 - - 73.6 - U-Net et al. General
2018 Zhao et al. [60] LIDC-IDRI - - - - U-Net et al. General
2018 Liu et al. [76] LIDC-IDRI - - - - FCN General
2019 Aresta et al.

[58] LIDC-IDRI - - - 55 Nodule type

2019 Hesamian et al.
[75] LIDC-IDRI - - 81.24 - -

2018 Khosravan
et al. [77] LUNA16 - 98 91 - semi-

supervised
2019 Tang et al. [74] LIDC-IDRI - - 83.10 - -
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Table 6. Results comparison of nodule classification models.

Year Reference Dataset SEN (%) AUC (%) ACC Classification

2021 Ge Zhang [94] LUNA16 87.00 - 92.40 MOB
2020 Akila Agnes [92] LIDC- IDRI 81.00 94.40 - MOB
2020 Hong Liu [98] LIDC-IDRI 0.837 93.90 90.60 MOB
2020 Kai Xia [99] LIDC-IDRI 91.30 - 91.90 MOB
2020 Ali et al. [83] LIDC-IDRI 98.10 99.11 96.69 MOB
2019 Zhang Li [97] LIDC-IDRI 95.17 - 93.68 MOB
2019 Guobin Zhang [95] LUNA16 - 95.63 91.67 MOB
2019 Al-Shabi et al. [73] LIDC-IDRI 88.66 95.62 88.46 MOB
2019 Al-Shabi et al. [84] LIDC-IDRI 92.21 93.15 92.57 MOB
2018 Shiwen Shen [93] LIDC-IDRI 0.705 0.856 0.842 MOB
2018 Dey et al. [85] LIDC-IDRI/Themselves dataset - 95.48 90.40 MOB
2017 Nibali et al. [86] LIDC-IDRI 91.07 94.59 89.90 MOB
2016 Shen et al. [70] LIDC-IDRI 77.00 93.00 87.14 MOB
2015 Kumar et al. [88] LIDC-IDRI 83.35 - 75.01 MOB
2020 Wu et al. [78] LIDC-IDRI 97.70 - 98.23 NON
2019 Yang An [96] LIDC-IDRI - - 89.60 NON
2019 Tran et al. [79] LIDC-IDRI 96.00 - 97.20 NON
2020 Rekka Mastouri [81] LUNA16 91.85 - 91.99 NON
2018 Wu et al. [53] LIDC-IDRI - - 97.58 NON
2018 Zhao et al. [60] LIDC-IDRI - - - NON
2017 Liu et al. [87] LIDC-IDRI 90.18 98.10 - others
2016 Li et al. [80] LIDC-IDRI 89.0 - 86.40 others

MOB: Malignant or benign; NON: nodule or non-nodule; Other: except MOB and NON.

7. Challenges and Future Perspectives

Despite recent breakthroughs in deep learning for diagnosing pulmonary lung nodules,
a large volume of chest scan data has several challenges, including feature extraction,
nodule detection, false-positive reduction, and benign-malignant classification [100]. For
effective feature extraction and benign-malignant classification, recurrent neural networks
(RNNs) [101], deep belief networks (DBNs) [102], and autoencoders [103] could be used.
Similarly, advances in graphical processing units (GPUs) positively impact the use of
deep learning. As a result of the parallelization of CNNs, better feature extraction and
classification may be achieved [104].

The majority of the CAD system’s decision-making for nodule detection relies heavily
on supervised learning approaches. However, supervised learning is costly and time-
consuming because it relies on massive labeled datasets. Furthermore, a model trained on
fewer data has a higher risk of overfitting and convergence problems. Unsupervised learn-
ing approaches such as transfer learning techniques may be more suited in such situations.
Balanced datasets, such as those used by [105], could be used to limit false positives.

Aside from the challenges mentioned above, one of the most significant obstacles to
deep learning pulmonary nodule analysis is the scarcity of well-annotated and large-scale
labeled datasets. Therefore, high quality and large datasets are also pressing for setting
up an efficient deep learning CAD system to detect pulmonary nodules. From this review
study, it has been also noted that the leading solutions employed CNNs and used the
provided set of nodule candidates.

In the future, substantial resources and strong regulatory criteria will be required for
lung nodule screening in order to ensure significant advantages and attempt to reduce
the number of false negatives and positives. Future research should also focus on devel-
oping and validating simpler nodule evaluation algorithms by incorporating emerging
diagnostic modalities like molecular signatures, biomarkers, and liquid biopsies [106]. For
this purpose, deep learning and machine learning algorithms will be a perfect choice that
allows more accurate automatic characterization and classification of nodules with higher
accuracy and could led to revolutionary changes in radiology.
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8. Conclusions

Recent research has incorporated DL strategies, achieving promising results in relation
to the detection of lung nodules using CT images. However, segmenting and classifying
lung nodules for the purposes of detection and diagnosis remains challenging.

Many lung nodule segmentation approaches are based on either general or multiview
neural network architecture. Most studies using multiview neural networks incorporated
some new architecture by taking multiple views of the lung nodules and using those views
as inputs to the neural networks. In contrast, the general neural network-based methods
were primarily based on U-Net architecture. Likewise, different lung nodule segmentation
methods were adopted for different types of lung nodules, including boundary, juxta-
pleural, small, well-circumscribed, and large nodules.

In terms of classification methods, many techniques have been proposed for the
classification of lung nodules (e.g., whether they are benign or malignant). Most of the
conducted works focused on supervised, as opposed to semi-supervised, learning. It is
noted that limited datasets are available for training and testing the models, with the LIDC-
IDRI dataset being the most used. To compare different approaches and their results, a
series of tables were arranged to summarize the important findings. Different models used
different metrics to verify their results on a range of datasets. Overall, the best-performing
models vary greatly according to their data type, annotation conditions, and experimental
aims. Therefore, comparing their performance is not straightforward. In spite of this
limitation, our analysis of the literature is quite successful in highlighting the importance
of building robust DL architectures to segment and classify lung nodules accurately and
efficiently. Last but not least, future research must be initiated in terms of new guidelines
and computer-based algorithms that are easy to use, which would provide great aid to
both researchers and medical practitioners.
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