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Abstract: Knee osteoarthritis (KOA) is a degenerative joint disease, which significantly affects middle-
aged and elderly people. The majority of KOA is primarily based on hyaline cartilage change, according
to medical images. However, technical bottlenecks such as noise, artifacts, and modality pose enormous
challenges for an objective and efficient early diagnosis. Therefore, the correct prediction of arthritis is
an essential step for effective diagnosis and the prevention of acute arthritis, where early diagnosis and
treatment can assist to reduce the progression of KOA. However, predicting the development of KOA is
a difficult and urgent problem that, if addressed, could accelerate the development of disease-modifying
drugs, in turn helping to avoid millions of total joint replacement procedures each year. In knee joint
research and clinical practice there are segmentation approaches that play a significant role in KOA
diagnosis and categorization. In this paper, we seek to give an in-depth understanding of a wide range
of the most recent methodologies for knee articular bone segmentation; segmentation methods allow the
estimation of articular cartilage loss rate, which is utilized in clinical practice for assessing the disease
progression and morphological change, ranging from traditional techniques to deep learning (DL)-based
techniques. Moreover, the purpose of this work is to give researchers a general review of the currently
available methodologies in the area. Therefore, it will help researchers who want to conduct research
in the field of KOA, as well as highlight deficiencies and potential considerations in application in
clinical practice. Finally, we highlight the diagnostic value of deep learning for future computer-aided
diagnostic applications to complete this review.

Keywords: knee osteoarthritis; bone segmentation; deep learning; segmentation; machine learning

1. Introduction

KOA is the most common form of arthritis and cause of activity limitation and physical
disability in older adults [1]. Clinically, KOA is characterized by the gradual wear down of
the protective cartilage that cushions the ends of the bones, and structural changes in joint
tissues, including twisted bone and cartilage [2]. The main symptoms of knee OA include
osteophyte formation, joint space narrowing (JSN), and subchondral sclerosis. In addition,
pain is the main symptom of KOA, which drives patients to seek medical treatment and
reduces the quality of life [3].

Moreover, KOA appears mostly in people over 55 years of age, with a higher preva-
lence in people over 65 years of age [4,5]. Indeed, according to global population re-
search, it is considered one of the leading causes of disability, affecting 3.8 million people
worldwide [6]. Furthermore, researchers estimate that at least 130 million people will
suffer from KOA by the year 2050, along with the rising global number of aging people [7].
Nonetheless, early detection and treatment can help reduce KOA progression in the elderly
and enhance their quality of life.
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Furthermore, based on the literature, there is an urgent need for clinical tools that
are will be able to diagnose and potentially predict KOA in relation to the recognized
clinical and biological heterogeneity of KOA. Because of the rising incidence of KOA and
its impact on functional limitations, health-related quality of life, health-care consump-
tion, and total joint arthroplasty, clinical and scientific techniques that may accurately
identify KOA early in its development are in high demand. The diagnosis of knee KOA
is currently based on reported patient symptoms and X-ray imagery [8]. Additionally,
various techniques are available for more advanced imaging modalities such as CT and
MRI, which are associated with the 3D structure of the knee joint. However, these models
are only accessible at large medical facilities, and the cost of the scan renders it unsuitable
for regular KOA diagnosis. Therefore, osteoarthritis imaging by radiography remains the
gold standard for KOA screening due to the low acquisition, safety, cost-effectiveness,
speed, and wide accessibility.

In addition, there are techniques of segmentation in knee joint research and clinical
practice which have an important role in KOA diagnosis and classification [9]. Especially,
machine learning and deep learning approaches have been extensively used in medical
imaging to address problems of classification, detection, and related issues without the
involvement of a radiologist [10,11]. Figure 1 presents the knee bone taxonomy methods.
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Figure 1. Methods of classifying the knee bones [12].

Therefore, our study has the following contributions, which are summarized as follows:

• This paper provides a comprehensive survey and analysis of a wide range of state-
of-the-art recent methodologies for knee bone segmentation. Moreover, we present
quantitative results and the findings of other studies, in order to evaluate their potential
and limitations;

• We perform an extended analysis of knee bone segmentation methods, taking it to the
next level of depth by breaking the approaches down into their building pieces and
emphasizing the algorithmic aspects;

• Unlike other studies, we not only investigate the existing methods, but also provide
recommendations and future directions to enhance them;

• Finally, we highlight deep learning’s diagnostic value as the key to future computer-
aided diagnosis applications to conclude this review.

The rest of this paper is divided into four sections. Section 2 presents knee bone
segmentation techniques, Section 3 presents the approaches that have been used to construct
this review, Section 4 provides discussion and recommendations, and Section 5 describes
the conclusion.

2. Knee Bone Segmentation

Osteoarthritis of the knee results in a constant loss of mineralization, causing its
sensitivity to structural deformation [13]. Some structural changes can be seen on X-rays,
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including bone marrow lesions (BMLs), subchondral bone attrition (SBA), and osteoblasts,
which are some of the radiologically apparent indicators of OA-related clinical studies.
According to a study reported by (Hunter et al., 2006), subchondral BMLs are more evident
across knee regions with increased biomechanical loading [14]. In contrast, other studies
showed that the development of BMLs was associated with the loss of cartilage [13,15,16].
So, bone segmentation will be required for the detection and characterization of these
biomarkers. Consequently, the following applications represent the goals of segmentation
of the knee bone: firstly, to compute a bone model to investigate the effect of biomechanical
stress at different localized knee sites; secondly, to quantify and monitor the changes of bone
shape and surface associated with structural deformations; and finally, to produce a bone–
cartilage interface (BCI) in order to extract cartilage tissue from the bone surface [15,17–19].
Figure 2 shows an example of a 2D bone structure and segmentation result.
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Figure 2. Knee bone segmentation has benefits over other tissues because of its location and anatomi-
cal size. (a) Illustrates the MR image of a knee joint—patella, femur, and tibia bones, readily apparent
with the accompanying cartilage surfaces. TB = tibia bone, FB = femoral bone, PC = patellar cartilage,
FC = femoral cartilage, TC= tibia cartilage. (b) Shows segmented tibia (TB) and femur (FB), which
usually have better demarcation [19].

Furthermore, prior knowledge of knee joint anatomy and completely automated
segmentation algorithms are required for accurate bone surface detection. In the following
subsection, a complete list of knee bone segmentation models is provided, from traditional
models to deep learning.

2.1. Deformable Model-Based

Deformable models are semi-automated and extensively utilized approaches in clinical
applications [20]. The mathematical basis of deformable models is an intersection of
geometry, physics, and theory of approval. Geometry helps to describe the shape of objects;
physics constrains the way the shape may vary across time and space and the theory of
optimum approximation gives the formal basis on which the models adapt to observed
data. Moreover, deformable models are different in terms of developing curves and
representations of surfaces, for instance, geometric deformable models represent implicitly
evolving curves and surfaces as a function of level set, while parametric deformable models
explicitly represent curves and surfaces in their parametric form as energy reduction
formulations and dynamic force formulations [21].

