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Abstract: Radiomics is a new image processing technology developed in recent years. In this study,
CT radiomic features are evaluated to differentiate pulmonary hamartomas (PHs) from pulmonary
carcinoid tumors (PCTs). A total of 138 patients (78 PCTs and 60 PHs) were evaluated. The Radcloud
platform (Huiying Medical Technology Co., Ltd., Beijing, China) was used for managing the data,
clinical data, and subsequent radiomics analysis. Two hand-crafted radiomics models are prepared in
this study: the first model includes the data regarding all of the patients to differentiate between the
groups; the second model includes 78 PCTs and 38 PHs without signs of fat tissue. The separation of
the training and validation datasets was performed randomly using an (8:2) ratio and 620 random
seeds. The results revealed that the MLP method (RF) was best for PH (AUC = 0.999) and PCT
(AUC = 0.999) for the first model (AUC = 0.836), and PC (AUC = 0.836) in the test set for the second
model. Radiomics tumor features derived from CT images are useful to differentiate the carcinoid
tumors from hamartomas with high accuracy. Radiomics features may be used to differentiate PHs
from PCTs with high levels of accuracy, even without the presence of fat on the CT. Advances in
knowledge: CT-based radiomic holds great promise for a more accurate preoperative diagnosis of
solitary pulmonary nodules (SPNs).

Keywords: radiomics; machine learning; pulmonary hamartomas; carcinoid

1. Introduction

Pulmonary hamartomas (PHs) are the most frequently occurring benign lung tumors,
which are predominantly composed of hyaline cartilage, intermixed with other mesenchy-
mal components, including fat, smooth muscle, and bone with clefts of the entrapped
respiratory epithelium [1,2]. More than 90% of PHs are peripheral, while 10% or under are
endobronchial. Peripheral tumors comprise 7–14% of the total amount of radiographic soli-
tary pulmonary nodules (SPNs) [3]. PHs are often incidental findings on imaging and can
mimic pulmonary malignancies. Patients with PHs do not need any additional treatment,
apart from cases in which there is the rapid growth of the tumor or the patient starts to show
medical symptoms. The “popcorn” or “comma-shaped” appearance of calcification or the
presence of adipose tissue is pathognomonic for PH; however, these findings are absent
on CT in 30% of PHs [4]. If fat is not visible or there is no specific popcorn calcification,
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diagnosing PH through CT can be challenging. In particular, it is difficult to differentiate
a PH from a pulmonary carcinoid tumor (PCT) if there is no fat in the lesion, so further
diagnostic methods are required. Positron emission tomography/computed tomography
(PET/CT) is reportedly useful for distinguishing PHs with low metabolic activity from
malignancies with high metabolic activity. However, low-grade malignancies, such as PCTs,
may also have low metabolic activity on PET/CT and vice versa; some PHs may reveal
metabolic activity on PET/CT [4].

PCTs are malignant epithelial neuroendocrine tumors and they are morphologically
and prognostically heterogeneous. Typical carcinoids are ≥0.5 cm and have <2 mitoses per
2 mm2 without necrosis. Atypical carcinoids have 2–10 mitoses per 2 mm2 and/or foci of
necrosis. The CT imaging features of peripheral PCTs are round or ovoid-shaped peripheral
lung nodules with smooth or lobular margins [5,6]. When the tumor is located peripherally,
it is difficult to differentiate a PCT from a benign nodule, such as hamartomas, granulomas,
and intrapulmonary lymph nodes. PCTs are usually highly vascular on CT, and typically
increase enhancement following the administration of an intravenous contrast agent. How-
ever, not all carcinoids enhance and enhancement alone does not allow bronchial carcinoids
to be differentiated from other nodules. Calcification or an endobronchial component asso-
ciated with the nodule can suggest the diagnosis; however, these findings may not be useful
for distinguishing PCTs from benign nodules. Unfortunately, PET-CT also has no diagnostic
criteria for PCT [7]. Therefore, these patients exhibit a “lung mass” or “SPN” as opposed
to a preoperative diagnosis of PCT, but the treatment for PCTs is surgical and requires
more clear information. PHs and PCTs can be easily distinguished histopathologically,
so a transthoracic fine-needle aspiration biopsy may be a useful method. However, PHs
can be mistaken for adenocarcinomas on fine-needle aspiration biopsies if the invaginated
epithelium is prominent and reactive. As a result, particularly in the cases with no adipose
component, or those lacking the characteristic calcification pattern, the diagnosis of PH can
be problematic and surgery becomes mandatory to rule out an underlying malignancy [8,9].

