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Abstract: Background: Gastric cancer is one of the deadliest malignant diseases, and the non-invasive
screening and diagnostics options for it are limited. In this article, we present a multi-modular device
for breath analysis coupled with a machine learning approach for the detection of cancer-specific
breath from the shapes of sensor response curves (taxonomies of clusters). Methods: We analyzed the
breaths of 54 gastric cancer patients and 85 control group participants. The analysis was carried out
using a breath analyzer with gold nanoparticle and metal oxide sensors. The response of the sensors
was analyzed on the basis of the curve shapes and other features commonly used for comparison.
These features were then used to train machine learning models using Naïve Bayes classifiers, Support
Vector Machines and Random Forests. Results: The accuracy of the trained models reached 77.8%
(sensitivity: up to 66.54%; specificity: up to 92.39%). The use of the proposed shape-based features
improved the accuracy in most cases, especially the overall accuracy and sensitivity. Conclusions: The
results show that this point-of-care breath analyzer and data analysis approach constitute a promising
combination for the detection of gastric cancer-specific breath. The cluster taxonomy-based sensor
reaction curve representation improved the results, and could be used in other similar applications.

Keywords: gastric cancer; breath analysis; electronic nose; machine learning; screening

1. Introduction

Gastric cancer ranks fourth among the most common cancers worldwide. It shows
a lack of specific symptoms in the early stages, and is commonly characterized by late
diagnosis, poor prognosis, and likely relapse [1]. The early detection of gastric cancer is the
first step prior to diagnosis and screening for the reduction of mortality. However, there
is no quick, reliable, non-invasive, and economical screening tool for gastric cancer. At
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present, upper gastrointestinal endoscopy with biopsy is the gold standard for the diagnosis
of the condition, but this operation is time-consuming, expensive, and invasive; patient
compliance is poor, and the demands on medical staff and equipment are typically high.
Therefore, it is unaffordable for mass screening, and cannot provide the early diagnosis of
gastric cancer.

Breathomics is a branch of metabolomics that helps us to diagnose diseases by an-
alyzing volatile metabolites produced by changes in the metabolic processes caused by
the disease [2,3]. So far, breath analysis has proved successful for the diagnosis of lung
cancer, breast cancer, gastric cancer, prostate cancer, colorectal cancer, ovarian cancer, head-
and-neck cancer, bladder cancer, and kidney disease [4,5]. The following have been used
for the detection of gastric cancer: gas chromatography–mass spectrometry (GC-MS), the
laboratory-based analysis of collected air, and some on-line analysis tools which are under
development. There are known systems for the detection and identification of volatile
organic compounds (VOCs) in exhaled breath using an array of sensors which are reactive
to those VOCs.

Sensor-based exhaled breath analysis has shown significant promise for early gastric
cancer detection in scientific and clinical practice because of its high accuracy, low cost, non-
invasiveness, and ease of operation [6–11]. The application of such a diagnostic method
is important in helping to reduce gastric cancer mortality. Its performance relies on its
accuracy, sensitivity, specificity, and predictive values [4,12]. With advances in technology,
the breath analysis approach could hold the key to the detection of gastric cancer, providing
broader information on the progress of the disease, VOCs unique to gastric cancer, their
origin, and the underlying biochemical mechanisms.

Various sensor-based electronic noses have been used in recent years to complement
GC-MS for the detection and differentiation of various types of cancers, including gastric
cancer [13–17]. Different self-powered respiration sensors and wearable biosensors are
also used for non-invasive chemical breath analysis and physical respiratory motion detec-
tion [18–22]. These can monitor human respiratory patterns and behaviors spontaneously.
GC-MS techniques are generally time-consuming and costly, and are not feasible for use in
daily medical practice, whereas electronic noses can detect low concentrations of complex
VOCs emitted from various matrices without necessarily identifying the individual volatile
metabolites [23].

