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Abstract: Background: Left ventricle (LV) segmentation using a cardiac magnetic resonance imaging
(MRI) dataset is critical for evaluating global and regional cardiac functions and diagnosing cardio-
vascular diseases. LV clinical metrics such as LV volume, LV mass and ejection fraction (EF) are
frequently extracted based on the LV segmentation from short-axis MRI images. Manual segmenta-
tion to assess such functions is tedious and time-consuming for medical experts to diagnose cardiac
pathologies. Therefore, a fully automated LV segmentation technique is required to assist medical
experts in working more efficiently. Method: This paper proposes a fully convolutional network
(FCN) architecture for automatic LV segmentation from short-axis MRI images. Several experiments
were conducted in the training phase to compare the performance of the network and the U-Net
model with various hyper-parameters, including optimization algorithms, epochs, learning rate, and
mini-batch size. In addition, a class weighting method was introduced to avoid having a high imbal-
ance of pixels in the classes of image’s labels since the number of background pixels was significantly
higher than the number of LV and myocardium pixels. Furthermore, effective image conversion
with pixel normalization was applied to obtain exact features representing target organs (LV and
myocardium). The segmentation models were trained and tested on a public dataset, namely the
evaluation of myocardial infarction from the delayed-enhancement cardiac MRI (EMIDEC) dataset.
Results: The dice metric, Jaccard index, sensitivity, and specificity were used to evaluate the network’s
performance, with values of 0.93, 0.87, 0.98, and 0.94, respectively. Based on the experimental results,
the proposed network outperforms the standard U-Net model and is an advanced fully automated
method in terms of segmentation performance. Conclusion: This proposed method is applicable in
clinical practice for doctors to diagnose cardiac diseases from short-axis MRI images.

Keywords: left ventricle segmentation; cardiac short-axis MRI; fully convolutional network; pixel
weights balancing; medical image processing

1. Introduction

Cardiovascular disease is regarded as one of the most severe threats to human health,
and it has contributed to an increase in the global mortality rate. According to the World
Health Organization, 17.9 million people died from cardiovascular disease in 2016, account-
ing for 31% of worldwide deaths [1]. As a result, there is a growing emphasis on research
and technologies that can effectively improve the diagnosis of cardiovascular diseases while
also lowering the mortality rate caused by those diseases. In recent years, the diagnosis of
cardiovascular diseases has become more accessible thanks to advancements in medical

Diagnostics 2022, 12, 414. https://doi.org/10.3390/diagnostics12020414 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12020414
https://doi.org/10.3390/diagnostics12020414
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0003-0922-7685
https://orcid.org/0000-0001-7955-4468
https://doi.org/10.3390/diagnostics12020414
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12020414?type=check_update&version=1


Diagnostics 2022, 12, 414 2 of 15

imaging techniques such as computed tomography (CT) and cardiac magnetic resonance
imaging (CMRI).

MRI is one of the most regularly utilized medical imaging modalities for diagnosing
cardiovascular disease because it is non-invasive and produces high-resolution images.
Segmentation of cardiac short-axis MRI is critical for quantifying cardiac function by
analyzing clinical metrics such as ventricular volumes, stroke volumes, and myocardium in
the early detection of cardiovascular diseases. Segmentation of the LV is vital for accurate
assessments of cardiac function indicators such as ejection fraction, LV volume, and LV
mass, all of which are important in diagnosing cardiovascular diseases [2–4]. To better
understand the LV segmentation task, Figure 1 shows short-axis (SAX) images of the LV at
the basal, middle, and apical slices along with their corresponding ground truth (labels).
The primary goal of LV segmentation is to delineate the LV’s contours (epicardium and
endocardium). On the other hand, manual LV segmentation is a time-consuming and
error-prone task for medical experts. Therefore, a fully automated LV segmentation method
from the short axis is urgently needed.
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Figure 1. LV short-axis MRI and corresponding ground truth (labels).