The field of radiomics is an emerging area in which imaging data is converted into
a high-dimensional mineable feature space through the use of multiple automatically ex-
tracted data-characterization algorithms. Different solid tumors have different biological
bases that vary due to the density of tumor proliferation and the tissue components. This
heterogeneity is reflected in the calculations of the complex distribution of CT attenuation,
called imaging heterogeneity. Thus, radiomics platforms are employed to manage both
the imaging and clinical data as well as following radiomics statistical analysis, and they
have shown promise in terms of revealing specific algorithms that can be used for quan-
tifying a disease condition, thus providing valuable data that can be used for precision
medicine [10–12].

To date, no non-invasive method has been developed to distinguish between PHs
and PCTs, which have very different treatment strategies. Radiomics can be used for
quantifying the features of lesions and also to possibly enhance the process of diagnosing
the disease. Therefore, this research employed imaging quantification and machine learning
to discriminate PHs and non-fat-tissue PHs (NFT-PH) from PCTs.

2. Materials and Methods
2.1. Patients and Dataset Management

Approval for the study protocol was obtained from the Institutional Review Board
of Ankara University, the Faculty of Medicine (UFM), (IRB no: 2021-104). Due to the
retrospective nature of the study, informed consent from the patients was not required.
In total, surgical resection was performed on 227 patients (130 PCT and 97 PH) between
2012 and 2019, in the Thoracic Surgery Department, UFM. The inclusion criteria were:
(1) surgical treatment; (2) histopathologically-confirmed PCT or hamartoma; (3) presence
of CT images in the Radiology Information System/Picture Archiving and Communication
System (RIS/PACS; Centricity 5.0RIS-i, GE Healthcare, Milwaukee, WI, USA) at the UFM;
(4) presence of contrast-enhanced CT conducted within four weeks before the operation;
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(5) absence of pathognomonic calcification pattern in patients in the PH group; (6) periph-
eral localization of the PCT or PH on the CT scan; and (7) absence of another malignancy.
A total of 138 (78 PCT and 60 PH) patients who satisfied the criteria of inclusion were
enrolled in the study. The diagnosis of fat in the nodule was made if the measurement
of the region of interest (ROI) was between −40 and −120 HU. No visible fat tissue was
detected in 38 of 60 PHs, and the density measurements of the nodules by ROI were above
−40 HU, which could be significant on their CT image in the diagnosis of PH.

CT Protocol and Lesion Segmentation

Contrast-enhanced CT was conducted on each of the patients to evaluate suspected
lung tumors. Either a 320-row detector CT (Toshiba Aquilion ONE, Otawara-shi, Japan),
64-row detector CT (Toshiba Aquilion 64), or 16-row detector CT (Siemens Somatom
Sensation16, Forcheim, Germany) were used for performing the chest CTs. The acquisition
parameters were 0.5 mm, 0.5 mm, or 0.625 mm detector collimation; 120 kVp tube voltage;
0.5 s gantry rotation time; 1 mm, 1 mm, or 1.5 mm reconstructed section thicknesses; and
0.8 mm, 0.8 mm, and 1 mm reconstruction intervals. Before conducting the examinations,
the patients were injected with 60–100 mL (1–1.5 mL/kg) of nonionic intravenous contrast
agent (350/100 Omnipaque, GE Healthcare, Oslo, Norway). A workstation was used
to analyze the multiplanar reformatted images (GE Healthcare, Waukesha, WI, USA)
(Figure 1).
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Figure 1. 3D segmentation, feature selection, and radiomics analysis of workflow used for PCTs
and PHs.

The Radcloud platform (Huiying Medical Technology Co., Ltd., Beijing, China) was
used for managing the imaging and clinical data as well as the following radiomics statisti-
cal analysis. The separation of the data to be used for training and validation purposes was
performed randomly based on a 2:8 ratio with 620 random seeds.