In this work, we report the diagnostic performance of a modular point-of-care breath
analyzer with gold nanoparticle (GNP) and two different types of metal oxide (MOX)
semiconductor sensors for the detection and identification of gastric cancer in an online
mode that requires no additional breath collection procedures or laboratory settings. The
proposed device was built on the basis of previous studies in laboratory settings [24],
measurement reproducibility studies [25,26], and population studies [16] by improving the
sensors and adding modules with other sensors to obtain more information from breath.
Furthermore, we describe and validate a machine learning algorithm for data analysis
that is used to classify gastric cancer cases and healthy controls, and we offer further
recommendations to improve the device. The satisfactory performance of the developed
model shows that the breath analyzer device could be a promising tool for the detection
and classification of gastric cancer in a point-of-care clinical setting. It holds potential for
future clinical application as a fast, non-invasive, and well-directed method for gastric
cancer detection and screening.

2. Materials and Methods
2.1. Ethics

The study was approved by the Ethics Committee of the Riga East University Hospital
Support Foundation (approval No. 18A/19). All of the participants provided signed
consent before entering the study.
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2.2. Study Participants

Patients who had reached at least 18 years of age and were able to undergo a breath
exam were included, and signed a consent form. The following exclusion criteria
were applied:

- known active malignant diseases other than gastric cancer,
- ongoing neoadjuvant chemotherapy,
- a history of stomach surgery (except vagotomy and ulcer suturing),
- inflammatory bowel disease (Crohn’s disease and ulcerative colitis),
- end-stage renal insufficiency,
- diabetes mellitus type I,
- active bronchial asthma, and
- a history of small bowel resections.

Patients with morphologically confirmed gastric adenocarcinoma were included in
the study prior to their gastric surgery. A control group (patients without gastric cancer)
was included prior to upper endoscopy. Histological reports were assessed after the
examination, and the final grouping was performed after that.

After their inclusion in the study, the subjects were given specific instructions to follow
before the measurements were made in order to minimize the effects of any strong and
potentially interfering VOCs. They were informed by telephone or in writing at least 24 h
prior to the planned procedure in order to ensure compliance with the requirements. The
instructions included the following restrictions:

- fast for at least 12 h;
- refrain from drinking coffee, tea and soft drinks for at least 12 h;
- refrain from smoking for at least two hours;
- avoid alcohol for at least 24 h;
- do not clean your teeth within two hours before the procedure (no brushing, no

mouthwash, no flossing if the floss has any aroma);
- avoid chewing gum and using any mouth fresheners for at least 12 h;
- refrain from using cosmetics/fragrances on the day of the test prior to the procedure;
- avoid excessive physical activity (the gym, jogging, cycling, intense physical work)

for at least two hours prior to the test.

2.3. Breath Measurement

The study participants were invited to Latvia Oncology Centre, Riga East University
Hospital (Riga, Latvia), where a separate room was designated solely for breath sample
measurements in order to reduce the risk of contamination with other VOCs. The control
and cancer group subjects were included randomly during the same time period (starting
November 2019). A lifestyle and medical history questionnaire, including potential con-
founding factors, was completed prior to the breath sampling. After the questionnaire, the
participants exhaled into a table-top device that analyzed their breath immediately after
the exhalation.

The point-of-care breath analyzer used in this study was a modular breath analyzer
prototype developed by JLM Innovation GmbH (the device is shown in Figure 1a; the main
blocks of the system are shown in Figure 1b). The main parts are: (i) a sampling unit that
collects the exhaled air and monitors the air flow, which includes a pump that draws the
alveolar air from the tube at the exhalation end to provide buffered-end tidal sampling;
(ii) environment control sensors (temperature measurement for temperature control, and
humidity and air pressure sensors); and (iii) a sensor chamber that holds three modules of
sensors: one with eight GNP sensors developed by Technion (Israel Institute of Technology,
Haifa, Israel), another with eight analogue MOX sensors, and a third with ten digital MOX
sensors. The sensor set comprises monolayer-capped, organic, functionalized GNP sensors
and chemoresistive analogue and digital surface mount devices (SMD). This heterogeneous
array of sensors with different transducing mechanisms was specifically selected for the



Diagnostics 2022, 12, 491 4 of 17

detection of gastric cancer on the basis of previous study results. The sensors were designed
to be selective towards a wide range of VOCs in exhaled breath, including nonpolar and
aromatic VOCs, and metabolites linked to intermolecular interactions, including Lewis
acid-base, hydrogen bonding, and dipolar interactions.