For LV segmentation, a variety of techniques have been proposed. Active contour,
level set, and graph cut are examples of model-based approaches. These models, on the
other hand, are semi-automatic and rely heavily on a successful initialization step. Deep
learning-based algorithms have become frequently used in medical image segmentation
due to rapid advancements in computer hardware and the availability of massive training
data. Convolutional neural networks (CNNs), a standard deep learning-based method,
have recently achieved excellent results in various computer vision fields, including object
detection [5], image classification [6], and image segmentation [7]. Following this trend,
several CNN-based techniques for LV segmentation have been proposed [8–15] and have
shown promising results in clinical practice. However, accurate segmentation of the LV
and myocardium from cardiac MRI remains a challenge in clinical practice for several
reasons, including changes in the LV morphology across slices, an imbalance in pixels
between the LV area and the background, and incorrect pixel representation for the target
area. Furthermore, Xiong et al. [16] complained that deep learning methods are data-driven
and need a massive amount of data for training, and the available labeled dataset of the
LV is small. Thus, a small labeled data results in poorer performance when utilizing deep
learning approaches.
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The ability to develop and compare the performances of FCN models is based on sev-
eral conditions, including input data normalization, CNN layer selection, pixel balancing
in input image labels, and fine-tuning the model’s training options. As a result, the goal of
this paper was to design an FCN-based segmentation model for the LV from short-axis MR
images, which includes the following contributions:

1. Compare various optimization algorithms and select the most reliable one to train the
proposed model;

2. Class weighting method to avoid high imbalance of pixels between object and back-
ground classes in image’s labels;

3. Pixel normalization of labels to allow the model to learn and extract features from
input images accurately;

4. Achieve state-of-the-art results for automatic LV segmentation.

The rest of this paper is organized as follows: Section 2 describes the related works,
the materials and methods are introduced in Section 3, and the experimental results and
discussion are presented in Section 4, followed by a conclusion in Section 5.

2. Related Works

In recent years, segmentation and quantification of the LV from cardiac MRI images
have received much attention to diagnose cardiovascular disease. Many studies have
proposed semi-automatic segmentation methods to delineate the LV borders, such as active
contour [17,18], level set [19–21], graph cut [22], dynamic programming, and atlas-based
models. These traditional segmentation methods necessitate user intervention, which is
a time-consuming and tedious task. The difference between semi-automatic and fully
automatic segmentation is that the latter is better suited to process large batches of cardiac
MRI images.

For segmenting the LV and myocardium from CMR images, CNNs in various orders
have been proposed. Dangi et al. [23] created a CNN-based multi-task learning (MTL)
model for simultaneous LV segmentation and quantification. They used the U-net archi-
tecture [24], separating segmentation and regression at the final upsampling layer. This
network is capable of learning feature representation while also improving generalization.
Moradi et al. [25] developed a deep-learning-based method called MFP-U-net for LV seg-
mentation from echocardiography images, and they designed a network with a feature
pyramid that can detect and recognize the LV in MRI. Wu et al. [26] proposed an automatic
segmentation model for the LV from cardiac MRI. They used a CNN model to locate the
LV and the U-net model to segment it. Abdeltawab et al. [10] devised a framework that
begins with FCN-based localization of the LV and extraction of the heart section’s ROI. The
extracted ROIs are then fed into the FCN2 network, which segments the LV cavity and
myocardium. Dong et al. [27] proposed a CNN-based model with two parallel subnet-
works to detect endocardium and epicardium contours of the LV, incorporating the MTL
concept. The FCN [28] is a CNN expansion with different last layers used for different
tasks. Traditional CNN methods, for example, use fully connected layers for image clas-
sification to predict objects, whereas an FCN applies a deconvolution (transposed) layer
instead of a fully connected layer in semantic segmentation. Several FCN-based models
have been used to improve LV segmentation performance [29–31]. The network proposed
by Cui et al. [32] was an attention U-Net model based on an FCN structure for cardiac
short-axis MRI segmentation. U-Net [24] has been commonly applied in medical image
segmentation, particularly in the segmentation of cardiac images [25,33,34].

