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Abstract: Prostate cancer detection with magnetic resonance imaging is based on a standardized 

MRI-protocol according to the PI-RADS guidelines including morphologic imaging, diffusion 

weighted imaging, and perfusion. To facilitate data acquisition and analysis the contrast-enhanced 

perfusion is often omitted resulting in a biparametric prostate MRI protocol. The intention of this 

review is to analyze the current value of biparametric prostate MRI in combination with methods 

of machine-learning and deep learning in the detection, grading, and characterization of prostate 

cancer; if available a direct comparison with human radiologist performance was performed. Pub-

Med was systematically queried and 29 appropriate studies were identified and retrieved. The data 

show that detection of clinically significant prostate cancer and differentiation of prostate cancer 

from non-cancerous tissue using machine-learning and deep learning is feasible with promising 

results. Some techniques of machine-learning and deep-learning currently seem to be equally good 

as human radiologists in terms of classification of single lesion according to the PIRADS score. 

Keywords: prostate cancer; multiparametric prostate MRI; biparametric prostate MRI;  

deep-learning; radiomics; artificial intelligence; cancer detection; PIRADS 

 

1. Introduction 

1.1. Prostate Cancer 

Prostate cancer (PCA) is the second most common cancer in men worldwide and it 

accounts for up to 25% of all malignancies in Europe [1]. It is the third leading cause of 

cancer-related death in the United States and Europe [2,3]. The incidence of prostate can-

cer increases with rising age of patients, and prostate cancer and its management are be-

coming a major public health challenge. PCA aggressiveness can be linked to specific 

genes such as BRCA, and behavior such as smoking [4,5]. Accurate and early detection of 

prostate cancer is therefore paramount to achieve good overall patient outcomes. The 

tools available for assessing and detecting prostate cancer are digital rectal examination 

(DRE), PSA screening, transrectal ultrasound, and MRI whereby the latter received the 

highest amount of attention in the past decade due to its unprecedented capabilities in 

accuracy [6–8]. 

In contrast to ultrasound and digital rectal examination, MRI offers an operator-in-

dependent tool for objectively assessing the entire prostate gland from base to apex and 

from the posterior peripheral zone (PZ) to the anterior fibromuscular stroma (AFMS) that 

are barely assessable with DRE [6,9].  

Magnetic resonance imaging of the prostate has a long history going back more than 

20 years. In the initial phase, high resolution T2-weighted (T2w) imaging and 

Citation: Michaely, H.J.;  

Aringhieri, G.; Cioni, D.; Neri, E. 

Current Value of Biparametric  

Prostate MRI with  

Machine-Learning or Deep-Learning 

in the Detection, Grading and  

Characterization of Prostate  

Cancer: A Systematic Review.  

Diagnostics 2022, 12, 799. 

https://doi.org/10.3390/ 

diagnostics12040799 

Academic Editors: Hamid Khayyam, 

Ali Madani, Rahele Kafieh and Ali 

Hekmatnia 

Received: 22 February 2022 

Accepted: 23 March 2022 

Published: 24 March 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Diagnostics 2022, 12, 799 2 of 23 
 

 

spectroscopy were mainly used as tools for detecting prostate cancer. Yet, spectroscopy is 

slow and susceptible to artefacts and was not well perceived. In the recent decade, further 

developments have taken over including diffusion weighted imaging (DWI), dynamic 

contrast enhanced imaging (DCE). The entire prostate exam has been standardized world-

wide and its reporting has been harmonized by the PIRADS (Prostate Imaging Reporting 

and Data System) system [10]. This classification system allows to objectively assess the 

prostate and potential cancerous zones and standardizes reporting over separate sites so 

that the overall performance of MRI is increased and is more reproducible compared to 

previous periods. With this development MRI of the prostate follows the trend to stand-

ardize the entire radiological procedure from image acquisition to data reporting to 

achieve a higher reliability, enhanced reproducibility, and a direct implication for radiol-

ogy-based treatments as it has previously successfully demonstrated in breast imaging 

with BIRADS (Breast Imaging Reporting and Data System) [11]. 