The GNP sensors were functionalized with eight organic ligands to enhance their
affinity for gastric cancer VOCs. These ligands were selected from a reservoir of 40,
following a previous study carried out on more than 1000 clinical breath samples [24].
The organic ligands used to cover the GNPs for the detection and classification of gas-
tric cancer from exhaled breath were: decanethiol, 2-ethylhexanethiol, 2-nitro-4-trifluoro-
methylbenzenethiol, octadecanethiol, tert-dodecanethiol, 2-amino-4-chlorobenzenethiol,
2-mercaptobenzimidazole, 3-ethoxythiophenol, and 2-naphthalenethiol. The analogue and
digital MOX sensors have broad sensitivities to the VOCs from exhaled breath. These
sensor modules are designed to detect a wide range of VOCs, including ethanol, acetone,
H2, ethane, isoprene, CO, nitrogen oxides (NOx), volatile sulfur compounds, CO2, and
breath VOC mixtures.
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were saved in a single JSON file on the computer. 

  

Figure 1. The point-of-care device used in the study: (a) the design of the device, with a disposable
mouthpiece inserted at the front; (b) the main blocks of the system.

In order to take a measurement, the device was connected to a computer and the
measurement process was controlled from a computer-based graphical interface. Before
the measurement began, medical personnel entered metadata, and a sample of the room
air was taken and measured automatically to provide data from the sensor response to any
potential background VOCs. Then, the patient was notified to prepare for exhalation by
a message on the computer screen and flashing lights on the device. The patient exhaled
into the device, and the last part of the breath was pumped into the sensor chamber and
analyzed. The metadata and the sensor responses to the room air and the exhaled air were
saved in a single JSON file on the computer.

2.4. Data Analysis

The raw breath measurement data were first preprocessed to exclude any faulty
measurements, equalize the lengths of the measurements, and clean the data, as described
in Section 2.4.1. The preprocessed data were then used to build cluster taxonomies (see
Section 2.4.2) and to extract the standard features for comparison (the minimum, maximum,
average, area under the curve and the mean of the end (stable) part of the measurements).
Then, the cluster taxonomies and the extracted features were run through feature selection
algorithms to select the most informative attributes, which were classified as described in
Section 2.4.3. The whole process is depicted in Figure 2.
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Figure 2. Diagram of the data analysis process.

2.4.1. Preprocessing of the Raw Data

Before the sensor response curves were processed, measurements that lacked some
of the sensor readings owing to technical problems were excluded from the analysis (ten
gastric cancer patient and two control group measurements). Then, the measurements
(one time series per sensor) were preprocessed by equalizing the measurement lengths
(some sensors had extra time points at the beginning or end of the measurement because of
the measurement specifics) such that they could be analyzed using methods that require
equal-length time series. The readings were normalized against the final values of the
baseline measurements (the room air measurements before the breath analysis) when the
sensor response had stabilized in order to remove the effects of the environmental air and
the VOCs present in it. All of the measurements were also examined in order to identify
outliers by projecting the observations to the principal components, calculating orthogonal
and score distances, and evaluating them as proposed by Rodionova and Pomerantsev [27].
The median filter was applied to reduce any noise in the sensor readings.

This resulted in one preprocessed time series of the sensor reactions to the breath
for each sensor type. The GNP, analogue MOX, and digital MOX sensor responses (and
common features) are shown in Figure 3.