Some researchers used a hybrid model that combined deep learning methods with
traditional models to achieve an optimal LV segmentation performance from short-axis
cardiac MRI images. For example, Ngo et al. [35] used a deep learning model combined
with a level set for automatic LV segmentation. Avendi et al. [36] developed a fully
automatic segmentation model for the LV using deep learning algorithms and deformable
models. Due to the strong correlation between sequential frames during the cardiac
cycle, a 3D model with a recurrent neural network (RNN) has been proposed. Long



Diagnostics 2022, 12, 414 4 of 15

short-term memory (LSTM) is a popular RNN [37] technique for detecting heart motion
using spatiotemporal dynamics. Zhang et al. [38] created a multi-level LSTM model for
LV segmentation that used low-resolution level features to train one model and high-
resolution level features to train another. Additionally, due to the large slice thickness,
Baumgartner et al. [39] found that segmentation by 2D CNN performed better than 3D
CNN. Furthermore, due to significant morphological differences in LV shape across slices
caused by heart movement, RNN models reproduce incorrect features and require high
computational costs. Bernard et al. [40] conducted a benchmark study and discovered
that FCNs are used in most advanced algorithms for LV segmentation from short-axis
MRI images.

In recent years, researchers have been paying more attention to the segmentation of
LV boundaries (endo- and epicardium) from short-axis MRI images. Table 1 summarizes
the most recent studies in LV segmentation from short-axis MRI using deep learning
models. Furthermore, the LV segmentation challenges [40–42] and benchmark datasets
with ground truth contours are provided. Deep learning methods have lately obtained
excellent results in the segmentation of medical images. CNN is one of the most widely used
methods in medical image analysis [23,43] among these approaches. Medical images are
segmented at the pixel level, as opposed to image-level classification [27]. Traditional CNN
methods must be improved in order to achieve robust semantic segmentation. Furthermore,
according to recent research, image pixel class imbalance can affect CNN performance
during classification and segmentation [44]. Buda et al. [45] provided a thorough analysis
of the CNN class imbalance problem. Data-level methods and classifier methods are two
types of solutions to this problem. Oversampling [46] and data augmentation [47] are
data-level methods that work with training datasets, whereas classifier-level methods
such as cost-sensitive learning [48], hard mining [49], and loss function work with model
training options.

Table 1. Current studies in LV segmentation from cardiac MRI using deep learning algorithms.

Author/Year Dataset Subjects No. Data Preparation Deep Learning Model

Cui et al. [32]/2021 LVSC 200
- Cropping using multi-scale methods
- Pixel normalization

Attention U-net
architecture

Tan et al. [50]/2017 LVSC 200

- Resampling pixels using linear interpolation
- Cropping
- Pixel normalization
- Augmentation (during training)

CNR

Tran et al. [51]/2016 SCD, LVSC and RVSC 45, 200 and 48
- Cropping using multi-resolution approach
- Augmentation FCN

Khend et al. [8]/2019
ACDC-2017, LVSC
and Kaggle 150, 200 and 500

- Cropping
- Augmentation FCN DenseNet

Wang et al. [15]/2020 CAP 450
- Cropping
- Augmentation
- Pixel normalization

FCN

Wu et al. [26]/2020 SCD 45
- Image filtering
- Cropping/downsampling CNN + U-Net

Wu et al. [52]/2021 SCD 45 - Augmentation GAN

Dong et al. [27]/2020 MICCAI 2019 56 - Pixel normalization Parallel CNNs

Du et al. [53]/2019 2900 collected images 156
- Cropping
- Normalization Multi-task CNR + RNN