The report structuring provided by PIRADS is already a condensation of the imaging 

information and standardizes reporting and its output. This is one major step toward a 

more automated and operator-independent radiology. Moreover, the image acquisition 

parameters, slice orientations, and sequences with its specific sequence characteristics are 

governed by PIRADS [12]. This automatically sets the stage for a potential automated im-

age analysis. In the past decade, artificial intelligence (AI) with its subdivisions of machine 

learning (ML), radiomics, and deep learning (DL) has become more prevalent. At this 

point in time, ML and DL are still no clinical standards. Radiomics, for example, use quan-

titative imaging features that are often unrecognizable to the human eye. Therefore, it is 

increasing the number of potential parameters to the multi-parametric approach of pros-

tate MRI and with potential benefits for PCA detection and grading and beyond. DL tech-

niques such as convoluted neural networks (CNN) are currently considered gold standard 

in computer vision and pattern recognition and hence have potential benefits for PCA 

detection and grading. With larger data sets as basis, they have the potential to automati-

cally learn and deduct conclusions so that PCA recognition based on unperceivable fea-

tures to the human eye might be possible. Despite numerous experimental studies which 

will be discussed further in this study, there is no standardized approach on how to use 

and implement DL and ML for prostate imaging now.  

The aim of this study is to elucidate the status of artificial intelligence in prostate 

imaging with a focus on the so-called bi-parametric (bp) approach of prostate MRI 

(bpMRI). 

1.2. Prostate Imaging Reporting and Data System 

PIRADS was established by key global experts in the field of prostate imaging from 

America and Europe (European Society of Urogenital Radiology (ESUR), American Col-

lege of Radiology (ACR)) to facilitate and standardize prostate MRI with the aim of as-

sessing the risk of clinically significant prostate cancer (csPCA). The first version of the 

PIRADS recommendations was published in December 2011, the latest and current up-

date was published in 2019 (PIRADS v2.1) [10,12,13]. 

Various studies have compared the predictive performance of PI-RADS v1 for the 

detection of csPCA compared to image-guided biopsy or radical prostatectomy (RP) spec-

imens as standard of reference. In a 2015 study, Thompson reported multi-parametric MRI 

detection of csPCA had sensitivity of 96%, specificity of 36%, negative predictive value 

and positive predictive values of 92% and 52%; when PI-RADS was incorporated into a 

multivariate analysis (PSA, digital rectal exam, prostate volume, patient age) the area un-

der the curve (AUC) improved from 0.776 to 0.879, p < 0.001 [14]. A similar paper showed 

that PI-RADS v2 correctly identified 94–95% of prostate cancer foci ≥ 0.5 mL but was lim-

ited for the assessment of Gleason Score (GS) ≥ 4 + 3 csPCA ≤ 0.5 mL [15]. An experienced 

radiologist using PIRADS v2 is reported to achieve an AUC of 0.83 with 77% sensitivity 

and 81% specificity [16]. 
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1.3. Sequences for Prostate MRI 

The initial protocol for MRI of the prostate as provided by PIRADS included high-

resolution multiplanar T2w-imaging, DWI, and DCE after the intravenous administration 

of paramagnetic gadolinium chelate contrast agent. This so-called multi parametric pros-

tate MRI (mpMRI) is considered as the gold standard. T2w-imaging is used to demon-

strate zonal anatomy of the prostate. Tumors can be well delineated, and their relation to 

the prostate capsule can be examined. Benign changes such as benign prostate hyper-

plasia, post-prostatic changes of the peripheral zone or scars can be identified. T2w-imag-

ing is considered the gold standard for the transitional zone (TZ) of the prostate gland. In 

addition, T2w-imaging can be used to measure the volume of the prostate. The high ana-

tomic information content of T2w-imaging makes this sequence the perfect roadmap for 

image-guided biopsy [12,17]. 

DWI serves as an indirect measure of cellular density. In case of a malignant tumor 

with high cellular density, the ability of water to freely move in the interstitial compart-

ment is decreased hence the diffusion is impaired. The images with high b-values and 

even those with more and more common-interpolated calculated b-values allow quick 

and easy depiction of these suspicious areas in the prostate. The calculated ADC maps 

give a quantitative measure of cellular density and can be considered as a molecular im-

aging tool for tumor aggressiveness. DWI imaging is considered as the reference sequence 

for the peripheral zone (PZ) of the prostate [12,17]. 

Dynamic contrast enhancement (DCE) is considered as the weakest of the three used 

approaches for prostate imaging. In contrast to T2w-imaging and DWI, DCE is not being 

considered as a dominant sequence for any of the prostate zones. It only serves as a tie-

breaker in very specific questions in the PIRADS system. In addition, it requires the intra-

venous administration of contrast agent with the risk of side-effects such as allergies, 

nephrogenic systemic fibrosis, or Gadolinium deposition in the body [18–21]. While the 

risk of nephrogenic systemic fibrosis is controllable by using little amounts of macrocyclic 

Gd-chelates, no harmful consequence for Gd-chelate depositions in the body has been 

found [22,23]. Nevertheless, patients often try to avoid contrast agent if feasible. Moreo-

ver, physicians embrace the idea of non-enhanced exams equally, as it speeds up the ac-

quisition and reduces the number of potential complications. In addition, omitting con-

trast agent permits to save money.  