The preprocessing was carried out in order to prepare the sensor response curves in
the classification model training. They are usually analyzed using the features of the curve,
including the steady-state response and transient responses such as the minimum, mean or
maximum values, or the area under the curve [28,29]. However, this approach removes a
lot of potential information in the curve. Therefore, in this study, we used the shape of the
curve as a feature. In order to describe the curve shape, we used cluster-specific curves.
Clustering divides observations into groups so that the observations within a group are
more similar to each other than to those from other groups. Therefore, similar curves were
grouped into clusters, and membership of this cluster (measurements similar to the mean
cluster curve) was used as a feature. The clustering process is described in the following
subsection. Feature extraction and selection are important for the understanding of the data
by ranking the features on the basis of their contributions to the classification. Therefore,
for the given observations, we can infer which are the best sensors and the best feature
extraction method.
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2.4.2. Clustering of the Measurements

Curve shape taxonomies holding the curves that can potentially be used for classifica-
tion were built by repeatedly clustering the measurement curves into k similar groups and
identifying the characteristic shape of each cluster. The number of the groups could not
be defined precisely before the analysis; as such, we used hierarchical clustering and cuts
in the resulting dendrograms to generate 2–10 clusters, all of which were used to create a
hierarchical taxonomy (Figure 4) of the groups (represented by the characteristic curves).
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The clustering was performed by the hierarchical agglomerative method, using dy-
namic time warping (DTWARP) and Euclidean distances, each being tested by two different
linkage methods: complete and Ward linkage.
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Euclidean distance was chosen because it is the most common distance metric. The
distance d is calculated by comparing the distances of every two points (out of the total
length of the times series n) of the two time-series (TS1 and TS2):

d(TS1, TS2) =
√

∑n
i=1(TS1i − TS2i)

2 (1)

DTWARP [30] was used because it has proven effective in time-series clustering [31,32].
One of its strengths is matching values at different time points, which is also important
in sensor response analysis because the reactions can occur at different speeds, and there
can be delays before a reaction starts or before it reaches its maximum. DTWARP can be
considered to be an extension of Euclidean distance that creates a mapping of points from
two time series in order to minimize the pairwise Euclidean distance, such that each point
is aligned with one or more points from the other time series.

The linkages chosen for this study have previously shown their strength in the creation
of clusters with more similar sizes, seldom creating small clusters with a few data points
that are further away from other points on the attribute axes but are not considered outliers.
Ward’s distance minimizes the variance of data points in the clusters, while the complete
distance considers the maximum distance between two clusters.

2.4.3. Classification

The results of the clustering (hierarchy, group memberships, and the characteristic
curves) representing the naturally-occurring groups of sensor responses were then used as
input data in classifier induction to discriminate between the control and cancer classes.
The membership of each breath to a cluster (at each level in the taxonomy) was used as a
separate attribute. Different approaches can be used to determine the optimum number
of clusters and the necessary cut in the taxonomy. Some classification algorithms have
built-in feature selection procedures (such as rule- or tree-based classification algorithms).
If the method of choice lacks a built-in option, the cut can be determined on the basis
of expert choice, distances among clusters and other dissimilarity evaluation metrics, or
feature selection algorithms. In our study, we chose the feature selection approach to
ensure the best cluster sets for classification. In order to find the best cuts, we applied
the following feature selection algorithms: Information Gain, ReliefF, and symmetrical
uncertainty. Information Gain (also known as Kullback-Leibler divergence [33]) is a metric
for the assessment of the reduction in entropy if a feature is used to create subgroups of
data. It is used in many applications even though it does not take account of potential
dependencies among features. ReliefF [34,35] can detect conditional dependencies between
features, and can evaluate those features on the basis of how well they distinguish between
similar instances. Symmetrical uncertainty assesses the correlation between a feature and
the class, and was proposed as a robust filter by Yu and Liu [36].