Furthermore, a primary deformable model was expanded using a previous shape
information. Some notable expansions are as follows: active shape models (ASMs) [22],
statistical shape models (SSMs) [23], and active appearance models (AAMs) [24]. Concretely,
these deformable models generally need training in order to get information on the shape
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variability or appearance of the target item. Manual interaction allows the integration of
previous information, such as a collection of landmarks to build a point distribution model
(PDM). However, the most attractive deformable model nowadays is commonly called
“snakes”, where “deformable contour models” or “Snakes” represent a particular instance
of the general multidimensional deformable model theory [21,25]. Snakes are planar
outlines that are helpful for several image analysis purposes, e.g., they are commonly
used to estimate object frontier positions and forms in pictures based on the plausible
assumption that borders are partly continuous or smooth [26]

For instance, in the case of using an active shape model for segmenting an image, the
following steps should be employed [27]:

Step 1: Fitting a model to an image is possible given a rough approximation, and a
model can be applied to an image. By selecting a set of shape parameters, we can determine,
b the shape of the object in an object-centered coordinate frame;

Step 2: By using Equation (1), we can define the position, orientation, and scale of an
instance A of the model in the image frame.

A = TAt,Yt,s,o
(
A + Pb

)
(1)

A Euclidean transformation defines the position (At, Yt), oriented (o), and scale (s)
of the model as it appears in the image; and P represents the corresponding point in the
rotated space. The following is an iterative approach to improving the fit between an
instance, A, and an image:

Active Shape Model Algorithm

1. Finding the closest nearby match for the point A′i by analyzing a region of the image
around each point Ai.

2. The parameters (At, Yt, s, o, b) should be updated to fit the newly discovered points A.
3. Set constraints on the parameters, b, to ensure plausible shapes (e.g., limit so [bi] < 3

√
λi).

4. Continue until convergence is reached.

Figure 3 demonstrates the search with ASM for the face in two cases. Moreover,
the deformable model has been widely utilized with knee bone segmentation because of
its consistency in form and size benefit. In addition, these models attempt to recognize
low-level image data, such as borders and intensity areas, wherein MRI these charac-
teristics are not easily recognizable and the complete segmentation of images may be
defective [27,28]. These deformable models contain the following: SSM [17], active contour
model (ACM) [29,30], and AAM [31].

In 2007, Fripp et al. [32] presented a study that represented a significant step towards
the automated precise segmentation of cartilage; specifically, the automatic segmentation
of bones and bone–cartilage interface (BCI) extraction in the knee. The segmentation was
performed utilizing 3D ASM, which was initialized through a precise atlas registration.
Then, the BCI was extracted from image information and prior knowledge about the
probability that each point was part of the interface. Moreover, the patella surfaces, tibia,
and femoral bones were taken from the database for manually segmented images, using
the surface extraction technique of shrink-wrap. In addition, the proposed method used
2562 points, 10,242 points, and 10,242 points, correspondingly. Moreover, those surfaces
were then utilized to create SSMs for each knee bone. The propagating surface’s pose and
shape parameters were then trained to predict pose and shape variation inside the SSM.
On the other hand, in 2010, Vincent et al. [33] proposed a complete automated model-based
approach that divided bone and cartilage in the MR images of the knee. Besides, the
presented segmentation approach was based on AAM from the Osteoarthritis Initiative
data source of hand-selected samples. Moreover, the model was based on 3D DESS Sagittal
water excitement images of the OAI database (available at https://oai.ucsf.edu/ (Date
Accessed 21 July 2021) for public access). They utilized 80 individuals for the model from

https://oai.ucsf.edu/
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this dataset. The following are the number of correspondence points generated by this
process: femur 60,457, tibia 39,239, femoral cartilage 37,249, and tibial cartilage 20,459. The
results without adjusting to the protocol of the grand challenge were highly promising,
and showed the strength of the system.
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A similar concept to Fripp et al. [32] was found of automated bone segmentation
through using the AAM model in 2010, by Seim et al. [34], where SSMs were produced
for the tibia and femur. The SSM can provide a strong bone model, and was often used to
remove BCI from the bone’s surface, in addition to forecasting the occurrence of radiological
KOA. In addition, in 2011, Bindernagel et al. [35] introduced an articulated statistical shape
model (ASSM) of the human knee. The model included the fluctuation of statistical form
and the explicit freedom of the physiological joint movements model. Moreover, they
presented a model for a knee joint segmentation technique based on medical image data.
The capability of the model was evaluated via a collection of 40 clinical MRI data sets with
accessible manual expert segments. Furthermore, in 2013, Neogi et al. [15] trained the AAM
with 96 knees to understand the changes in the form and gray levels of femur, tibia, and
patella texture. These data were then encoded as main components. Moreover, the AAM
models were developed using a total of 69, 66, and 59 main components for the femur,
tibia, and patella bone, respectively. Typically, deformable models provide robustness to
both image noise and boundary gaps, and allow boundary elements to be combined into
a coherent and consistent mathematical description. In this context, deformable models,
particularly extension techniques, are capable of segmenting the knee joint [36].

2.2. Graph-Based Methods

The term “graph-based segmentation methods” refers to a group of algorithms in
which pixels or voxels in an image sequence, as well as the relationships between them,
are represented as a weighted undirected graph. Suppose G = (V, E) be a graph, where
the pixel is represented as a node, v € V, and the interaction between two surrounding
nodes is represented as edge, e € E ( V × V [37]. Every edge is assigned by weight [38].
For instance, the edge between the nodes vA and vB has the associated weight w (vA, vB),
reflecting a similarity measure between the nodes. The similarity criterion is calculated
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from color, texture, spatial distribution, intensity, hue, or any other characteristic between
two vertices [39]. Retroactively, after the normalized cut, graph segmentation achieves
more attention. Therefore, in this context, the graph separation is called a “cut”. A typical
binary graph segment divides the graph into two subsections, i.e., Gm and Gn, where Gm
∪ Gn = V and Gm ∩ Gn = ∅, by reducing the degree of difference between Gm and Gn. We
calculate the difference as the weight of the deleted edges:

Cut(Gm, Gn) = ∑
p∈Gm ,q∈Gn

w(p, q) (2)

where Gm and Gn are vertices in two separate subgraphs, and the total weights of the edges
are called cut. Reducing this cut makes subgraphs different. However, cutting the graph
into sub-graphs in a perfect way is not easy. Thus, a possible solution to this problem is to
minimize the cut in Equation (2) through optimization methods, where a comprehensive
review of the graph-based segmentation method is provided in [40,41].

In 1993, Wu and Leahy [42] implemented graph cuts (gcuts) for image segmentation
and developed a cost function, i.e., a minimal reduction, as shown in Equation (1), to
frequently search for every possible piece, splitting the two knots at the lowest cost to
achieve the optimal solution. However, the algorithm was biased to split a small part of
the node. So, Jianbo and Malik [43] suggested a normalized reduction to tackle this issue.
Boykov and Jolly also proposed graph cuts (Gcuts) in 2001. Graph cuts (gcuts) can be used
interactively or automatically for image segmentation algorithms. Interactive gcuts are
widely used to segment biological images, which include past user information into the local
and border characteristics of images. Therefore, various studies [19,44–47] have performed
gcuts for extracting the knee bone from the MR image. Furthermore, a content-based
refinement operation is used to improve the segmentation output of the GC algorithm.
Figure 4 illustrates an example of this operation [45]. Yin et al. [19] introduced a new
method for simultaneous segmentation of many interactive surfaces belonging to multiple
interacting objects, called LOGISMOS (Optimized Layered Graph Image Segmentation of
Multiple Objects and Surfaces). The technique was based on algorithmic inclusion in a
single n-dimensional graph of various spatial interrelationships, and followed by graph
optimizations that resulted in a globally optimized s solution. In addition, the usefulness
and performance of the LOGISMOS technique were proven for the segmentation of bone
and cartilage. Although this system was trained on only a few examples, it reached a good
performance. In addition, the approach for the simultaneous segmentation of the bone and
cartilage consists of three steps:

• Pre-segmentation of bones;
• Mesh generation and optimization by Gcuts;
• Co-segmentation of knee bone and cartilage surfaces.