1.4. Multiparametric and Biparametric MRI of the Prostate 

With this in mind and the knowledge that the performance of DCE often yielded 

limited added value to T2w-imaging and DWI in mpMRI of the prostate bi-parametric 

MRI (bpMRI) of the prostate is gaining considerable support [15]. Meanwhile, there are 

several high-ranked studies such as the PROMIS trial and meta-analyses comparing 

mpMRI and bpMRI of the prostate [24–26]. Current data underline the high negative 

value of bpMRI in biopsy-naïve patients with a negative predictive value of up to 97% 

[27,28]. Whether bpMRI might be slightly less accurate in less-experience readers is not 

yet clearly proven [29,30]. A currently accepted position is that bpMRI of the prostate 

seems to be equally good as mpMRI of the prostate for patients with low and high risk for 

csPCA but DCE might be of worth in patients with intermediate risk and PIRADS 3 lesions 

[25,26,31–35] (Figure 1). bpMRI of the prostate is also commonly used for computer-based 

postprocessing using artificial intelligence. This is due to the fact that DCE contains a 

fourth dimension (time) which make those images harder to algin and match with two-

dimensional anatomical images such as T2w-imaging and DWI. Another drawback of 

DCE is that image information is not obvious. The image information on contrast media 

arrival and distribution which is seen as a surrogate marker for microvascular density 

have to be extracted using semiquantitative or quantitative pharmacokinetic models 

which adds another layer of complexity on postprocessing, along with the increase of time 

necessary to report the exams. 
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Figure 1. Overview of the performance of mpMRI and bpMRI based on data from Woo et al. [33] 

and Alabousi et al. [25] demonstrating the near equal performance of bpMRI to mpMRI (reprinted 

with permission from [17], Copyright 2020 Gland Surgery). 

1.5. Artificial Intelligence (AI) for Image Postprocessing 

The availability of cheap and high computing power with the additional advent of 

postprocessing technologies and artificial intelligence such as machine learning tech-

niques and deep neural networks has fostered the application of those techniques for ra-

diology tasks such as tumor detection. The current hierarchical concept of AI is depicted 

in Figure 2. 
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Figure 2. Hierarchical structure of AI-techniques. Whereas ML requires human feature engineering 

as guidance for learning, DL is based on self-learning algorithms that can detect and process simple 

and complex image features. 

Machine-learning (ML) is a subfield of AI in which algorithms are trained to perform 

tasks by learning rules from data rather than explicit programming. Radiomics is seen as a 

method that extracts large numbers of features from radiological images using data char-

acterization algorithms such as first order statistics, shape-based, histogram-based anal-

yses, Gray Level Co-occurrence Matrix, Gray Level Run Length Matrix, Gray Level Size 

Zone Matrix, Gray Level Dependence Matrix, Neighboring Gray Tone Difference Matrix 

to name a few [36–39]. These features are said to have the potential to uncover disease 

characteristics that are hard to be appreciated by the naked eye. The hypothesis of radi-

omics is that distinctive imaging features between disease forms may be useful for detect-

ing changes and potentially predicting prognosis and therapeutic response for various 

conditions such as e.g., detection of csPCA. These radiomic features are then often further 

analyzed using ML-techniques. An example of a radiomics ML-workflow is shown in Fig-

ure 3. An issue concerning ML-techniques is that it often requires the manual placement 

of a region of interest hence hereby introducing a potential source for errors and biases. 

Artificial Intelligence (AI)

Machine-learning (ML) including 
Radiomics

Deep-learning (DL) including 
convoluted neural networks (CNN)
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Figure 3. Sample radiomics workflow (reprinted with permission from [40], Copyright 2019 

Springer Nature). 

Deep learning (DL) is a subfield of AI in which algorithms are trained to perform tasks 

by learning patterns from data rather than explicit programming. The key factors for the 

increasing attention that DL attracted in the past years are the availability of large quan-

tities of labelled data, the inexpensive and powerful computing hardware particularly 

graphic-processing units and improvements in training techniques and architectures. DL 

is a type of representation learning in which the algorithms learn a composition of features 

that reflect the hierarchy of structures in the data. Current state-of-the-art for medical im-

age recognition using DL techniques are so called convoluted neural networks (CNN). 