Abdeltawab et al. [10]/2020 ACDC-2017 150 - Cropping Two FCNs

Pixel imbalance between the target class and the background class has a significant
effect on segmentation performance, which requires an effective solution. Hence, various
methods have been proposed to deal with this issue; for example, the focal Tversky loss
function (FTL) was introduced by Cui et al. [32], Dong et al. [27] applied cross-entropy loss
function instead of the dice loss function, and Wang et al. [15] used dynamic pixel-wise (PW)
weighting. In addition, the authors normalized the pixel intensity of the input images to
improve the learning ability of the models. Cui et al. [32] used mean–variance normalization
(MVN) to normalize the pixel intensity on an input image by subtracting the difference
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from its average value and dividing by its standard deviation, and Wang et al. [15] used
min-max normalization. Based on the above literature, in this study we created a 2D FCN
technique with fewer parameters for accurately segmenting the LV and myocardium from
short-axis MRI images. After using appropriate normalization and conversion techniques,
the input images were used to extract pixels. The 2D PNG images have some advantages
compared with NIfTI images, such as flexible image visualization, augmentation (rotation,
cropping, and rescaling), and efficient exclusion of unwanted images.

3. Materials and Methods
3.1. Task Description

The procedures of the proposed system for LV segmentation are shown in Figure 2.
The steps of the system are as follows: (i) preparation of the MRI images, including resizing
and pixel normalization; (ii) training the FCN model with a comparison between three
optimization algorithms, namely stochastic gradient descent (SGD), adaptive moment
estimation (Adam), and root mean square propagation (RMSProp); and (iii) testing the
trained model for extraction of ROI features and segmentation to delineate the LV contours.
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Figure 2. Diagram of the proposed model.

3.2. Data Description

The dataset for this study was acquired at the University Hospital of Dijon in France
and was provided from the automatic evaluation of myocardial infarction from delayed-
enhancement cardiac MRI (EMIDEC) [42] during the MICCAI conference 2020. This
dataset contains sequences of short-axis MRI images with ground truth for 150 patients
(100 for training and 50 for testing). Each case has a text file with clinical information, a
neuroimaging informatics technology initiative (NIfTI) file with the short-axis images of
the LV, and an NIfTI file with the labeled masks. The masks consist of four different pixels
for each area, which are 0, 1, 2, 3, and 4, representing the background, LV cavity, normal
myocardium (NM), myocardial infarction (MI), and no-reflow (NREFLOW), respectively, as
shown in Figure 3. The dataset can be downloaded from the website (http://emidec.com/
(accessed on 1 December 2021)).

3.3. Data Preparation

Medical images are commonly stored in NIfTI or DICOM format after being acquired
from medical imaging modalities. Although these formats have high precision for images,
they provide volumetric (voxels, height, and depth) data with unequal depth in various
slices/series. Furthermore, image preprocessing steps such as augmentation and excluding
unwanted images from apical slices are quite tedious with volumetric data (3D). Thus,
in this study, the NIfTI data were converted to 2D images (PNG) as inputs to train the
proposed 2D FCN.

http://emidec.com/
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Figure 3. MR images’ visualization from EMIDEC dataset.

3.3.1. Data Conversion and Normalization

Data were converted from NIfTI to PNG images with extensive consideration of the
pixels representation. An open-source toolkit named XMedCon was used for medical image
conversion [54]. This platform is a graphical user interface (GUI) that gives immediate
visual control on selected options with various features, including simple image processing,
volume manipulation, pixel values support, and supporting image formats for all medical
modalities. The principle of this toolkit is to preserve data and assure that the default
output represents the pixel data as retrieved from the original study. This initial step
has achieved a more desirable performance for adequate pixel representation than direct
conversion by programming code in MATLAB or Python.