The selected features were then used in classification (the steps of the data analysis
process are given in Figure 2). The data were used to build Naïve Bayes (NB) classifiers,
Support Vector Machines (SVM) and Random Forests (RF) using the algorithm implemen-
tations in the Weka libraries [37]. The NB [38] classification algorithm is a probability-based
algorithm that calculates the conditional probabilities of classes from feature values, assum-
ing no dependencies among the features. The SVM [39] algorithm constructs a hyperplane
that separates the two classes and has the maximum margin (distance from the data points).
RF [40] randomly constructs a number of decision trees and uses majority voting to predict
the class.

NB and SVM are popular algorithms which are often applied in electronic nose-related
machine learning tasks [41], and each is based on a different approach (probabilistic vs.
function-based). The RF algorithm is an ensemble of tree classifiers, and should therefore
be more accurate for the handling of more complex data, where simpler probabilistic or
function-based algorithms would be unable to describe the relationships within the data.
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Each dataset (common features and cluster taxonomies as features) was run through
the feature selection, classification model training and testing cycle 1000 times. Each
run was evaluated using metrics such as overall accuracy (the total percentage of correct
predictions), sensitivity (the percentage of the correctly identified cancer group), specificity
(the percentage of the correctly identified control group) and the area under the ROC curve
(AU-ROC). The accumulated data were used to calculate the mean values and the 95%
confidence intervals (95% CI) of the results. The statistical significance of the differences
was assessed using ANOVA with Bonferroni post-hoc analysis.

3. Results

The different sensor types gave very different results when analyzed separately. Gold
nanoparticle sensors showed high overall accuracies, up to 77.61%, but their sensitivity did
not surpass 55% (their specificity was 89%). The overall accuracy of analogue MOX sensors
reached 69.94%, but their sensitivity was low (46%), and their specificity reached 83%. The
overall accuracy of the digital MOX sensors was up to 67.88%, with rather low sensitivity
(47%) and specificity (79%).

When all of the sensor modules were used for the classification, the results showed
that the overall accuracy of the most accurate classification algorithm (Naïve Bayes) was
over 70% (at best 77.81%), with sensitivity ranging from 46.9% to 66.54%, and specificity
ranging from 83.64% to 85.27% depending on the features selected (see the best results in
Table 1). The area under the ROC curve was from 0.774 to 0.817 (the ROC for these feature
subsets, and all of the accuracy metrics for different combinations, are provided in Table S1
in the Supplementary Information).

The use of cluster taxonomies improved the overall accuracy (~5 percentage points)
and sensitivity (~10 percentage points) and AU-ROC, while the specificity remained similar
to the specificities obtained using the more common features.

Table 1. Classification results (and 95%CI) using Naïve Bayes classifiers.

Feature Overall Accuracy Sensitivity Specificity

Minimum 72.18% (71.49–72.87%) 46.9% (45.39–48.41%) 85.51% (84.76–86.26%)

Average 74.21% (73.5–74.91%) 51.85% (50.35–53.34%) 86.02% (85.27–86.76%)

Maximum 73.7% (72.96–74.44%) 53.44% (51.94–54.94%) 84.38% (83.6–85.16%)

Average of the last 10 time points 73.74% (73.02–74.45%) 53.00% (51.51–54.49%) 84.67% (83.9–85.44%)

Area under the curve 73.75% (73.04–74.47%) 50.77% (49.28–52.26%) 85.88% (85.13–86.64%)

Cluster (DTWARP distance, Ward linkage,
InfoGain) 77.81% (77.15–78.48%) 64.05% (62.66–65.44%) 85.04% (84.29–85.78%)

Cluster (Euclidean distance, Ward linkage,
Symm.Unc.) 77.1% (76.41–77.79%) 66.54% (65.21–67.87%) 82.64% (81.83–83.45%)

The overall accuracy (the mean values and 95% confidence intervals are shown in
Figure 5) in the common feature datasets was mostly ~73.7% (95% CI: ~73.0–74.4%), with
the best overall accuracy being shown by the average signal level, which was 74.21%
(73.5–74.91%). When clusters were used instead of common features, the overall accuracy
improved. The data subsets where the ReliefF feature selection approach was used showed
the worst results in almost all of the distance and linkage combinations. The best overall
accuracies were achieved in the datasets where the clusters were obtained using DTWARP
distances. All of them were significantly better than the common features.