In the LOGISMOS framework, the optimum surface segmentation was defined in
order to find a net surface of a guided graph with a minimal weight cost for every node.
Furthermore, Park et al. (2009), and Ababneh et al. (2011) have suggested segmentation
models for automated graph cuts, and the additional previous information was necessary
in order to substitute manual seed. Ababneh et al. [45] proposed a novel automated knee
bone segmentation system (MRI) which included a content-based two-pass discrete block
discovery mechanism; also, it was designed to support automation, post-processing, and
segmentation initialization. The proposed method was implemented as follows: block
detection by categorizing the content of the image according to its similarity to the categories
in training information gathered from the usual structures of the bone. Then, categorized
blocks were utilized to construct an efficient divisional algorithm based on graphs. The
result showed that the proposed segmentation approach did not need any interaction with
users and could differentiate bone from extremely similar surrounding components such
as high-precision adipose tissue.
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correction. (a) An MRI image; (b) the ROI block is detected with only the femur bone detected, not
the tibia; (c) after lowering the ROI detection threshold, both bones are detected; (d) mask for the
GC output; (e) after morphological processes; (f) the resulting two potential skeletons, with a leak
seen in the tibia bone; (g) the tibia bone has a leak that connects fat and other tissues to the tibia;
(h) initial step in detecting a leak is to use a morphological opening; (i) residual content resulting
from subtracting (h) from (g). (j) Following an examination of the remains in (i), the leak detection
method identifies a leak and decides that only the pixels in the leak are affected; (j) are relevant to the
tibia (k) after adding the appropriate pixels in (j) to (h), resulting in a leak-free tibia (i), the femoral
mask (l) and (m). After applying the morphological aperture to check for leakage (n) the remaining
pixels after subtracting (m) from (i). On this basis, it is concluded that there is no leak, and the pixels
are reinserted (o). (o) femur and tibia masks as a result (p) GC segmentation in white and manual
segmentation in yellow determined with DICE = 0.95 and 0.96 resolution for femur and tibia bones,
respectively [45].

Park et al. [44] introduced a fully automated method for the segmentation of bone
chambers on the (MR) images of knee joints. The suggested technique efficiently used pre-
segmented data for both form and intensity through using branch and mincut in an iterative
manner to a limited subset of form templates configurations. Moreover, the optimum in
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each iteration was dissected and individually calculated between the whole sub-set of
translation, rotation, and scale parameters, and movement was gently picked with the
least amount of energy. Experimental results showed the enhanced accuracy and efficiency
compared to when branch and mincut were applied to the whole range of parameters at
once and when only shape priors were applied, respectively. Sufyan et al. [46] presented a
novelty method for segmentation without the requirement of any user input, using efficient
content characteristics based on graph cuts. Experimental findings on real MR images in the
knee showed the efficient use of the Zijdenbos similarity indices of 95% of the scheme with
average accuracy. Somasundar et al. [47] presented a graphic cut technique for segmenting
the tibia and femoral bone from MRI/CT knee images. The proposed method used a
median filter for the removal of noise first able. Then, the 3D model of a tibia and femoral
bone was generated with segmented pictures for volume rendering. Finally, the 3D model
of the tibia femoral bone was terminated in order to generate meshed elements. They
concluded that this model may be used for analysis and pre-operative knee joint planning.
Moreover, conventional semiautomatic graph cutting is mostly dependent on seeds that
start and refine segmentation leading to considerable manual intervention. However, the
DSCs 0.958 [44], 0.941 [45], and Zijdenbos Similarity Index (ZSI) 0.95 [46] are enhanced
automated graph cut models.

2.3. Atlas-Based Methods

The atlases act as a regulator of shape allowing deformations within a reasonable range
of variance derived from molds of anatomical shape, as well as appearance. Atlas includes
three essential steps for segmentation (registration, selection, and propagation). Rohlfing
et al. (2005) defined atlas as “incorporates prior anatomical data (i.e., locations and shapes
of an anatomical structure), and distinguishes spatial relationships to other anatomical
structures”. Therefore, the atlas techniques are designed to identify anatomical structures
by mapping the coordinates of a specific image to a pre-constructed atlas. This step is called
the registration process, which assigns the label of each voxel image to the appropriate
label in the atlas by searching the label of its structure. For instance, in Equation (3), I refer
to the correspondence between an image and an atlas referring to A. Where T refers to
coordinate transformation that translates any specified image coordinates and ¥ describes
the domain of I onto the atlas, A [48]. The mapping is as follows:

I(¥)→A(T(¥)) (3)

In general, there are four ways to choose an atlas:

• Single atlas: Utilizes a separate segmented image; also, the selection might be random
or based on particular criteria, for example, image quality;

• Probabilistic atlas (average shape atlas): Plots all of the original individual images
on a common reference to produce a median image. Then, the original images are
correlated with the first average to produce a new average. The mapping process
occurs frequently until convergence;

• Best atlas: Used to determine the optimal segmentation from the results of the dif-
ferent atlases; one can check the similarity of the image using standardized mutual
information and the size of the distortion after registration.

• Multiple atlases: This method applies various atlases to a raw image. Then, the
segments are combined into a final hash based on the merging of the “voting rule”
decision. This method applies various atlases to a raw image. Then, the segments
are combined into a final hash based on the merging of the “voting rule” decision.
This can be implemented as labeling cost C in Equation (4) per label l in {FB; BG. TB}
(“FB”,”BG” and “TB” stand for femur, background and tibia bone in succession) is
determined by the probability of recording each of the labels given image I in voxel
Y site:
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E(u) =
∫
D

g||∇Yu||+ C|∇lu|dYdl, D = × ε, u ∈ [0, 1], u(Y, 0) = 0, (Y, L) = 1 (4)

C(Y, l) = − log(P( l|I (Y))) = − log
(

P(I(Y) |l ).P(l)
P(I(Y))

)
, (5)

where u refers to the multi-label image and∇Yu is the spatial gradient of u, ∇Yu=( ∂u
∂Y , ∂u

∂Y , ∂u
∂Z )

T

and ∇lu is the gradient in the direction of the label, ∇lu= ∂u
∂l ; g controls the normalization

of the properties and sets C labeling cost. Moreover, it is important to note that the back-
ground label “BG” is placed in order between the femur label “FB” and the tibia label “TB”,
in order to achieve a symmetric formulation. The probability conditions P(I(Y) |FB ) and
P(I(Y) |TB ) are calculated from the intensity of the image. Since bones appear dark in
T1-weighted MR images, we assume a simple Equation (6) to estimate bone probabilities:

P(I(Y) |FB ) = P(I(Y) |TB ) = exp(−βI(Y)) (6)

where β is set to 0.02 in implementation assuming I(Y)∈ [0, 100]. To compute the previous
terms P(FB)and P(TB) in Equation (5), we use a multi-atlas registration technique followed
by label fusion. Assume we have M atlases Aj and their bone segmentations SFB

j and STB
j ,

where (j = 1, 2 · · ·M). The registration from an atlas Aj to a query picture I is an affine

registration Taffline
j followed by a B-Spline registration TbSpline

j . A spatial prior of femur and
tibia for the query image is obtained by averaging all M propagated atlas labels.