The pixels for the LV and myocardium after image conversion and pixel normalization
are depicted in Figure 4, showing the robustness of the conversion step in the right image,
whereas the left image represents image pixels using the usual conversion method. The
size of all input images was 256 × 192 pixels, with normalized pixel intensities from [1, 2]
to [128, 255] for the LV and myocardium, respectively. The pixel normalization (NP) was
applied using the following equation:

NP = 255 × mat2gray(Nori) (1)

where Nori represents the pixels matrix of the original image.
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3.3.2. Balancing of Class Weight Pixels

Most pixels in the ground truth (labels) are for background, leading to class imbalance.
During the learning process, network biases to learning the dominant class (background)
result in weak segmentation performance. The balancing of pixels for three classes, in-
cluding background (BG), LV, and myocardium (Myo), is presented. The class weighting
method was used to compute class weights, namely inverse frequency weighting, where
the weights of classes are the inverse of the class frequencies.

3.4. Network Architecture

The first step in creating a new FCN is to define and select suitable layers. Figure 5
depicts the proposed FCN architecture with input and output images. This network
takes the principle of U-Net architecture, which has encoder (contraction/downsampling)
and decoder (expansion/upsampling) paths, as shown in Figure 6. The contraction path
extracts local features and restores feature maps in the expansion path of the network. The
network is designed to train a few samples. The layers of the downsampling path are
3 × 3 convolutions, batch normalization, and a rectified linear unit (ReLU) as an activation
function with padding to keep the output size of the convolution layer the same as its input.
Then, there is downsampling followed by max-pooling operation with a size of 2 × 2 and
stride of 2 to reduce the input size. The 4 × 4 transpose convolution (deconvolution) and
convolution layers are applied in the upsampling path followed by a pixel classification
layer with a softmax layer to predict the output image. The cross-entropy term is used as a
loss function in this network.
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Figure 5. Architecture layers of the proposed FCN.

After defining the layers of the FCN model, the next step is setting up the training
options for the network by specifying some parameters such as the solver, the maximum
number of epochs, and the learning rate. Solvers such as SGD, Adam, and RMSProp
update the network parameters using a subset of data at each step called a mini-batch
to minimize the loss function. The parameter updating is named an iteration while the
epoch passes through the entire data during network training. The learning rate is a crucial
parameter for network training that can shorten the training time and minimize the loss in
training progress.

During training, the network performs a forward pass, where each layer takes the
output from the previous layer as the input and then outputs the results to the next layer,
and a backward pass, where each layer takes the derivative of the loss concerning the layer’s
outputs and computes it to the inputs to propagate the results. At the end of the forward
pass, the network output layer calculates the loss L between the target T and the prediction
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Y. Table 2 illustrates the layer types of the FCN model with their kernel sizes and learnable
parameters, such as bias and weights. The advantage of the proposed FCN is that its
training time is faster and it requires less memory space than U-Net, which requires much
time for training and consists of many parameters that need a high computational cost.
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In this work, the proposed network was trained with three different optimization
algorithms to select one after comparing their performances and efficiency. Moreover, the
hyper-parameters of the training options, such as epochs, mini-batch size, and learning
rate, were fine-tuned through sequent experiments to select desirable parameters for the
proposed network. Based on the experiments, the optimal mini-batch sizes for normalized
images were 4 and 8 due to the data size and to lessen the memory space. Thus, the
selection of mini-batch size was decided, which evaluated the gradient of the loss function
and updated the weights significantly, resulting in a considerable performance of the
network. The performance evaluation of this work was determined using metrics such as
sensitivity, specificity, negative predictive value (NPV) and positive predictive value (PPV),
Jaccard index, and dice score coefficient (DSC).

Table 2. Analyzing layers of the proposed FCN.

Layer Number Layer Type Kernel Size Learnable

1 Image input 256 × 192 × 1 -

2 Convolution 256 × 192 × 16 Weights 3 × 3 × 1 × 16
Bias 1 × 1 × 16

3 Batch normalization 256 × 192 × 16 Offset 1 × 1 × 16
Scale 1 × 1 × 16

4 ReLU 256 × 192 × 16 -

5 Max pooling 128 × 96 × 16 -

6 Convolution 128 × 96 × 32 Weights 3 × 3 × 16 × 32
Bias 1 × 1 × 32

7 Batch normalization 128 × 96 × 32 Offset 1 × 1 × 32
Scale 1 × 1 × 32

8 ReLU 128 × 96 × 32 -

9 Convolution 128 × 96 × 64 Weights 3 × 3 × 32 × 64
Bias 1 × 1 × 64
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Table 2. Cont.