These networks are characterized by an architecture of connected non-linear functions 

that learn multiple levels of representations of the input data thereby extracting possibly 

millions of features [41]. Especially CNNs in which a series of convolution of filter layers 

are exploited are suitable for image processing [42]. Newer techniques such as transfer 

learning and data augmentation, or the application of generative methods help in mitigat-

ing existing limitations of CNN [43]. The entire process of data processing within the mul-

tiple layers of a CNN with convolution filters, pooling, and maximum filtering is beyond 

the scope of this study. Largely simplified, one might say that bottom layers of the CNN 

act as a feature extractor while the top layers of the CNN act as a classifier. An overview 

is given in Figure 4 in which the DL workflow is compared to radiomics or the standard 
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radiology reading process [44]. The reason that CNN-based approaches are considered 

superior to radiomics is that radiomics depend on hand-crafted features which is limited, 

whereas CNN can generate features that are most appropriate to the problem itself [45]. 

 

Figure 4. Workflow of standard radiology reporting compared to AI-based methods of radiomic 

and DL. The entire complexity of deep learning is only schematically shown. There is an abundance 

of different network architectures or CNN which are beyond the scope of this study. This figure 

only demonstrates a schematic CNN (reprinted under common creative license 4.0 from [44], 

Copyright 2021 Springer Nature). 

2. Materials and Methods 

Literature research for this study took place in August 2021. A PubMed query with 

the search terms “prostate” and “magnetic” and “deep learning” or “machine learning” 

or “radiomics” was performed. The aim was to retrieve those studies which made use of 

ML or DL techniques to facilitate tumor detection and grading. To make sure that only 

current techniques were included in the analysis only publications from the year 2019 to 

2021 were included. Particularly in the field of CNN the technical improvement is rapidly 

evolving so that elder publications might not represent the current state-of-the-art. Total 

of 95 publications were initially retrieved. Of these, 66 were omitted for several reasons 

so that 29 publications were available for analysis (see Figure 5). Clinical data (question 

to be answered, number of patients, age, AI-technique, lesion segmentation, MRI-tech-

nique, sensitivity, specificity, accuracy, AUC) were then manually extracted and trans-

ferred to a Microsoft Excel 365 spreadsheet (Microsoft, Redmond, WA, USA). PRISMA 

guidelines were followed [46]. An overview of the study according to the PRISMA guide-

lines can be found in the Appendix A 
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Figure 5. Literature selection work-flow. ML–machine-learning. DL–deep learning. up–uniaramet-

ric. bp–biparametric. mp–multiparametric. 

This paper focuses on bpMRI. The current PIRADS guidelines state: “Given the lim-

ited role of DCE, there is growing interest in performing prostate MRI without DCE, a 

procedure termed “biparametric MRI” (bpMRI). A number of studies have reported data 

that supports the value of bpMRI for detection of csPCA in biopsy-naïve men and those 

with a prior negative biopsy”. The potential benefits of bpMRI include: (1) elimination of 

adverse events and gadolinium, (2) faster MRI-exam times, and (3) overall reduced costs 

[47]. These factors will potentially make bpMRI easily accessible. Remaining concerns are 

that the DCE sequence may serve as backup in case of image degradation of the DWI or 

T2w sequence. It seems as if DCE may be of less value for assessment of treatment of naïve 

prostate patients but remains essential in assessment for local recurrence following prior 

treatment, which however is a setting in which current PI-RADS assessment criteria do 

not apply. The conclusion of the PIRADS steering committee therefore advocates the use 

of mpMRI particularly in (1) patients with prior negative biopsies with unexplained raised 

PSA values, (2) those in active surveillance who are being evaluated for fast PSA doubling 

times or changing clinical/pathologic status, (3) men who previously had undergone a 

bpMRI exam that did not show findings suspicious for csPCA, and who remain at persis-

tent suspicion of harboring disease, (4) biopsy-naïve men with strong family history, 

known genetic predispositions, elevated urinary genomic scores, and higher than average 

risk calculator scores for csPCA, and (5) men with a hip implant or other consideration 

that will likely degrade DWI [47].  

For this paper bpMRI was selected as most studies dealing with ML or DL techniques 

solely relay on T2w-imaging and DWI. DCE data were rarely included. In contrast to T2w-

imaging and DWI the DCE-data must be postprocessed first to generate parameter maps. 