P(FB) =
1
M ∑M

j=1(T
bSpline
j

◦ Taffline
j

◦ SFB
j

)
(7)

P(FB) =
1
M ∑M

j=1(T
bSpline
j

◦ Taffline
j

◦ STB
j

)
(8)

After computing the spatial priors and local likelihoods, we integrate them into
Equation (5) and solve Equation (4) to get the three-label bone segmentation. The bone seg-
mentation will aid in the location of the cartilage in atlas-based cartilage segmentation [49].
Figure 5 shows an overview of the process of bone segmentation using a multi-atlas.
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Figure 5. One sample slice’s bone segmentation in coronal view. (a) Original image; (b) multi-atlas-
based spatial prior; (c) segmentation result; (d) expert segmentation [49].

Several groups of study have used several templates for segmenting the knee based on
atlas such as (Lee et al., 2014; Dam et al., 2015). In 2014, Lee et al. [50] developed a completely
automated approach for segmenting knee magnetic resonance cartilage (MR) images,
and assessed the method performance through a public open dataset. The presented
segmentation system comprised three procedures: multi-atlas construction, implementing
local weighted voting (LWV), and regional adaptation. All training instances were recorded
in a goal image using a non-astringent registration system and the best matching atlases
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were picked for the atlas construction process. The result shows that it avoided the low
precision caused by magnetic field inhomogeneity. Dam et al. [51] introduced a fully
automated segmentation framework for knee MRI; the frame combined a rigid multi-atlas
registry before the KNN-based classification of cartilage voxels and was manually trained
in different bone, meniscal, and cartilage combinations. Validation comprised high- and
low-field knee MRI cohorts from the center including the osteoarthritis initiative (OAI),
and knee segmentation (SK I10). Empirical results were equivalent and equal to or better
than previously reported automatic approaches to the manual radiologist segmentation.

2.4. Miscellaneous Segmentation Approaches

These approaches include additional models for knee bone segmentation involving
ray casting, level set, edge and thresholding, and region growing.

Region growing is a method of segmenting anatomical structures that involves two
key concepts: a seed voxel point located within the structure to be segmented, and a range
of probable voxel grey-scale intensity levels that the region can achieve. Thus, the following
steps are required to implement region growing in an image. In the set of definite areas
Rt, n = 1, 2, 3, . . . , m, the low degree segmentation must require the given properties:

1. The region r in Yj is connected to the region Yi if there exists a sequence (Yj . . . Yi). for
instance, Yt and Yt+1 are connected to R;

2. R is a continuous region if x and R are connected;
3. Whole image,

(I) = ∪m
t=1Rt (9)

4. Equation (10)

Rj ∩ Ri = ∅ for j 6= i (10)

If these conditions are met, H (Rt) is true for every t, whereas H (Rj ∪ Ri) is false for
j 6= i. H denotes the homogeneity property, while R denotes the area. If H(R) is false,
divide the region into sub-regions. If H (Rt1 ∪ Rt2 ∪Rt3) is true, then combine them into
one area up to zero for further splitting. Figure 6 shows that the results of the general
region-growing algorithm are not good because fixed parameters limit the algorithm’s
ability to handle growing regions [52].
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using parameters r = 30; (c) results obtained using the robust split-and-merge algorithm; (d) the
results showed that the edges of the images are more exact and smoother [53].
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Lee and Chung [54] suggested multi-phase segmentation of the knee bone model
that would improve the contrast of the bone edges and the extraction bone boundary
information, using a sequence of edge detection, thresholding, and contrast enhancements.
In order to accomplish the final segmentation, the information was included in the region
growing algorithm. Then, 40 knees were used to assess the model; however, the results
were not obvious. Dodin et al. [55] developed a fully automated bone segmentation method
based on the ray casting approach from MR images. The proposed method relied on MR
image breakdown into many surface layers to locate the limits of bones and the automatic
fusion of numerous partial segmentation objects to achieve the final full bone segmentation.
Moreover, validation analyses were performed on 161 MR images from patients with knee
osteoarthritis and the DSC reported 0.94 for the femur and 0.92 for the tibia. Similarly,
Gandhamal et al. (2017) and Dalvi et al. (2007) applied their knee bone segmentation
by using level set models. In particular, the region growing method was utilized by
Dalvi et al. [56] to segment the knee bone, and then the segmentation refinement used the
set algorithm of the Laplacian level. The proposed method was verified by the measurement
of specificity (Spec) and sensitivity (Sens) in two healthy people. Gandhamal et al. [57]
suggested a fully automated approach for the segmentation of the subchondral bone from
knee MR images. According to the framework proposed, the preprocessing steps consisted
of the following: image contrast optimization and automatic seed point selection, which
were performed on all knee MRI images in datasets, followed by bone area extraction,
borderline leakage detection, and correction of boundaries. The performance of advanced
technology was evaluated by measuring sensitivity, specificity, dice similarity coefficient
(DSC), average surface distance (Avgd), and root mean squared distance (RMSD).

2.5. Machine Learning Based

Machine learning is the study of how computer algorithms (i.e., machines) may
“learn” complicated connections or patterns from experimental data, resulting in (math-
ematical) models that link a large number of variables to target variables of interest [58].
As mentioned earlier, the ability to analyze complex cases with a huge amount of data
and the maximum possible outcomes makes machine learning a valuable tool for KOA.
It is noteworthy that machine learning (ML) has been applied in fields such as medicine,
robotics, bioinformatics, biochemistry, meteorology, economics, agriculture, and economics.
In 2019, the importance of implementing ML techniques to KOA was documented by
Jamshidi et al. [59] and Klozyk and Matte [60]. The traditional systems of ML are applied
in two phases, as shown in Figure 7: (1) cleaning of data to reduce noise, inconsistent
examples, and missing data; (2) data integration where various sources of information are
available; (3) data transformation includes normalization and discretization. The feature
extraction/selection unit (also referred to as the feature engineering unit) attempts to gen-
erate and/or identify the most informative feature subset in which the learning model will
be subsequently applied during the training phase [61].

The feedback loop enables changes to the pre-processing and feature extraction/selection
units, which will help the learning model perform even better. During the testing phase, the
trained model shows previously unseen samples (represented by images or trait vectors)
that must be classified. Based on the characteristics contained in each sample, the model
makes an appropriate decision (classification or regression). Moreover, the general machine
learning framework includes data algorithms and prediction. Data is a set of observations
used during training and testing, while a prediction algorithm learns metadata patterns
to perform certain classification tasks. Classical machine learning employs a collection of
hand-made discriminatory characteristics to characterize the object and to assign the most
likely label image pixel to a classifier. In addition, the machinery learning family is large
and includes supervised learning, semi-supervised learning, unsupervised learning, and
reinforcement learning. Interestingly, supervised and unsupervised learning are the two
major learning algorithms that may be used for machine learning.
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Supervised learning examines the link between the input space x and the output label
y, and it is most commonly applied to regression and classification problems. Common
supervised learning algorithms include:

1. Decision Tree: The algorithm is structured like a tree, with branches and nodes. Each
branch indicates the outcome, whereas each leaf node represents a class label. The
method will sort characteristics in a hierarchical order from the root of the tree to the
leaf node [62];

2. Naïve Bayes: The technique is based on the Bayes theorem, which assumes charac-
teristics are statistically independent. The classification is based on the conditional
likelihood that a result is produced from the probabilities imposed by the input
variables [63];

3. Support Vector Machine: The algorithm aims to draw the most appropriate margins
in which the distance between each category is maximized to the nearest margin. A
margin is defined as the distance between two hyperplane support vectors. A bigger
margin involves minor mistakes in categorization [64];

4. Ensemble Learning: A method of grouping multiple weak classifiers to build a strong
classifier. It is known that aggregation methods can be used to improve prediction
performance. Boosting and bagging are important ensemble learning techniques [65].