Layer Number Layer Type Kernel Size Learnable

10 Batch normalization 128 × 96 × 64 Offset 1 × 1 × 64
Scale 1 × 1 × 64

11 ReLU 128 × 96 × 64 -

12 Transpose
convolutional layer 128 × 96 × 16 Weights 4 × 4 × 16 × 64

Bias 1 × 1 × 16

13 Convolution 256 × 192 × 2 Offset 3 × 3 × 16 × 2
Scale 1 × 1 × 2

14 Softmax 256 × 192 × 2 -

15 Pixel classification layer - -

4. Results and Discussion

The proposed method was implemented using MATLAB software (version r2020b)
with an Intel (R) i7-3770 central processing unit (CPU), 20 GB DDR3 random access memory
(RAM), and Nvidia GeForce GTX 1050 Ti. The initial experiments were conducted to select
the hyper-parameters used for the training of the proposed network. After that, the network
was trained to segment the LV from MRI images based on the proposed conversion method
for the images.

4.1. Hyper-Parameters Selection

These experiments aimed to select hyper-parameters for the network training, includ-
ing optimization algorithms (SGDM, Adam, and RMSProp), learning rate, epochs, and
mini-batch size. The algorithms’ performance was compared using learning rates of 0.01
and 0.001 over 30, 50, 100, and 150 epochs at mini-batch sizes of 4 and 8. As shown in
Tables 3 and 4, the Adam algorithm achieved the highest performance using a learning rate
of 0.001, 150 epochs, and a mini-batch size of 4. Based on the hyper-parameters selection,
the proposed FCN was trained and gained a mini-batch accuracy of 91.18% and mini-batch
loss of 0.005, as illustrated in Figure 7. Hence, it is evident that the network’s segmentation
performance can be improved by using fewer mini-batches and increasing the number
of epochs.

Table 3. Optimization algorithms’ performance in the trained network at mini-batch size 4.

Learning Rate Epochs SGDM % ADAM % RMSProp %

0.01

30 74.67 60.18 50.25
50 76.41 54.39 54.85

100 82.45 51.34 65.11
150 76.81 60.69 47.22

0.001

30 70.68 78.91 81.76
50 74.18 81.27 83.82

100 77.27 87.14 85.65
150 76.92 91.18 89.20

Table 4. Optimization algorithms’ performance in the trained network at mini-batch size 8.

Learning Rate Epochs SGDM % ADAM % RMSProp %

0.001

30 60.63 79.85 78.00
50 69.00 81.17 81.69

100 70.65 87.60 81.96
150 60.37 90.42 87.44



Diagnostics 2022, 12, 414 10 of 15

Diagnostics 2022, 12, x FOR PEER REVIEW 10 of 16 
 

 

and mini-batch size. The algorithms’ performance was compared using learning rates of 
0.01 and 0.001 over 30, 50, 100, and 150 epochs at mini-batch sizes of 4 and 8. As shown in 
Tables 3 and 4, the Adam algorithm achieved the highest performance using a learning 
rate of 0.001, 150 epochs, and a mini-batch size of 4. Based on the hyper-parameters 
selection, the proposed FCN was trained and gained a mini-batch accuracy of 91.18% and 
mini-batch loss of 0.005, as illustrated in Figure 7. Hence, it is evident that the network’s 
segmentation performance can be improved by using fewer mini-batches and increasing 
the number of epochs. 

Table 3. Optimization algorithms’ performance in the trained network at mini-batch size 4. 

Learning Rate  Epochs SGDM % ADAM % RMSProp % 

0.01 

30 74.67 60.18  50.25 
50 76.41 54.39  54.85 
100 82.45 51.34 65.11 
150 76.81 60.69 47.22 

0.001 

30 70.68 78.91 81.76 
50 74.18 81.27 83.82 
100 77.27 87.14 85.65 
150 76.92 91.18 89.20 

Table 4. Optimization algorithms’ performance in the trained network at mini-batch size 8. 