Two radiomics hand-crafted models were prepared in this study: (1) the first model
included all the data regarding the 138 patients to differentiate between the 78 PCTs and
60 PH; (2) the second model included 78 PCTs and 38 PHs without signs of fat tissue.
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2.2. Image Segmentation

All images were reviewed by two senior observers (YK and UY), whose experience in
the field was 10 and 5 years, respectively. The clinical information of the patients remained
blinded from them and was manually delineated for all lesions. The senior clinicians
reviewed all contours (KO, AGÇ) (Figure 1). In the cases where the discrepancy was ≥5%,
the borders of the tumor were delineated by the senior clinicians [11]. In total, 116 Volume
of Interests (VOIs) were segmented from 115 scans and used for analyses.

2.3. Feature Extraction

The feature extraction in this study proposes an investigation of shape-based attributes
and texture-based ones, to classify the pulmonary hamartomas and carcinoid tumors
findings. To achieve a good classification, it was necessary to use effective segmentation,
extract relevant attributes, and use machine learning algorithms. In the methodology
the set of shape attributes is important data to the classification of findings, thus, mainly
shape-based attributes, but also size-based and textural features were planned for use in
this study.

Feature extraction from the image utilizing the Radcloud platform produced via
CT yielded 107 quantitative features overall, which were subsequently classified into
1 of 3 groups: Group 1 (first-order statistics) comprised 18 descriptors that provided a
quantitative delineation of how the voxel intensities were distributed in the CT image by
applying frequently utilized and simple metrics. Group 2 (shape- and size-based features)
included 3-dimensional features that denoted the region’s size and shape. Lastly, Group 3
(texture features) included 75 textual features through which the heterogeneity differences
within the region could be quantified, where the gray level run-length and gray level
co-occurrence texture matrices were used for calculation.

2.4. Feature Qualification

Different techniques were used for selecting the features, including the variance
threshold (variance threshold = 0.8), SelectKBest, as well as the least absolute shrinkage
and selection operator (LASSO) to reduce any redundant features. A threshold of 0.8
was used for the variance threshold technique, which led to the removal of eigenvalues
of variances < 0.8. The SelectKBest technique, in which the single feature variables are
selected, employs a p-value for the analysis of how the features and classification results
are correlated (Figure 2) This study used all features whose p-value was <0.05. In the
LASSO model, the L1 regularizer was utilized as the cross-function, where the value of the
cross-validation error was 5 and a maximum of 1000 iterations was used (Figure 3).

In sum, we handcrafted 2 machine learning models using the extracted features. The
first model included all patients for differentiating between the PHs and PCTS from CT
images as well as clinical characteristics of the patients, while the second model included all
PCTs and only 38 hamartoma patients without signs of fat tissue. Same machine learning
classifiers were used in this study as stated below.

2.5. Statistical Analysis

The Radcloud platform was used for performing the statistical analyses. This study
constructed five classifiers that were used for constructing radiomics-based models: logistic
regression (LR), random forest (RF), extreme gradient boosting (XGBoost), support vector
machine (SVM), and k-nearest neighbor (KNN). The validation approach was employed to
enhance the model’s effectiveness.

The parameters applied were as follows: N_neighbors (5) and weights (uniform)
were applied for KNN. Kernel (rbf), C (1), gamma (auto), class_weight (balanced), deci-
sion_function_shape (ovr), and random_state was applied for SVM. Eta (0.3) and max_depth
(6) were applied for XGBoost. N_estimators (10) and class_weight (none) were applied
for RF. Penalty (L2), C (1), solver (liblinear), class_weight (none), multi_class (ovr), ran-
dom_state, and splitter (best) were applied for LR. The gini criterion was applied for DT.
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Lass model. Using the Lasso model, eight optimal features that correspond to the optimal alpha
value were selected.

A receiver operating characteristic (ROC) curve and area under the curve (AUC)
were employed for assessing the predictive ability of the training and validation datasets,
respectively. In this study, the classifier performance was evaluated according to four
indicators: FP (precision = true positives/(true positives + false positives)), R (recall = rue
positives/(true positives + false negatives)), F1 score (F1 score = P × R × 2/(P + R)), and
support (total number in test set).

The comparison between the groups was made using the Student’s t-test as well as
the Mann–Whitney U test. A p-value < 0.05 was regarded as being statistically significant.

3. Results

Gender, age, lesion location, and the mean diameter (±mm) distributions were com-
pared between the PH and PCT groups, and their p-values were 0.03, 0.06, 0.412, and 0.58,
respectively (Table 1).
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Table 1. Clinical characteristics of the patients.