This process is not yet standardized as several pharmacokinetic models and hereof de-

rived software implementations for postprocessing exist. Without generation of parame-

ter maps a huge number of images would have to be fed into the ML/DL algorithms—a 

step that most research groups obviously did not want to undertake. 

95 publications found

44 publications

51 publications omitted:
- Reviews (n=5)
- Meta-Analysis (n=1)
- Wrong technical focus(e.g.

prostate segmentation, n=24)
- No full text access (n=9)

15 publications omitted:
- mpMRI n=5
- upMRI n=10

29 publications
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3. Results 

All included studies are listed with an abbreviated overview in Table 1. 

Total of 29 studies were included in this study. Thirteen of them used ML (44.8%), 14 

of them used DL-techniques (48.2%), and 2 of them used a combination of ML and DL 

(6.9%). The data for 27 of the studies were acquired at 3T (93.1%), 2 of them were acquired 

at 1.5 T (6.9%). A total of 7466 patients were analyzed within this data set. Hereby, the 

ProstatEx-data set from the Radbound University, The Netherlands was used seven times. 

The smallest study had a sample size of 25 patients, the largest study had a sample size of 

834 patients. The MRI-technique used for AI-postprocessing most often was T2w-imaging 

in combination with ADC map and DWI (15 studies/53.6%). Runner-up were T2w-imag-

ing and ADC map (8 studies, 28.6%) and T2w-imaging and DWI (2 studies, 7.1%).  

Table 1. List of include studies and relevant key information. 

Referenc

e 
Year ML DL 

Field 

Streng

th 

Target 

Number 

of 

Patients 

Age SS/SP/Accuracy AUC 
Sequences 

Used 

Abdollahi 

H et al. 

[40]  

2019 1 0 1.5 T 
Gleason score 

prediction 
33 

73 (51–

82) 
 0.739  T2, ADC 

Wu M et 

al. [48] 
2019 1 0 3 T TZ PCA detection 44 68 ± 7 93.2%/98.4% 0.989 (LR) T2, ADC 

Varghese 

B. et al.  

[49] 

2019 1 0 3 T Grading prediction 
68 

53 
 86%/72% 0.71 T2, ADC, 

Min X et 

al. [50] 
2019 1 0 3 T 

ci/csPCA 

discrimination TZ 

and PZ 

280  84.1%/72.7% 0.823 
T2, ADC, 

b1500 

Toivonen 

J et al. 

[51] 

2019 1 0 3 T 
Gleason prediction 

TZ and PZ 
62 

65 (45–

73) 
 0.88 

T2, b0-b2000, 

T2mapping 

Chen T et 

al. [52] 
2019 1 0 3 T 

Tumor detection 

aggressiveness 

prediction TZ and PZ 

182 

199 

73 (55–

90) 

98.6/99.2%/98.9% 

(noPCA vs. PCA) 

100/98.25 8/99.1% 

(ci vs. csPCA) 

0.999 (noPCA 

vs. PCA) 

0.933 (ciPCA 

vs. csPCA) 

T2, ADC 

Xu M et 

al. [53] 
2019 1 0 3 T Tumor detection 331 

71 (46–

94) 
 

0.92 

(Radiomics) 

0.993 (R + 

clinical data) 

T2, ADC, 

DWI 

Zhong X 

et al. [54] 
2019 0 1 3 T 

ci/cs PCA 

discrimination  

DL vs. PIRADS exp. 

radiologists 

140  63.6%/80.6%/72.3% 

86.4%/48.0%/86.4% 

0.726 (DL) 

0.711 (PIRADS 

v2) 

 

Yuan Y et 

al. [55] 
2019 0 1 3 T 

ci/cs PCS 

discrimination (GS > 

7) 

132 

112 
 −/−/86.9%  T2 ax and 

sag, ADC 

Xu H et 

al. [56] 
2019 0 1 3 T 

Detection of PIRADS 

≥ 3 lesions 
346  −/−/93.0% 0.950 

T2, ADC, 

high b-value 

Schelb P 

et al. [57] 
2019 0 1 3 T 

DL and radiologist 

for lesion (PIRADS ≥ 

3 and 4) detection 

and segmentation 

250 

62 

64 (58–

71) 

64 (60–

69) 

98/17% Rad, 

PIRADS ≥ 3 

84/48% Rad, 

PRIADS ≥ 4 

 T2, ADC, 

DWI 
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99/25%, DL, 

PIRADS ≥ 3 

83/55%, DL, 

PIRADS ≥ 4 

Montoya 

Perez I et 

al. [58] 