Learning Rate Epochs SGDM % ADAM % RMSProp % 

0.001 

30 60.63 79.85 78.00 
50 69.00 81.17 81.69 

100 70.65 87.60 81.96 
150 60.37 90.42 87.44 

 
Figure 7. The mini-batch accuracy and mini-batch loss when training the proposed network. 

4.2. Network Performance 
The image conversion using the XMedCon toolkit and pixel normalization with 

pixels weight balancing resulted in an improved performance. The comparison of 
evaluation metrics between the FCN model and U-Net models based on the proposed 
image conversion and normalization is shown in Table 5. The proposed FCN model 
outperformed U-Net models in terms of Jaccard index, sensitivity, NPV, and dice 
similarity with scores of 0.87, 0.98, 0.99, and 0.93, respectively. The U-Net model with the 
Sgdm solver performed well only in specificity and PPV, obtaining 0.98 for both. The 
performance of U-Net without data conversion by the XMedCon toolkit was the worst 

Mini-batch accuracy 

Epochs number

0 20 40 60 80 100 120 140 160

Ac
cu

ra
cy

 in
 %

50

60

70

80

90

100

Mini-batch loss

Epochs number

0 20 40 60 80 100 120 140 160

Lo
ss

 v
al

ue
 

0.00

0.05

0.10

0.15

0.20

Figure 7. The mini-batch accuracy and mini-batch loss when training the proposed network.

4.2. Network Performance

The image conversion using the XMedCon toolkit and pixel normalization with pixels
weight balancing resulted in an improved performance. The comparison of evaluation met-
rics between the FCN model and U-Net models based on the proposed image conversion
and normalization is shown in Table 5. The proposed FCN model outperformed U-Net
models in terms of Jaccard index, sensitivity, NPV, and dice similarity with scores of 0.87,
0.98, 0.99, and 0.93, respectively. The U-Net model with the Sgdm solver performed well
only in specificity and PPV, obtaining 0.98 for both. The performance of U-Net without
data conversion by the XMedCon toolkit was the worst among the four models, with less
efficiency in minimizing loss function based on data features. Furthermore, as depicted in
Table 6, the proposed model outperformed the other trained models in terms of global and
mean accuracies, mean intersection over union (IoU), weighted IoU, and mean boundary F1
(BF) score, with values of 0.95, 0.96, 0.90, 0.91, and 0.89, respectively. The results shown in
Tables 5 and 6 prove that models using images converted by the XMedCon toolkit as input
perform well. Although, the exact features representation of pixels after conversion, an
imbalance of target and background pixel classes was found. Thus, pixel weight balancing
of the background, LV, and myocardium (Myo) classes was applied and achieved high
balancing of the pixels as shown in Figure 8. The confusion matrices used to refine the
trained and proposed models are depicted in Figure 9 with prediction of classes’ pixels of
the LV and myocardium.

Table 5. Comparison of evaluation metrics between trained models and the proposed FCN model (
√

represents conversion by XMedCon and × represents conversion by coding).

Model Conversion by
XMedCon Jaccard Index Sensitivity Specificity PPV NPV DSC

U-Net + sgdm
√

0.84 0.86 0.98 0.98 0.89 0.91
U-Net × 0.60 0.78 0.85 0.72 0.89 0.74

U-Net + adam
√

0.84 0.93 0.91 0.89 0.94 0.91
The proposed FCN

√
0.87 0.98 0.94 0.89 0.99 0.93

Table 6. Performance results of the trained models (
√

represents conversion by XMedCon and ×
represents conversion by coding).