The mean sensitivity (shown in Figure 6, with 95% confidence intervals as error bars)
in the datasets with common features was between 46.9% (45.39–48.41%) and 53.44% (51.94–
54.94%). The use of cluster taxonomies improved the mean sensitivity of Naïve Bayes
models to 66.54% (65.21–67.87%). In this case, the best result was achieved in the dataset
in which the clusters were obtained using Euclidean distance and Ward linkage, although
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there was no statistically significant difference from DTWARP combinations with complete
linkage (InfoGain and symmetrical uncertainty feature selection) or with Ward linkage
(InfoGain feature selection). The performance of the ReliefF feature selection was also
worse when sensitivity was used as the metric for all of the combinations of distance
measurements and linkage approaches.
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The mean specificity (given in Figure 7, with 95% confidence intervals as error bars) in
the datasets representing the common features of the sensor response curve was between
84.38% (83.6–85.16%) and 86.02% (85.27–86.76%). When cluster taxonomies were used
instead of common features, the specificity decreased in most cases. The datasets in which
the cluster cuts were obtained using ReliefF feature selection had the worst specificities,
but InfoGain and symmetrical uncertainty provided good results, in which the difference
from the specificities obtained using common features was 1–2 percentage points.
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The mean area under the ROC curve (presented in Figure 8 with 95% confidence
intervals as error bars) was lower in the datasets in which the common features were used;
it ranged from 0.774 (0.765–0.782) to 0.790 (0.782–0.798). The AU-ROC was also lower in
the datasets in which the cuts in taxonomies were chosen using ReliefF feature selection.
The best result was obtained in the dataset in which the combination of DTWARP distance
measurement and complete linkage was used together with InfoGain feature selection
to select the best cuts in the cluster taxonomies; it was 0.830 (0.823–0.838). However, in
most cases, the AU-ROC differences among the cluster taxonomy-based datasets were not
statistically significant. Nevertheless, they differed significantly from the datasets in which
the common features were used (except the cluster taxonomy-based datasets in which
ReliefF was used to select the best cuts in the taxonomies).

An example of the clusters used in a Naïve Bayes classifier (after making cuts in the
cluster taxonomies) and their characteristic shapes (the mean values of the clusters) is given
in Figure 9. The shapes are colored on the basis of the probabilities of the cancer and control
classes: if the model included a higher probability of cancer for the specific shape, it is
colored red; otherwise (a higher probability of control class) it is colored blue.
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Figure 9. An example of the characteristic shapes used in a Naïve Bayes model: a taxonomy for
GNP sensor responses cut at six clusters (a), taxonomies of two other GNP sensors cut at 10 and
four clusters (b,c), and one MOXD sensor at five clusters (d); the dashed lines shows individual
measurements, and the solid bold lines show the cluster-characteristic shapes.
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The second-best results were acquired using Random Forests as classifiers (see the best
results in Table 2; all of the accuracy metrics, including ROC, for all of the combinations are
provided in Table S2 in the Supplementary Information). The overall accuracies (shown in
Figure 10 with 95% CI as error bars) in the datasets with common features range from 69.89%
(69.19–70.59%) to 70.97% (70.25–71.69%), and in the datasets in which the cluster taxonomies
were used they range from 72.04% (71.41–72.66%) to 75.87% (75.27–76.47%). These results
show great improvement, and the best result is not much worse than that of the Naïve
Bayes classifier. However, the sensitivities acquired using RF are much inferior to those
acquired using NB classifiers. The sensitivities in the datasets with common features range
from 43.23% (41.82–44.64%) to 48.79% (47.32–50.25%), and in the cluster-based datasets
they are between 39.59% (38.21–40.98%) and 46.52% (45.13–47.91%), much worse than the
sensitivities obtained using NB classifiers. The relatively good overall accuracies are due to
the higher specificities: from 82.78% (81.96–83.6%) to 84.72% (83.95–85.49%) in the datasets
with common features, and from 86.93% (86.22–87.64%) to 92.39% (91.84–92.94%) in the
cluster-based datasets. Like the overall accuracies, the AU-ROC results are also fairly good:
from 0.763 (0.755–0.771) to 0.785 (0.777–0.793) in the datasets with common features, and
from 0.745 (0.737–0.754) to 0.800 (0.792–0.808) in the cluster-based results.