Characteristics
Pulmonary

Carcinoid Tumor,
(n = 78)

Pulmonary
Hamartoma,

(n = 60)
p-Value

Male 35 38
Female 43 22 0.03

Age, median (range)
(years)

52
(20–81)

55
(27–72) 0.06

Tumor site, n
Right lung 44 38 0.412
Left lung 34 22

Tumor diameter,
mean (range) (mm)

on CT

26.2
(8–70)

19.8
(8–120) 0.58

Of the 107 identified features, 46 were selected for the models using the variance
threshold method (Figure 1). From there, we used the best K method to select 11 features
(Figure 2) and finally selected 8 optimal features using the LASSO algorithm (Figure 3).
The first model included all patients. In Figure 4, the ROC curve analysis for both training
and test datasets is shown for differentiating between PHs and PCTS. The AUC of the
XGBoost and RF machine learning techniques had a peak value of 0.996–1 for the training
dataset, whereas for the test dataset, the RF was the highest. In Table 2, the outcomes for the
machine learning classifier for the test data are shown. The RF score for PH (AUC = 0.999)
and PCT (AUC = 0.999) was the best method for the test set. Table 3 presents the diagnostic
effectiveness utilizing the four different indicators. The PHs range between (0.87–1) for
precision, (0.69–0.97) for recall, (0.80–0.98) for the F1 score, and (62) for support, whereas the
PCTs ranges between (0.59–0.94) for precision, (0.77–1) for recall, (0.68–0.97) for the F1 score,
and (30) for support. The RF machine learning technique yielded the highest values.

Table 2. ROC outcomes with six machine learning classifiers for the test set using the first model.

Classifiers Category AUC 95% CI Sensitivity Specificity

KNN
PHs 0.898 0.82–0.98 0.69 0.9

PCTs 0.898 0.82–0.98 0.90 0.69

SVM
PHs 0.849 0.76–0.94 0.76 0.77

PCTs 0.849 0.76–0.94 0.77 0.76

XGBoost
PHs 0.996 0.95–1.00 0.95 0.93

PCTs 0.996 0.95–1.00 0.93 0.95

RF
PHs 0.999 0.98–1.00 0.97 1

PCTs 0.999 0.98–1.00 1.00 0.97

LR
PHs 0.809 0.71–0.90 0.73 0.73

PCTs 0.809 0.71–0.90 0.73 0.73

DT
PHs 0.806 0.73–0.90 0.75 0.75

PCTs 0.806 0.73–0.90 0.75 0.75
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Table 3. Results of the four indicators of precision, recall, F1 score, and support based on the test data
using the first model.

Indicators KNN SVM XGBoost RF LR DT

PHs

Precision 0.93 0.87 0.97 1.00 0.85 0.75

Recall 0.69 0.76 0.95 0.97 0.73 075

F1 score 0.80 0.81 0.96 0.98 0.78 0.75

Support 62.00 62.00 62.00 62.00 62.00 62.00

PCTs

Precision 0.59 0.61 0.90 0.94 0.56 0.56

Recall 0.90 0.77 0.93 1.00 0.73 0.77

F1 score 0.71 0.68 0.92 0.97 0.64 0.76

Support 30.00 30.00 30.00 30.00 30.00 30.00

The second model included all PCTs and only 38 hamartoma patients without signs
of fat tissue. In Figure 5, the outcomes of the ROC curve for the training and test data to
differentiate NFT-PHs from PCTs are presented. The AUC of the XGBoost and RF machine
learning techniques had the highest values of 0.995–0.997 for the training set, whereas
XGBoost and RF had the highest values of 0.820–0.836 for the test set. In Table 4, the
outcomes for the machine learning classifiers for the test data are presented. The RF score
for NFT-PH (AUC = 0.836) and PCTs (AUC = 0.836) indicated that it was the best method
for the test set. Table 5 shows the diagnostic effectiveness of each of the specified indicators.
The PHs ranged between (0.57–0.93) for precision, (0.66–0.97) for recall, (0.66–0.97) for the
F1 score, and (29) for support, whereas the PCTs ranged between (0.81–0.98) for precision,
(0.68–0.97) for recall, (0.75–0.98) for the F1 score, and (63) for support. The RF machine
learning technique yielded the highest value.