2020 1 0 3 T 

Detection of csPCA 

with bpMRI, RNA 

and clinical data 

80 65 ± 7.1  0.92 T2, DWI 

Hou Y et 

al. [59]. 
2020 1 0 3 T 

csPCA in PIRADS 3 

identification in TZ 

and PZ 

263 
66.8 ± 

11.4 
 0.89 

T2, ADC, 

b1500 

Mehraliv

and S et 

al. [60]  

2020 1 0 3 T 
Detection csPCA in 

TZ and PZ 
236  

50.8%/−/− (TZ, 

MRI) 

61.8%/−/− (TZ, DL) 

0.749 (MRI) 

0.775 (DL) 
T2, b1500 

Gong L et 

al. [61] 
2020 1 0 3 T 

ci/cs PCA 

discrimination  

326 

163 
 73.8%/65.8%/69.9% 0.788 

T2, ADC, 

b800 

Bleker J et 

al. [62] 
2020 1 0 3 T 

ci/cs PCA 

discrimination in PZ 
206 

66 (48–

83) 
 0.870 (mpMRI) 

0.816 (bpMRI) 

T2, ADC, 

DWI, (DCE) 

Zong W 

et al. [63] 
2020 0 1 3 T CNN optimization  367  100/92% 0.840 T2, ADC, b0 

Sanford T 

et al. [64] 
2020 0 1 3 T 

Automated PIRADS 

classification 

compared to 

radiologist 

687 
67 (46–

89) 
  T2, ADC, 

high b-value 

Brunese L 

et al. [65] 
2020 1 1 1.5 T 

Gleason score 

prediction 
52  −/−/98%  T2, DCE 

Chen Y et 

al. [66] 
2020 0 1 3 T 

Prostate and cancer 

segmentation 
136 

68 (49–

62) 
75.1/99.9%  T2, ADC, 

b1200 

Winkel 

DJ et al. 

[67] 

2020 0 1 3 T 
bpMRI PCA 

Screening 
49 

58 (45–

75) 
87/50%  T2, ADC, 

b2000 

Arif M et 

al. [68] 
2020 0 1 3 T 

Detection of csPCA 

in AS 
292 

68 (62–

72) 
92/76% 0.89 

T2, ADC, 

b800 

He D et 

al. [69] 
2021 1 0 3 T 

Tumor detection 

Prediction ECE 

Prediction PSM 

459 
65 (30–

89) 
 

0.863 

0.905 

(integrated 

model) 

T2, ADC 

Vente C 

et al. [70] 
2021 0 1 3 T 

csPCA detection and 

grading 

99 

63 
   T2, ADC 

Chen J et 

al. [71] 
2021 0 1 3 T 

csPCA detection and 

grading 
25  89.6/90.2%/92.1% 0.964 T2, T1 

Cao R et 

al. [72] 
2021 0 1 3 T 

PCA detection and 

grading 

126 

427 

62.4 ± 

6.4 

61.1 ± 

7.1 

98/17% PIRADS, ≥3 

85/58% PIRADS, ≥4 

100/17% Unet ≥ 3 

83/58% Unet ≥ 4 

 T2, ADC 

Hou Y et 

al. [73] 
2021 0 1 3 T ECE prediction 

590 

150 

103 

69.2 

(42–86) 

69.2 

(48–83) 

70.2 

(52–87) 

 0.857 

0.728 

T2, ADC, 

b1500 
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Yan Y et 

al. [74] 
2021 1 1 3 T BCR prediction 485 69.8  0.802 (C-index) T2 

Schelb P 

et al. [75] 
2021 0 1 3 T 

csPCA detection and 

grading 
284 

64 (IQR 

61–72) 

98/17% PIRADS, ≥ 

3 

85/55% PIRADS, ≥ 

4 

99/24% Unet ≥ 3 

83/55% Unet ≥ 4 

 T2, ADC, 

b1500 

3.1. Tumor Detection and Grading 

As seen in Table 1, the results (AUC, sensitivities and specificities) were comparable 

and no trend clearly favoring ML or DL-approaches in terms of superiority could be de-

tected. Most studies required manual interaction in which a radiologist had to segment 

the region of interest. 