In unsupervised learning there are no labeled data. As a result, the unsupervised
model infers from the input data based on similarity and redundancy reduction during
training. Moreover, unsupervised learning is divided into two types: clustering and associa-
tion rule. The following are some of the most often used unsupervised learning algorithms:

1. K-Means: This algorithm groups data into k-clusters based on their homogeneity,
where the center of each cluster is an individual mean value. Moreover, the data
values are allocated based on their closeness to the nearest average with the least
possible error function during implementation [66];

2. Principal Component Analysis: This method aims to reduce the dimensionality of the
data by finding a set of uncorrelated low dimensional linear data representations that
have greater variance. This linear dimensional technique is useful for exploring the
latent interaction of a variable in an unsupervised environment [67].

In the last decade, a new generation of frameworks has been introduced to solve
challenges connected to knee joint segmentation utilizing learning-based methodologies
or machine learning algorithms. The goal of the learning-based method is to find the
features of each pixel Ij from the data and assign a hash label (lj ∈ {1, 2, . . . , K}) to Ij.
From the probabilistic situation, these learning-based methods predict a training set of
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labeled pixels by calculating the conditional probability P ( lj
∣∣lj ). Figure 8 demonstrates

segmentation results for all three cartilage compartments using the joint support vector
machine (SVM)-discriminative random field (DRF) model with FV1, FV2, FV3, FV4, and
FV5. Feature vector 1 (FV1) is made up of four-dimensional normalized intensity data from
multi-contrast MR images (from all four MR sequences); Feature vector 2 (FV2) consists
of one-dimensional normalized intensity values of single-contrast MR images from the FS
SPGR series and six-dimensional local image structure-based characteristics; Feature vector
3 (FV3) consists of 4 natural dimension intensity values of multi-contrast MR images and
24 dimension features based on the local image structure; Feature Vector 4 (FV4) consists of
four natural dimension density values of multi-contrast and 3D MRI images of geometric
information for multi-contrast MR images; Feature vector 5 (FV5) consists of 4 natural
dimension intensity values of multi-contrast MR images, with a local 24 after features based
on image structure and 3D geometry features of multi-contrast MR images.
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Furthermore, several studies have used machine learning techniques for the diagnosis
and predictions of knee osteoarthritis. Brahim et al. [69] presented a computer-aided
diagnostic method for early knee osteoarthritis identification utilizing knee X-ray imaging
and machine-learning algorithms. The proposed approaches were implemented as follows:
first, preprocessing of the X-ray pictures in the Fourier domain was performed using a
circular Fourier transform; then, MLR (multivariate linear regression) was used on the
data to decrease the variability between patients with OA and healthy participants; for the
feature extraction/selection stage, an independent component analysis (ICA) was used to
reduce the dimensionality; finally, random forest and Naïve Bayes classifier were used for
the classification task. Furthermore, the 1024 knee X-ray images from the public database
Osteoarthritis Initiative were used to test this innovative image-based method (OAI). The
results demonstrated that the suggested method had a high predictive classification rate
for OA detection (accuracy of 82.98 percent, sensitivity of 87.15 percent, and specificity of
up to 80.65 percent). Kubkaddi and Ravikumar [70] presented an automated diagnosis of
knee osteoarthritis using a classifier based on support vector machines. Various textural
and statistical characteristics were taken into account along with thickness when training
the algorithm. The results showed that the SVM with RBF kernel, SVM with linear kernel,
and SVM with the polynomial kernel were 95.45 percent, 95.45 percent, and 87.8 percent,
respectively. In addition, Du et al. [71] studied to look for hidden biological information
in knee MR images that could be used to predict osteoarthritis (OA). The presented study
calculated the Cartilage Damage Index (CDI) information from 36 informative sites on the
tibia and femoral cartilage compartment using 3D MR imaging and processed the feature
set using PCA analysis.

Four machine learning methods (support vector machine (SVM), artificial neural
network (ANN), Naïve Bayes, and random forest) were employed to predict the progression



Diagnostics 2022, 12, 611 14 of 26

of OA, which was measured by the change of Kellgren and Lawrence (KL) grade, Joint Space
Narrowing on Lateral compartment (JSL) grade, and Joint Space Narrowing on Medial
compartment (JSM) grade. The findings of the experiments indicated that the medial feature
set created a higher prediction performance than the lateral feature set and that the 36-
dimensional total feature set generated the greatest prediction performance of all the feature
sets. Kashyap et al. [72] developed a novelty method through hierarchical RF classifiers
to learn the appearance of cartilage regions and their boundaries. The neighborhood
approximation forest was used first to provide a contextual feature for a second-level
RF classifier, which additionally analyzed local features and generated location-specific
costs for the layered optimum graph image segmentation of multiple objects and surface
(LOGISMOS) framework. The data were prepared using the just-enough interaction (JEI)
approach, which provides fast and accurate post-processing. Halilaj et al. [73] presented
a model for the longitudinal progression of KOA and built a prognostic tool that used
data collected in one year to predict disease progression over eight years. The proposed
model used a mixed-effects model and data of eight years from the Osteoporosis Initiative,
specifically. Moreover, the presented method built LASSO regression models based on
clinical data gathered within the first year to predict the likelihood of belonging to each
cluster. Depending on the narrowing of the common space, topics were grouped as
progressing or not progressing. In addition, based on pain scores, they were grouped as
stable, improving, or getting worse.

2.6. Deep Learning-Based

Deep learning is a branch of machine learning that deals with algorithms inspired by
the structure and function of the brain to create new architecture by transferring feature
engineering (the process of converting raw data into features) onto the underlying learning
system [74]. Moreover, this is a sophisticated machine learning model with automated
hierarchical feature representation learning capability. Its general architecture consists of
an input layer, hidden (feature extraction) layers, and an output (classification) layer [75].
From this standpoint, feature extraction and selection are discarded to achieve a com-
pletely trainable system that starts with raw or pre-processed input (e.g., image pixels
or time-series) and ends with the final output of recognized objects or predicted values.
Deep learning has recently received a lot of interest because of its huge analog power,
ability for machine-learning characteristics, and best-in-class performance in handling
challenging issues. Figure 9 shows a comparison between traditional machine learning and
deep learning.
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Furthermore, deep NNs make use of deep architectures, expandable hidden modules,
and nonlinear activation functions to model complex data, while one of their most attractive
aspects is that they automate feature engineering, thus mitigating the need for domain
expertise and powerful feature extraction. Deep learning uses many hidden layers to build
nonlinearity map drawings. As simplified in Figure 10b, one hidden layer with three
neurons is added and the nonlinear mapping between input and output is modeled by the
following equations [77]. Moreover, Figure 11 describes the process of using deep learning
for image segmentation [78].

h1 = w11 × x1 + w21 × x2 + w31 × x3 + b1 (11)

h2 = w12 × x1 + w22 × x2 + w32 × x3 + b2 (12)

h3 = w13 × x1 + w23 × x2 + w33 × x3 + b3 (13)

y1 = w′11 × h1 + w′21 × h2 + w′31 × h3 + b′1 (14)

y2 = w′12 × h1 + w′22 × h2 + w′32 × h3 + b′2 (15)
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The linear regression model is presented in Figure 10a. The input variables are three,
and output variables are two, and they can be expressed by the following equations.

y1 = w11 × x1 + w21 × x2 + w31 × x3 + b1 (16)

y2 = w′12 × x1 + w22 × x2 + w32 × x3 + b2 (17)
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Currently, DL models have greatly improved the latest technology in many different
sectors and industries, including healthcare [79]. DL forms can be moderated, partially
supervised, or even unsupervised, where the major deep learning architectures are as fol-
lows: convolutional neural networks (CNN) are one of the most well-known deep learning
(DL) networks, in which feature maps are extracted via image convolutions. A detailed
overview of CNNs is given in [80]. Other typical constructs of DL architectures that belong
to the family of undirected probabilistic graphical models are deep Boltzmann machines
and deep belief networks. Recurrent neural networks (RNN) are another significant family
of DL models, which establish unique topological connections between their neurons to
encode temporal information in sequential input [81]. Moreover, auto-encoder is another
unsupervised DNN whose basic concept is to encode high-dimensional data into a low-
dimensional latent vector and then try to reconstruct the input data as perfectly as possible
using just its coding [82]. During model training, the value of each node is evaluated
by parameterizing weights using convolutional filters, and the objective function is then
improved via backpropagation.