Model Conversion by
XMedCon Global Accuracy Mean Accuracy Mean IoU Weighted IoU Mean BF-Score

U-Net + adam
√

0.93 0.92 0.86 0.86 0.89
U-Net × 0.83 0.82 0.69 0.71 0.67

U-Net + sgdm
√

0.92 0.92 0.85 0.85 0.85
Our FCN

√
0.95 0.96 0.90 0.91 0.89
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Figure 10 shows a visual comparison of the output for LV labels using the selected
model (with LR = 0.001, epoch = 150) and other models with the referenced ground truths.
The proposed model’s segmentation results are very close to the expert-provided LV
boundaries. Furthermore, the figure compares the segmentation results obtained from the
proposed model with pre-trained U-Net models under various conditions. The proposed
FCN model outperformed other methods for delineating LV contours.

4.3. Comparison with Recent Methods

The quantitative comparison of the LV segmentation results between the proposed
model and other advanced methods is depicted in Table 7. These methods include the atten-
tion U-Net architecture [32], convolutional neural network regression (CNR) method [50],
FCN method [51], multi-scale FCN DenseNet [8], and a dynamic pixel-wise weighting-
based FCN [15]. The detailed datasets and data preparation steps for these models are
presented under the related work sections in Table 1. It can be observed that the proposed
method achieved a robust performance compared to other published methods. For most
evaluation metrics, including the Jaccard index, sensitivity, PPV, NPV, and DSC, the pro-
posed FCN model outperformed other methods, except for the specificity of the method
proposed by Wang et al. [15]. It is important to know that Wang’s method involves a
dynamic pixel-wise weighting technique to adjust the pixel’s weight according to the upper
layer’s segmentation accuracy and forces the pixel classifier to consider the misclassified
ones. The network’s performance was based on specific data of a hundred images that
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underwent normalization and manipulation to be suited for the trained network. The
network was tested for ten normal subjects on the same training dataset and had the most
significant advantage of being trained using a small normalized dataset.
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Table 7. Performance comparison between the proposed model and other state-of-the-art models in
automatic LV segmentation.

Method Jaccard Index Sensitivity Specificity PPV NPV Dice

Cui et al. [32] 0.75 0.87 0.92 0.87 0.93 -
Tan et al. [50] 0.77 0.88 0.95 0.86 0.96 -
Tran et al. [51] 0.74 0.83 0.96 0.86 0.95 -
Khend et al. [8] 0.74 0.84 0.96 0.87 0.95 0.84
Wang et al. [15] 0.70 0.90 0.99 0.77 0.99 0.80

The proposed FCN 0.87 0.98 0.94 0.89 0.99 0.93

To the best of our knowledge, LV segmentation is essential to evaluate cardiac function
by measuring parameters such as LV volume, LV mass, and ejection fraction. The results
show that the performance of the proposed method to delineate the LV contours is very
close to the ground truth provided by clinical experts. Thus, on high-contrast images, the
proposed network obtains intelligible results allowing doctors to detect cardiac diseases
such as myocardial infarction precisely based on automatic LV segmentation.

4.4. Limitation of the Study

The size of the endocardial and epicardial regions from LV segmentation in apical slices
was not always accurate compared with basal and middle slices. The main limitation in
this study is the number of datasets that need to be enlarged and appropriately configured
to train FCN models. In addition, the setting up of significant parameters for network
training requires more training data with augmentation.
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5. Conclusions

In this paper, an FCN was proposed for LV segmentation from short-axis MRI. The
selection of training hyper-parameters, such as optimization algorithm, epoch’s number,
learning rate, and mini-batch size, was based on multiple experiments training various
model structures. The input images used for the model were initially converted using a
toolkit that keeps the feature representation of pixels the same as the original data. Data
normalization in this study performed well and allowed the network to learn feature
extraction accurately. In addition, pixel weighting was introduced to avoid an imbalance in
target class and background class pixels. Overall, the proposed network has achieved a
robust performance in terms of Jaccard index, dice metric, sensitivity, specificity, PPV, and
NPV, which is a significant step towards reducing manual segmentation by clinical experts
during the diagnosis of cardiac diseases.
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