Overall, the rate of detection and correct tumor creating using AI-techniques was 

comparable to the performance of trained radiologists in most studies. Studies were often 

hard to compare as they differed in terms of standard of reference (e.g., Gleason score (GS) 

vs. PIRADS vs. National Comprehensive Cancer Network Guidelines vs. ISUP Guide-

lines) and different cut-off values within the same grading system (e.g., GS 7 was in one 

study considered intermediate grade, in most studies considered high-grade tumor). 

Some studies focused on the PZ only, while others accepted the entire gland as target 

tissue.  

In a small study with 33 patients to predict IMRT response, GS prediction and PCA 

stage, GS prediction using T2w-radiomic models was found more predictive (mean AUC 

0.739) rather than ADC models (mean AUC 0.70), while for stage prediction, ADC models 

had higher prediction performance (mean AUC 0.675). For T2w-radiomic models, mean 

AUC was obtained as 0.625 [40].  

Using T2w-imaging and 12 b-values from diffusion along with Kurtosis analysis and 

T2 mapping for differentiation GS ≤ 3 + 3 vs. GS > 3 + 3 an AUC of 0.88 (95% CI 0.82–

0.95) could be reached. This study with 72 patients was the only one to employ T2 map-

ping which, after all, was deemed as of little worth [51]. 

In a stringent ML-Radiomics study, an equally high AUC for tumor grading accord-

ing to National Comprehensive Cancer Network guidelines in low-risk vs. high-risk (i.e., 

GS ≥ 8) was found for the PIRADS assessment as well as for the ML-approach (0.73 vs. 

0.71, p > 0.05) [49]. Interestingly, the precision and recall were higher with the ML-ap-

proach compared to the PIRADS assessment (0.57 and 0.86 vs. 0.45 and 0.61). Similar re-

sults were found for the discrimination of ciPCA and csPCA of the PZA using a ML-Ra-

diomics approach with extreme gradient boosting [62]. In this study performed on the 

ProstatEx dataset, an AUC of 0.816 for the detection of csPCA using bpMRI was found. 

Adding DCE slightly increased AUC to 0.870, though this was not statistically significant. 

Based on the same data set but using optimized CNNs Zong et al. [63] concluded that 

adding ktrans from DCE deteriorated sensitivity and specificity when compared to 

bpMRI alone from 100%/83% to 71%/88%. The optimal reported AUC of this study was 

0.84.  

Extremely good ML-radiomics results for differentiation ciPCA vs. csPCA with an 

AUC of 0.999 were found in a study by Chen et al. They could also show that ML-radi-

omics exhibited a higher efficacy in differentiation ciPCA from csPCA than PIRADS. A 

potential explanation for this, compared to the other studies, is that outstanding result 

might be the study inclusion/exclusion criteria: small lesions <5 mm and lesion not well 

delineable on MRI were excluded [52].  

Somewhat poorer results were presented in a study by Gong et al. [61]. Their ML-

radiomics approach that was built on T2w-imaging and b800-DWI images yielded an 

AUC of 0.787 and an accuracy of 69.9% for the discrimination between ciPCA and csPCA. 
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Adding clinical data to the MRI-based data slightly degraded the results with an AUC of 

0.780 and an accuracy of 68.1%. A potential reason for this poorer outcome might be a 

different set of inclusion parameters.  

Zhong et al. compared the performance of DL and Deep Transfer Learning (DTL) 

with experienced radiologists. They found that DTL further improves DL. The DTL results 

were comparable to radiologist’s performance using PIRADS v2. They concluded that 

DTL might serve as an adjunct technique to support non-experienced radiologists [54]. 

Similar results found a study using a CNN-trained algorithm to automatically attribute 

PIRADS scores to suspicions lesions. A performance comparable to a human radiologist 

was described [64]. The lowest agreement was found with low PIRADS score, getting bet-

ter with higher PIRADS scores. There was no statistically significant difference between 

the radiologist-assigned PIRADS score and the AI-assigned PIRADS score with regards 

to the presence of csPCA for PIRADS 3–5. 

In contrast, for Gleason score prediction one study found better results for AI-based 

approaches than radiologists for PZ and TZ [76]. This could be particularly useful in the 

context of active surveillance. 

A different study looking into aggressiveness prediction (GS > 8) found equal AUCs 

for AI and radiologists but higher precision and recall rates for AI than PIRADS mitigating 

the problem of inter-reader variability [49].  

An uncommon approach was presented in [65]. The authors hereby combined Radi-

omics and DL-based on bpMRI with DCE and T2w-imaging. No ADC/DWI-images were 

used. In few patients they included, promising results with an AUC of 0.96–0.98 for 

Gleason score prediction were found. No further study used this subset of DCE and T2w-

imaging.  