The following are some examples of deep learning-based knee bone segmentation for
the early detection of osteoarthritis [83–90]. In general, CNN architecture is used in knee
bone segmentation models, with minor changes. The notion of slice-wise segmentation
was taken by [84] from [83]. Liu et al. [83] constructed a 10-layer SegNet framework and
got rid of its completely connected layer after the decoder network, to perform semantic
labeling on a two-dimensional knee image. The marching cube method was used to create
a 3D simplex mesh using the processed labels. The simplex mesh was then transferred
through a 3D simplex deformable process, where each segmentation object was fine-tuned
individually depending on the original image. Figure 12 presents Liu’s method.
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Figure 12. The SegNet CNN architecture is depicted in this diagram. SegNet is made up of two
networks: an encoder and a decoder. This network’s final output is high-resolution pixel-by-pixel
tissue categorization [83].

Ambellan et al. [84] presented a technique for automatically segmenting knee bones
and cartilage using magnetic resonance imaging (MRI) that integrates anatomical form
knowledge with convolutional neural networks (CNNs). The proposed technique included
3D Statistical Shape Models (SSMs) as well as 2D and 3D CNNs to accomplish the robust
and accurate segmentation of even severely diseased knee components. Data from the
Osteoarthritis Initiative (OAI) and the MICCAI grand challenge “Segmentation of Knee
Images 2010” were used to train the shape models and neural networks (SKI10). The
experimental setup was open to the public to advance research in the field of medical
image segmentation. The result showed that integrating localized classification with CNNs
and statistical anatomical information with SSMs yielded a cutting-edge segmentation
technique for knee bones and cartilage using MRI data. Despite this, good performance was
achieved to calculate huge computer resources and local training. For example, general-
purpose graphics cards with smaller memory were not able to support 3D convolution, so
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it would not be easy to expand the model to process larger datasets without appropriate
graphics cards. Moreover, the 3D model was trained on small subsections of 64 × 64 × 16
voxels along the osteoclastic lines to reduce the computational burden and compensate
for the inability of SSM to provide osteoblast details. However, the choice of training
compromised the voxel intensity and surrounding texture characteristics.

In light of the aforementioned restrictions, Cheng et al. [85] introduced a simplified
CNN model known as a holistically nested network (HNN) for femur and patella segmen-
tation. HNN eliminates the decoding path to create a forward-feeding network, reducing
the computational size of the graphic card. Furthermore, the network was trained on a
complete knee picture using a 1 × 1 convolution at the first layer (to create fine features
such as edges) up to a 32 × 32 convolution at the fifth layer (to produce coarse details
such as bone structure); therefore, it learnt both local and global contextual information.
Finally, a weighted fusion layer was created to average the probability map at each layer
and compute the final prediction in a sequential manner. Although the authors attempted
a complete validation against current state-of-the-art methods, they were hampered by
the kind of bone selection (immature versus mature bone, and distinct bone compartment)
and the lack of public ground truth. Furthermore, despite its superior resilience, deep
learning model training is computationally intensive. Thus, according to Ambellan et al.
(2019), implementing a deep learning model on 50,000 large-scale data images would take
43 weeks on a single computer node, emphasizing the significant cost of computation.
Although some academics have reduced CNN design in order to minimize complexity, the
problem still needs further investigation. On the other hand, there are a lot of models in
deep learning that have been presented for the early detection of osteoarthritis, such as that
by Lim et al. [86], who offered an automated osteoarthritis prediction by using a deep learn-
ing algorithm with a scaled PCA, based on medical usage and health behavior data (from
5749 patients) without any hand-crafted features, verified in a large population. A principal
component analysis with quantile transformer scaling was used to identify osteoarthritis in
the patients’ basic medical data. In addition, the proposed model was able to achieve an
AUC of 76.8 percent while minimizing the effort required to create features. Moreover, they
concluded that patients and physicians may use this method to prescreen for osteoarthritis
and save money and time in the hospital. Tiulpin and Saarakkala [87] established an
automated technique for predicting KL and OARSI grades from knee radiographs. The
proposed approach was based on deep learning and employed a 50-layer ensemble of
residual networks and applied ImageNet transfer learning with fine-tuning. The empirical
result showed that cross-validation transfer learning was beneficial for automatic OARSI
grading; however, that simultaneous prediction of KL and OARSI grades leads to poor
performance. Figure 13 presents the introduced method.
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Antony et al. [88] introduced a new technique to automatically evaluate the sever-
ity of KOA using X-ray images. The presented approaches implemented as follows, in
order to calculate the severity of KOA automatically: firstly, they located the knee joints
automatically; secondly, localized knee joint pictures were categorized. Furthermore, the
introduced method used a fully convolutional neural network to recognize the knee joints
automatically (FCN), and convolutional neural networks (CNN) were trained from scratch
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to automatically quantify the KOA severity optimizing a weighted ratio of two-loss func-
tions: mean-squared loss and categorical cross-entropy. The benefit of this joint training
was providing multi-class classification and regression outputs.

Both OAI and MOST datasets were utilized to test the proposed technique. The
findings were highly encouraging and exceeded previous approaches. Tiulpin et al. [89]
presented a new computer-aided diagnostic technique based on the deep Siamese convolu-
tional neural network to automatically quantify KOA severity according to the Kellgren–
Lawrence grading system. The proposed approach was trained only on data from the
Multicenter Osteoarthritis Study, and it was verified on 3000 individuals (5960 knees) from
the Osteoarthritis Initiative dataset. The empirical result demonstrated that emphasizing
radiological characteristics influences network decisions. Such information makes the
decision-making process more transparent for the practitioner, which increases trust in
automated approaches. Furthermore, according to the annotations provided by a com-
mittee of clinical experts, the presented approach produced a quadratic Kappa coefficient
of 0.83 and average multiclass accuracy of 66.71 percent. Tiulpin et al. [91] presented a
multi-modal machine learning-based OA progression prediction model that takes into
account raw radiography data, clinical exam results, and the patient’s past medical history.
An independent test set of 3918 knee pictures from 2129 individuals was used to validate
this method. The area under the ROC curve (AUC) for the proposed approach was 0.79
(0.78–0.81), and the average precision (AP) was 0.68 (0.66–0.70). Moreover, they mentioned
that the proposed technique might assist in generating tailored treatment strategies by
considerably improving the subject selection procedure for OA medication development
studies. Christodoulou et al. [90] studied new efficient research through using deep neu-
ral networks as a novel machine learning technique for classification problems, taking
into consideration a vast number of medical variables that influence OA. The suggested
methodology’s potential was proven by categorizing distinct subgroups of control partic-
ipants based on self-reported clinical data and assigning a knee OA diagnostic category.
Moreover, age, gender, and obesity were used to divide the studies into subgroups. To
validate the proposed deep learning approach, a comparative study between the proposed
DNN and other benchmark machine learning techniques recommended for classification
was performed, and the results revealed the efficiency of deep learning in the diagnosis
of KOA. Furthermore, the majority of DL approaches used for musculoskeletal structural
segmentation are 2D CNNs that use 2D convolutions on a sagittal orthogonal image in
a slice-wise segmentation procedure [83]. The fundamental reason for this is that GPU
memory is restricted, which means that 3D patch-based CNN techniques have limited
spatial context.