Table 4. ROC outcomes for six machine learning classifiers of the test set and the second model.

Classifiers Category AUC 95% CI Sensitivity Specificity

KNN
PHs 0.613 0.39–0.84 0.62 0.56

PCTs 0.613 0.39–0.84 0.56 0.63

SVM
PHs 0.676 0.45–0.90 0.50 0.69

PCTs 0.676 0.45–0.90 0.69 0.5

XGBoost
PHs 0.82 0.66–0.98 0.88 0.81

PCTs 0.82 0.66–0.98 0.81 0.88

RF
PHs 0.836 0.66–1.00 0.88 0.69

PCTs 0.836 0.66–1.00 0.69 0.88

LR
PHs 0.723 0.55–0.90 0.88 0.63

PCTs 0.723 0.55–0.90 0.62 0.88

DT
PHs 0.563 0.35 0.78 0.38 0.75

PCTs 0.563 0.35–0.78 0.75 0.38
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Table 5. Outcomes for four indicators, including precision, recall, F1 score, and support for the test
set using the second model.

Indicators KNN SVM XGBoost RF LR DT

PHs

Precision 0.57 0.68 0.93 0.93 0.50 1.00

Recall 0.90 0.79 0.97 0.97 0.66 1.00

F1 score 0.69 0.73 0.95 0.95 0.57 1.00

Support 29 29 29 29 29 29

PCTs

Precision 0.93 0.90 0.98 0.98 0.81 1.00

Recall 0.68 0.83 0.97 0.97 0.70 1.00

F1 score 0.79 0.86 0.98 0.98 0.75 1.00

Support 63 63 63 63 63 63

It was also found that eight radiomics features could differentiate between PCTS as
PHs, namely the maximum two-dimensional diameter (row); maximum two-dimensional
diameter (column); Long Run Low Gray Level Emphasis (LRLGLE); the dependence
variance (DV); kurtosis; Large Dependence Low Gray Level Emphasis (LDLGLE); and
maximum three-dimensional diameter (Figure 3).

Table 6 presents the values for the confusion matrix for PHs and PCTs using the highest
learning MLP classifier (RF).

Table 6. Details of the confusion matrix for PHs and PCTs using the highest learning MLP classifier
(RF) for all patients in the first and second models.

Types of Pathology
RF (1st Modeling) RF (2nd Modeling)

True False Accuracy (%) True False Accuracy (%)

PHs 12 0 100 12 4 75
PCTs 61 1 98.38 62 4 91.1

Accuracy (%) 99% 83%

4. Discussion

Our results revealed that radiomics can be helpful to differentiate the PHs from PCTs.
Two hand-crafted radiomics models were prepared in this study: with and without PH fat
signs. The results revealed that the MLP method (RF) was best for the PH (AUC = 0.999)
and PCT (AUC = 0.999) for the first model (AUC = 0.836) and PCT (AUC = 0.836) in the
test set for the second model. Moreover, we defined eight radiomics features that could
differentiate between the PCTs and PHs.

Radiomics involves using high-dimensional quantitative features extracted from imag-
ing data to non-invasively quantify pathology. Recent studies have shown the potential for
the application of radiomics in the oncological field [8,12]. This technique could comple-
ment the conventional approaches for analyzing the images and facilitate the process of
delivering treatment tailored to individual patients [13]. There has been a recent increase in
the volume of research on the applications of thoracic tumors. [14]. It is possible to extract
multiple quantitative features from medical images, including CT and MRI, through the
application of high-throughput computing [15]. These features include the use of intensity,
shape, texture, wavelet, and LOG features to build predictive or prognostic non-invasive
biomarkers for imaging modalities [8–16].