Table 2. Classification results using Random Forests.

Feature Overall Accuracy Sensitivity Specificity

Minimum 69.89% (69.19–70.59%) 45.3% (43.87–46.73%) 82.93% (82.12–83.74%)

Average 70.58% (69.86–71.29%) 47% (45.56–48.45%) 83.13% (82.3–83.95%)

Maximum 70.33% (69.66–71.01%) 43.23% (41.82–44.64%) 84.72% (83.95–85.49%)

Average of the last 10 time points 70.97% (70.25–71.69%) 48.79% (47.32–50.25%) 82.78% (81.96–83.6%)

Area under the curve 70.51% (69.79–71.23%) 46.54% (45.1–47.99%) 83.27% (82.44–84.1%)

Cluster (DTWARP distance, Ward linkage,
ReliefF) 75.01% (74.39–75.63%) 46.52% (45.13–47.91%) 90.12% (89.5–90.74%)

Cluster (Euclidean distance, complete
linkage, ReliefF) 74.51% (73.90–75.13%) 46.04% (44.68–47.41%) 89.66% (89.01–90.30%)

If we look at the performances of different combinations of distance measures, linkage
approaches and feature selection methods used to select the cuts in the cluster taxonomies,
we can see that the results of the ReliefF feature selection approach are not worse, as in
the case of NB. In some distance measurement and linkage approach combinations, they
show the best results. Furthermore, when Random Forests are used as classifiers, there is
no single best or worst feature selection method for all of the combinations. The overall
accuracies obtained using DTWARP distance measurements and the choice of linkage
approach do not seem to have a great influence. The situation is similar in the results
obtained using other accuracy evaluation metrics.

The best results obtained using SVMs are presented in Table 3; see Table S3 in the
Supplementary Information for the AU-ROC and results for other combinations of methods
for clustering. The use of cluster taxonomies mainly affected the sensitivities of SVMs.
The mean sensitivity for common features ranged from 40.86% (39.48–42.25%) to 48.33%
(46.94–49.71%), and for clusters it was from 54.33% (52.9–55.76%) to 60.73% (59.31–62.15%).
This means that SVMs suffered a loss in specificity when cluster taxonomies were used:
the mean specificity for common features ranged from 88.2% (87.53–88.88%) to 91.14%
(90.51–91.78%), while the use of cluster taxonomies resulted in specificities from 77.53%
(76.63–78.43%) to 82.48% (81.66–83.30%).
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Table 3. Classification results using SVMs.

Feature Overall Accuracy Sensitivity Specificity

Minimum 73.84% (73.23–74.45%) 41.31% (39.99–42.64%) 91.14% (90.51–91.78%)

Maximum 73.45% (72.79–74.11%) 45.72% (44.31–47.14%) 88.2% (87.53–88.88%)

Average 74.26% (73.64–74.87%) 43.16% (41.77–44.55%) 90.74% (90.12–91.37%)

Average of the last 10 time
points 75.1% (74.47–75.74%) 48.33% (46.94–49.71%) 89.27% (88.62–89.92%)

Area under the curve 72.75% (72.13–73.37%) 40.86% (39.48–42.25%) 89.68% (89.02–90.33%)

Cluster (DTWARP distance,
complete linkage, InfoGain) 74.87% (74.16–75.59%) 60.73% (59.31–62.15%) 82.48% (81.66–83.30%)

Cluster (Euclidean distance,
Ward linkage, InfoGain) 73.86% (73.07–74.65%) 61.05% (59.52–62.58%) 80.72% (79.84–81.6%)