3. Approaches
3.1. Research Approach to Literature

This survey was based on research publications found using the Google Scholar,
PubMed, and Scopus search engines between 1991 and 2021. During our investigation,
we identified articles that used segmentation techniques, machine learning, and deep
learning to study KOA. In particular, the terms machine learning, deep learning, and knee
osteoarthritis were used. The presence of one of the three terms indicated as keywords,
either in the title or in the abstract of each article, was a requirement for inclusion in our
study. Moreover, the bar chart in Figure 14 describes the distribution of the number of
papers that were reviewed for each of the taxonomies of knee bone in KOA studies.
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3.2. Estimated Results

The studies reported in this article can be divided into six categories, namely: (1) de-
formable models (5 studies), (2) graph-based models (5 studies), (3) classical machine
learning techniques (5 studies), (4) miscellaneous (4 studies), (5) deep learning-based mod-
els (9 studies), and (6) atlas-based models (2 studies). Then, after separating the articles, the
following information was extracted from each article: year of publication, author, region
of interest, segmentation method, sequence type, data (X-ray, MRI, clinical data), feature
engineering approaches, learning algorithm methods, validation, and empirical results
(performance evaluation).

3.3. Data Sources

The majority of advanced analytical models to forecast knee osteoarthritis based on
knee bone segmentation and knee articular cartilage morphology used imaging technology
(either MRI or X-ray). Recently, the combination of multimodal data (medical images,
clinical data) has formed the basis for more powerful and efficient models. OAI, SKI10, and
MOST were the most frequently used databases to check the performance of the aforemen-
tioned hashing approach. Validation was performed using the LOOV, k-fold CV, random
or expert manual assessment. An overview of all KOA fragmentation studies identified
for our survey is presented in Tables 1 and 2. Moreover, a variety of complex methods
have been described to improve the quality of accessible raw data, or to overcome the
dimensionality curse, including: (i) topological data analysis, ICA, PCA for dimensionality
reduction; and (ii) CNN to extract new, more informative deep features for images.
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Table 1. Summary of automatic knee bone segmentation based on deformable, graph, atlas, miscella-
neous models.

Ref. Year Segmentation
Technique No. of Samples Sequence Type Region of Interest Metric

[32] 2007 ASM-SSM 20 health samples FS SPGR Femur/Tibia
/Patella DSC: 0.96(FB); 0.96(TB) and 0.89 (PB)

[33] 2010 AAM 80 subjects DESS Femur/Tibia
/Cartilage

AvgD:0.88 (±0.24) (FB); 0.74 (±0.21) (TB),
RMSD: 1.49 (±0.44) (FB); 1.21 (±0.34) (TB)
AvgD: 36.3 (±5.3) (FC); 34.6 (±7.9) (TC),
RMSD: −25.2 (±10.1) (FC); −9.5 (±18.8)
(TC)

[34] 2010 ASM-AAM 40 clinical MRI
samples T1 weighted SPGR Femur/Tibia

/Cartilage

AvgD:1.02 (±0.22) (FB); 0.84 (±0.19) (TB),
RMSD: 1.54 (±0.30) (FB); 1.24 (±0.28) (TB)
AvgD: 34.0 (±12.7) (FC); 29.2 (±8.6) (TC),
RMSD: 7.7 (±19.2) (FC); −2.7 (±18.2) (TC)

[35] 2011 SSM 40 clinical samples CTF Femur/Tibia For single-object (SSM) DICE: 0.94 (±0.02)
(FB); 0.86 (±0.10) (TB)

[15] 2013 AAM 178 samples Sagittal 3-D
double-echo

Femur/Tibia
/Patella

Odds ratio 12.5 [95% CI 4.0–39.3] for (K/L
grade of 0) and [95% CI] 1.8–5.0, p < 0.0001
for OA after 12 months in patients in the
lowest tertile grade compared to those in
the top tertile grade.

[19] 2010 LOGISMOS 69 images 3D DESS WE Femur/Tibia/Patella DSC ± SD: 0.84 ± 0.04(FC);0.80 ± 0.04 (TC);
0.80 ± 0.04 (PC)

[45] 2011 Graph cuts 376 images T2-weighted Femur/Tibia DSC: 0.936 (FB); 0.946 (TB);
0.941 (FB + TB)

[44] 2009 Graph cuts 8 images DESS Femur/Tibia/Patella DSC: 0.961 (FB); 0.857
(PB); 0.970 (TB); 0.958

[46] 2010 Graph cuts 30 images T2 sagittal map Femur/Tibia
Zijdenbos Similarity Index (ZSI) for Avg
95%; Std 0.028; Median 0.96; Min 0.87; Max
0.98.

[47] 2020 Graph cuts 65 slices T1 sequence Femur/Tibia Mean Square Error (MSE): 0.19

[50] 2014 Multi-atlas 100 training;
50 test

T1 weighted GRE
FS Femur/Tibia ASD ± SD: 0.63 ± 0.17 mm (FB);

0.53 ± 0.25 mm (TB)

[51] 2015 Multi-atlas, KNN
The samples from

CCBR OAI and
SKI10 were used

T1 weighted
Turbo 3D Tibia DSC ± SD (training): 0.975 ± 0.010 (TB)

[55] 2011 Ray casting 161 samples GRE FS Femur/Tibia DSC ± SD: 0.94 ± 0.05 (FB);0.92 ± 0.07 (TB)

[56] 2007 Region growing;
Level set 2 samples T1 weighted Femur/Tibia/Patella Sens: 97.05% (FB); 96.95%(TB); 92.69% (PB)

Spec: 98.79% (FB); 98.33%(TB);

[57] 2017
Level set;

predefined
Threshold

8 samples DESS Femur/Tibia DSC ± SD: 90.28 ± 2.33%
(FB); 91.35 ± 2.22% (TB)

[54] 2005
FLoG edge detector;
Threshold; Wavelet

transforms (WT)
40 samples GE Signa Horizon

LX 1.5 Tesla Femur/Patella
The results show that the proposed method
can segment the femur and patella robustly
even under bad imaging conditions.

Table 2. Summary of deep learning and machine learning methods for studying knee bone segmenta-
tion and classification.

Ref Year Data Dataset Feature
Engineering Learning Algorithm Validation Results

[69] 2019 X-ray OAI ICA Random forest; Naïve
Bayes Leave-One-Out (LOO)

87.15% sensitivity; 82.98%
accuracy and up to 80.65% for
specificity

[70] 2017 MRI From hospital GLCM

SVM with the linear
kernel; SVM with RBF

kernel; SVM with
polynomial kernel

147 images training
66 images testing

95.45% accuracy; 95.45%
accuracy; 87.8% accuracy

[71] 2018 MRI OAI PCA

SVM
Random forest

Naïve Bayes
ANN

10-fold cross-validation

For JSL grade prediction the
best performance was achieve
for random forest AUC = 0.785
and F-measure = 0.743, while
for the ANN with AUC = 0.695
and F-measure = 0.796.
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Table 2. Cont.