PHs do not require additional treatment other than in situations where there is the
rapid growth of the tumor need no further treatment unless the lesion grows rapidly or the
patient exhibits clinical symptoms [17,18]. However, surgical resection is the mainstay for
PCTs, even if they are single and small. Due to these differences in treatment modalities, it
is important to differentiate between PHs and PCTs using a clinical diagnostic modality.
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However, precise radiological differentiation criteria do not exist. The presence of fat and
calcification on CT is a good indicator of a PH, but about 35% of hamartomas lack fat or
calcification [17–19]. Although PHs can be diagnosed with an accuracy of approximately
62% by CT and 81% by PET, approximately 20% of patients may have features suggestive
of malignancy [4,19,20]. Differentiating NFT-PHs from PCTs with non-invasive methods
remains problematic, and the patients with an NFT-PH may undergo unnecessary surgery
or needle biopsy for diagnostic and therapeutic purposes. Although it is quite easy to
diagnose these tumors on tissue sections, PHs can be mistaken for adenocarcinoma in fine-
needle aspiration biopsy specimens if invaginated epithelium is prominent and/or showing
reactive atypia [8,17–20]. On the other hand, PCTs are usually enhanced on a CT scan after
contrast administration, but this radiological finding is not diagnostic. Dense ossification,
calcification, or an endobronchial component associated with the nodule suggests the
diagnosis. However, a CT scan may not be useful for distinguishing PCTs from benign
nodules [5]. Several researchers have previously utilized radiomics models to pathologically
differentiate PHs from other pulmonary pathologies. Guan et al. differentiated PH from
adenocarcinoma and found that the average contrast, cluster prominence, cluster shade,
energy, and entropy were considerably higher in PHs in comparison to adenocarcinomas [8].
Another research group found that the internal structure of malignant lung tumors has
greater complexity and inhomogeneity in comparison to lesions that are benign as a result
of quantification via radiomics analysis [21].

To the best of the authors’ understanding, no non-invasive technique has been devel-
oped to differentiate PH/NFT-PHs from PCTs [2,4–7,17–20]. Therefore, in this study, the
radiomics features extracted from CT images were used to differentiate PHs from PCTs.
Since solid tumors are heterogeneous, intra-tumor heterogeneity can be determined by
calculating the complex distribution of CT attenuation; this is termed imaging hetero-
geneity [22]. Radiomics can quantify the high-dimensional mineable features and identify
underlying differences, offering a virtually unbounded stock of imaging biomarkers that
have the potential to enhance diagnostic performance [21–24]. In particular, there has
been a widespread application of tissue-based features in the differential diagnosis of
SPN [8,14,23,24].

Studies have adopted machine learning approaches, such as segmentation, clustering,
artificial neural network, Supporter Vector Machine (SVM), and Convolution Neural Net-
work (CNN) [25–28]. CNN is originated from the functions of neurons. CNN has become
the popular deep-learning model for the field of the medical imaging area. From deep
learning AI algorithms, the detection of nodules was also designed [28]. In a study by
Chung et al. [29], 150 CT scans (100 benign and 50 malignant cases) were included for eval-
uation deep learning and found that a mean AUC was 0.86 (0.81–0.91). In another recent
study, Yang et al. proposed a preoperative staging tool for stage I and stage II thymoma
patients based on CT images. They utilized the 3D-DenseNet model, which is an ANN
deep learning model, to differentiate between MK stage I and stage II thymomas. They
concluded that the ability to classify the stage of the thymoma could ultimately be used
as a guide to determine surgical treatment and enhance patient outcomes. Deep learning
methods can also demonstrate performance in many applications, including object, face,
and activity recognition, tracking, and three-dimensional mapping, especially lung nodule
detection [30].

There has been minimal utilization of machine learning systems as an artificial intel-
ligence strategy by applying radiomics features in PHs and PCTs. Therefore, this study
involved the development of a radiomics-based model with machine learning to differenti-
ate PHs from PCTs. Similar to the findings of Guan et al. [8], the texture-GLCM analysis
yielded the highest efficacy in discriminating PHs from PCTs. Specifically, the RF classifier
trained with texture-GLCM features performed significantly better in correctly diagnosing
PH patients than the other MLP classifiers for both models, and it can be used clinically to
distinguish PHs from PCTs. This kind of machine-learning model in which texture-GLCM
features are used for training, facilitate the identification of the internal distribution of



Diagnostics 2022, 12, 416 12 of 14

attenuation and offer evidence for discrimination. The results of this study suggest that a
good agreement can be achieved using radiomics features, even without the presence of
fat; however, fat is still very important for differentiating PCTs from PHs. Given the results
of the study, it can be recommended that RF machine learning with the presence of fat on
the CT image’s feature extraction can be best used for the differentiation of pulmonary
hamartomas from carcinoid tumors.