The overall accuracies (Figure 11) in this case were more similar among all of the
features, ranging from 72.75% (72.13–73.37%) to 74.26% (73.64–74.87%) for common features,
and from 70.28% (69.54–71.02%) to 74.87% (74.16–75.59%) for cluster-based datasets. Similar
trends could be observed in AU-ROCs: from 0.653 (0.645–0.66) to 0.688 (0.68–0.696), and
from 0.665 (0.657–0.674) to 0.716 (0.708–0.724), respectively.
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4. Discussion

Breath analysis is a promising technique for the non-invasive early detection of cancer,
and recent developments have shown that it can be applied to gastric cancer. During
the past few decades, many types of sensors have been developed and implemented in
laboratory-based settings, and there are reports of electronic nose systems being used in
combination with data analysis methods for the rapid detection and clinical diagnosis of
gastric cancer in an online mode (point-of-care devices). These would make breath analysis
more accessible, and the detection process quicker [16,17,24,42–46].

Although many approaches and sensor materials have been designed and used to
detect gastric cancer through exhaled breath, most of the previous solutions have been
either technically complicated and relatively expensive, or insufficiently functional. Clinical
diagnosis based on the detection of VOCs faces several challenges related to aspects of the
sensor technology, mostly on the following major fronts: complexities of metabolism and
VOC kinetics in a multianalyte system, the inter/intra-person variability of VOC profiles in
such a complex environment, the standardization of sensor calibration owing to inherent
sensor-to-sensor variability, and sensor drift and cross-sensitivities to environmental vari-
ables such as temperature. Such limitations of breath sensor technology are addressed in
the current study: the proposed device includes not only GNP but also metal oxide sensors,
which are selective for a number of VOCs and have been tested for their reproducibility
and robustness.

In this article, we evaluated the diagnostic performance of a novel multi-sensor-based
breath analyzer in gastric cancer patients. The device could differentiate between the breath
prints of patients with gastric cancer and healthy controls with an overall accuracy of 77.8%
(sensitivity: up to 66.54%; specificity: up to 92.39%). The specificities are higher so that
these models can provide a better fit for screening applications, which should minimize the
number of healthy patients having to undergo unnecessary invasive diagnostic procedures.
Furthermore, the classification experiments with sensors of a single type showed worse
results (especially sensitivity), indicating that additional modules with different sensors
supplement the information and improve the differentiation.
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The proposed novel machine learning approach, which applies taxonomies of sensor
response curve shapes instead of single-point or estimate features, improves the accuracy
of the classifiers obtained. However, it is important to choose the correct cuts in the cluster
taxonomies (e.g., ReliefF in the case of NB). In some cases, the gain is lower than that
in others; this is not a fit-for-all solution. Furthermore, the best methods for building
taxonomies and classification can be different for different datasets and goals; therefore, it
is necessary to apply several methods and compare their results in the actual dataset. The
best results in this case were achieved using Naïve Bayes classifiers. Although RF provides
good specificity, which is crucial for screening, its sensitivities are unacceptably low.

The overall results were better than those achieved by Schuermans et al. [47] using
the Aeonose electronic nose to classify breath samples from a small group of gastric cancer
patients and controls (81% sensitivity, 71% specificity, and 75% overall accuracy). Although
some studies—e.g., [2,48]—report accuracies of over 90% (with sensitivity/specificity even
as high as 100%), it is hard to compare them with the results of our study because they
report only the results of one model/run of training, and some do not even use separate
testing data.

5. Conclusions

The proposed device allows the breath to be analyzed in any location, thus providing
more flexibility than laboratory-based approaches. It uses a combination of GNP and metal
oxide sensors, and provides good and stable accuracy. Paired with the suggested data
analysis methods, it can provide a quick and accurate technique for the detection of gastric
cancer-specific breath, and potentially for other applications, e.g., the detection of other
cancers, the monitoring of the course of diseases, and population-based screening.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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