Ref Year Data Dataset Feature
Engineering Learning Algorithm Validation Results

[72] 2016 MRI OAI

k-means clustering;
Neighborhood
approximation

forests

LOGISMOS
Forest Classifier

Hierarchical Random

108 baseline MRIs and
54 patients’ 12-month

follow-up scans

4D cartilage surface
positioning errors (in
millimeters)

[73] 2018 Pain scores
and X-rays OAI and MOST PCA LASSO regression 10-fold cross -validation AUC of 0.86 for Radiographic

progression

[83] 2018 MRI SKI10 Not used CNN 3D-FSE images and
T2 maps

ASD ± SD: 0.56 ± 0.12 (FB);
0.50 ± 0.14 (TB)

[84] 2019 MRI SKI10,OAI
imorphics, OAI ZIB Not used 2D/3D CNN and

combination of (SSMs) 2-fold cross-validation

(i) 74.0 ± 7.7 total score.
(ii) DSC: 89.4% (FC).
(iii) DIC: 98.6% (FB), 98.5%
(TB), 85.6% (TC), 89.9% (FC).

[85] 2020 MR
National Institutes

of Health (NIH),
SKI10

Not used HNN deep learning 9-fold cross-validation DSC ± SD: 0.972 ± 0.054 (FB);
0.947 ± 0.0113 (PB)

[86] 2019 X-ray

Korea Centers for
Disease Control
and Prevention

(KCDCP)

PCA Deep Neural Network
(DNN)

(66%) train (34%) test,
5F-CV,

(50%) train (50%) test
76.8% AUC

[87] 2020 X-ray OAI,MOST Not used Ensemble and CNN 19,704 train 11,743 test 0.98 Average precision
and 0.98 ROC

[88] 2017 X-ray OAI,MOST FCN CNN 30% testing 70% training Accuracy 60.3% for
(multi-class Grades 0–4)

[89] 2018 X-ray OAI,MOST FCN CNN ResNet-34
67% train,

11% validation,
22% testing

Accuracy 66.71% (multi-class
Grades 0–4)

[91] 2019
Clinical

data,
X-ray

OAI,MOST CNN

Gradient Boosting
Machine (GBM) and
Logistic Regression

(LR)

MOST dataset for testing
and OAI dataset for

training, 5F-CV
Accuracy 0.79

[90] 2019 X-ray OAI Cascade Deep Neural
Network (DNN) 10-fold cross

82.98% Accuracy
87.15% Sensitivity
80.65% specificity

4. Discussion and Recommendations

Our literature survey outlined several methods for creating segment knee bones in MR
images, the current usage of machine learning methods in KOA diagnosis, and prediction
challenges. In conclusion, there were five main points. First, segmentation of the knee
bone can be performed by adopting various levels of automation, from manual to fully
automated. Moreover, the development of a segmentation model based on MRI scans may
lead to the adoption of hypothetical surgical procedures for planning real surgery, and the
improvement of virtual surgery solutions could improve the patient’s anatomic structure.
Second, unlike shape, atlas, graph, and machine learning approaches, segmentation models
in this category were not dependent on any training dataset or user input. Instead, a
number of preprocessing and image property learning processes were used to bridge the
learning gap, ensuring the model remained automated. Third, to achieve the final bone
segmentation based on updated image attributes, a variety of methodologies have been
used. While these models were able to overcome basic anatomical aspects of bone, their
applicability is be largely dependent on the tissue and image properties. In addition, some
models require predetermined threshold values. Thus, it may be difficult to generalize
these models to datasets of larger sizes compared to modern machine learning techniques,
particularly deep learning. Four, the advancement of artificial intelligence technology
has led to the emergence of new machine learning techniques in that can: (i) improve
our understanding of the disease’s onset and development; (ii) offer new data-driven
techniques that could help diagnose and forecast KOA in the early stages; (iii) play a
crucial role in the direction of these models by extracting important knowledge from many
types of clinical data (biomechanical parameters, pictures, and kinematics) and develop-
ing innovative solutions that incorporate data from as many different sources as feasible.
This is inspired by the promising accuracy of the results shown by deep learning-based
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segmentation models. Deep learning has been applied to a wide range of computer-aided
diagnosis applications, such as detection [83,86] and classification [88,91,92] in MRI and
radiographs. Therefore, the main goal for these models is to diagnose and prevent knee
OA at an early stage when cartilage deterioration is still reversible. Related applications for
KOA include OA classification by radiographic such as [69,73,87–89], predicting knee pain
by MRI [92], or using radiography to forecast OA progression [91]. Classification is the
process of determining the likelihood of a label for a given input image using an algorithm.
Furthermore, according to the literature, end-to-end deep neural network quantification
of OA severity is critical for providing more precise computer-aided diagnoses to assist
physicians in evaluating the severity of OA patients. Even before the implementation of
deep learning, Shamir et al. [93] used an open-source classical machine learning software
dedicated to biological image analysis, in order to categorize normal and diseased knee
images. Moreover, Ashinsky et al. [94] used the weighted neighbor distance utilizing the
compound hierarchy of algorithms representing the morphology (WND-CHRM) algo-
rithm. Finally, the advantage of DL algorithms is that they automatically learn contextual
information without requiring any high-computing spatial structure modeling, such as
in model-based or atlas-based techniques, as this is computationally expensive. In this
study, we reviewed different methods, focusing on the use of DL in knee articular bone
segmentation. Nonetheless, the following recommendations and future research trends are
suggested to offer appropriate methods for managing KOA:

• The development of a useful tool based on CNNs for assessing morphological and
structural changes in the musculoskeletal system could be an interesting research field
for assisting clinical applications, particularly for longitudinal assessments;

• More research is needed to improve current methods to address issues such as a lack
of full assessment for intensity inhomogeneity and clinical practices;

• Combining DL strategies with other machine learning approaches such as KNN, SVM,
and so on, can achieve an acceptable result;

• The design and development of a 3D CNN learning-based framework for a graph
representation of knee joints that can accommodate both edge and shape information
for the graph.

5. Conclusions

This survey provides six segmentation methods for KOA diagnosis, beginning with
conventional methods such as a deformable, graph, miscellaneous, atlas, and state-of-the-
art ML and DL, especially those that have been presented in the last few years. As the
summary tables demonstrate, the comparison of methodologies is not an easy undertaking.
The key obstacles were the lack of uniform databases and standardized benchmarks.
Furthermore, due to varied testing datasets, comparing and evaluating the methodologies
based on their published experimental outcomes was difficult. Consequently, these findings
should be interpreted with caution, due to the fact that the segmentation method’s accuracy
was highly dependent on the dataset. Therefore, we chose three publicly available datasets
(MOST, SKI10, and OAI) with differing degrees of KOA severity to illustrate this issue.
Knee joint segmentation approaches have been utilized alone or in combination with other
procedures in a vast number of publications, and hybrid techniques have yielded positive
outcomes [44,46,51,55,56,84]. As a result, learning-based methods can be combined with
other methods to improve segmentation results. On the other hand, according to this
survey, learning-based approaches dominate the field of knee bone segmentation. At
present, artificial intelligence has transformed the direction of knee OA research towards
prediction and early detection. Deep learning has proven considerable potential in terms of
generalizability, robustness, and versatility, and innovative diagnostic apps are gradually
becoming the state-of-the-art technology of the future. More research is needed to confirm
the clinical application of deep learning technologies in order to meet future difficulties.
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