The study contains certain limitations that should be addressed. Firstly, the data
of patients from only one center were reviewed retrospectively, thus potentially causing
selection bias. Secondly, the sample size was small. Larger multicenter studies with
larger sample sizes will be required to validate and expand on our results. Third, ROI
segmentation was performed manually, which may have been affected by subjective bias.
Last, the raw images were collected from different CT scanners. Variability in image
acquisition could have influenced the results, however, this is inevitable in clinical practice.

This is the first study to distinguish PCTs from PHs with or without the presence of fat
using CT image radiomics features. This technique holds great promise for a more accurate
preoperative diagnosis of SPNs.

5. Conclusions

The study findings indicate that predictive models, including radiomics tumor features
derived from CT images, are useful to differentiate pulmonary carcinoid tumors from
hamartomas with high accuracy, even without the presence of fat on the CT image. By
using radiomics, which is a non-invasive method, patients with PH will be saved from
surgery that hast the possibility of morbidity and mortality by distinguishing pulmonary
hamartoma from pulmonary carcinoids, and unnecessary economic losses will be prevented.
In addition, considering the results of this study, it may be possible for patients with PC, a
pulmonary tumor, to reach the right treatment in a short time with radiomics applications
in the future.
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and editing, H.O., A.U.Y. and İ.A.; visualization, K.O. and A.G.C.; supervision, A.K.C.; project
administration, K.O. and A.K.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted following the Declaration of
Helsinki, and approved by the Institutional Review Board of Ankara University, Faculty of Medicine
(IRB No: 2021-104).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Carlsen, C.J.; Kiaer, W. Chondromatous hamartoma of the lung. Thorax 1950, 5, 283. [CrossRef] [PubMed]
2. Takumi, K.; Nagano, H.; Harasawa, T.; Tabata, K.; Tokunaga, T.; Yoshiura, T. Pulmonary hamartoma: Feasibility of dual-energy

CT detection of intranodular fat. Radiol. Case Rep. 2021, 16, 1032–1036. [CrossRef]
3. van den Bosch, J.M.; Wagenaar, S.S.; Corrin, B.; Elbers, J.R.J.; Naepen, P.J.K.; Westermann, C.J.J. Mesenchymoma of the lung: A

review of 154 parenchymal and endobronchial cases. Thorax 1987, 42, 790–793. [CrossRef]
4. De Cicco, C.; Bellomi, M.; Bartolomei, M.; Carbone, G.; Pelosi, G.; Veronesi, G.; De Pas, T.; Spaggiari, L.; Paganelli, G. Imaging

of lung hamartomas by multidetector computed tomography and positron emission tomography. Ann. Thorac. Surg. 2008, 86,
1769–1772. [CrossRef]

http://doi.org/10.1136/thx.5.4.283
http://www.ncbi.nlm.nih.gov/pubmed/14809665
http://doi.org/10.1016/j.radcr.2021.01.062
http://doi.org/10.1136/thx.42.10.790
http://doi.org/10.1016/j.athoracsur.2008.08.033


Diagnostics 2022, 12, 416 13 of 14

5. Meisinger, Q.C.; Klein, J.S.; Butnor, K.J.; Gentchos, G.; Leavitt, B.J. CT features of peripheral pulmonary carcinoid tumors. AJR
Am. J. Roentgenol. 2011, 197, 1073–1080. [CrossRef]

6. Schrevens, L.; Vansteenkiste, J.; Deneffe, G.; De Leyn, P.; Verbeken, E.; Vandenberghe, T.; Demedts, M. Clinical-radiological
presentation and outcome of surgically treated pulmonary carcinoid tumours: A long-term single institution experience. Lung
Cancer 2004, 43, 39–45. [CrossRef] [PubMed]

7. Erasmus, J.J.; McAdams, H.P.; Patz, E.F., Jr.; Coleman, R.E.; Ahuja, V.; Goodman, P.C. Evaluation of primary pulmonary carcinoid
tumors using FDG-PET. Am. J. Roentgenol. 1998, 170, 1369–1373. [CrossRef] [PubMed]

8. Guan, X.; Wang, S.; Kuang, P.; Lu, H.; Zhang, M.; Qian, D.; Xu, X. The Usefulness of Imaging Quantification in Discriminating
Non-Calcified Pulmonary Hamartoma From Adenocarcinoma. Front. Oncol. 2020, 10, 568069. [CrossRef]
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