The prospective IMPROD trial also examined if the addition of clinical data and RNA 

expression profiles of genes associated with prostate cancer increased the accuracy for 

detection of csPCA [58]. In this study the bpMRI based data yielded the highest AUC 0.92. 

Adding RNA-based data or clinical data neither improved the results nor yielded better 

results by itself. 

Cao et al. developed an FocalNet to automatically detect and grade PCA (Figure 6) 

[72]. A similar work was presented by Schelb et al. [75] where a U-Net was trained to 

detect, segment, and grade PCA. In comparison with radiologists’ PIRADS assessment, 

the U-Net sensitivities and specificities for detection of PCA at different sensitivity levels 

(PIRADS ≥ 3  and PIRADS ≥ 4) were comparable. 
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Figure 6. “Examples of lesion detection. The left two columns show the input T2WI and ADC map, 

respectively. The right two columns show the FocalNet-predicted lesion probability map and detec-

tion points (green crosses) with reference lesion annotation (red contours), respectively. (a) Patient 

at age 66, with a prostate cancer (PCa) lesion at left anterior peripheral zone with Gleason Group 5 

(Gleason Score 4 + 5). (b) Patient at age 68, with a PCa lesion at left posterolateral peripheral zone 

with Gleason Group 2 (Gleason Score 3 + 4). (c) Patient at age 69, with a PCa lesion at right poster-

olateral peripheral zone with Gleason Group 3 (Gleason Score 4 + 3). ADC = apparent diffusion 

coefficient; T2WI = T2-weighted imaging“(reprinted with permission from [72], Copyright 2021 

John Wiley and Sons). 

Positive results for DL-based techniques with a larger number of patients (n = 312) 

were found in a DL-Study by Schelb et al. using a U-Net [57]. They reported a sensitiv-

ity/specificity for radiologists using PIRADS for detection of PIRADS lesions ≥ 3 and 4 

respectively of 96%/88% and 22%/50% while the U-Net approach yielded 96%/92% and 

31%/47% (p > 0.05). In their study the U-Net also autocontoured the prostate and the lesion 

with dice-coefficient of 0.89 (very good) and 0.35 (moderate) respectively.  

A ML-approach to generate “attention boxes” for the detection of csPCA was pub-

lished by Mehralivand et al. [60]. Their multicentric approach with data from five institu-

tions showed an AUC of 0.749 for PIRADS assessment of csPCA and a statistically non-

significant AUC of 0.775 for the ML-based approach. For the TZ only, the ML-approach 

yielded a higher sensitivity for detection of csPCA than PIRADS (61.8% vs. 50.8%, p = 

0.001). Interestingly, the reading time for the ML-approach was on average 40s longer. 
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An uncommon approach for CNNs was published by Chen et al. [66]. They used U-

Net CNNs to segment the prostate and intraprostatic lesions hereby segmenting the PZ, 

TZ, CZ, and AFMS. Their approach demonstrated impressive results: a Dice coefficient of 

63% and a sensitivity and specificity of 74.1% and 99.9% respectively for correctly seg-

menting the prostatic zones and the suspicious lesion. Yet, in contrast to most other stud-

ies, no grading or discrimination of the suspected PCA lesion was performed. As a seg-

mentation study this study was included in this review as it included segmentation of the 

prostate and detection of the tumor within the prostate.  

In a screening study with 3T-bpMRI, Winkel et al. [67] could include and analyze 48 

patients, all above 45 years. In a biopsy-correlated reading two human readers and a com-

mercial prototype DL-algorithm were compared in terms of detection of tumor-suspicious 

lesions and grading according to PIRADS. The DL-approach had a sensitivity and speci-

ficity of 87% and 50%. Noteworthy, the DL-analysis required just 14 s. 

Different ML-based models were tested and found to be highly accurate for the di-

agnosis of TZ PCA (sensitivity/specificity/AUC): 93.2%/98.4%/0.989) and their discrimina-

tion from BPH-nodules. Reproducibility of segmentation was excellent (DSC 0.84 tumors 

and 0.87 BPH). Subgroup analyses of TZ PCA vs. stromal BPH (AUC = 0.976) and in <15 

mm lesions (AUC = 0.990) remained highly accurate [48]. 

DL-approach for detection of csPCA in patients under active surveillance was 

brought up by Arif et al. [68]. Initially 366 patients with low risk were included of which 

292 were included in the final study. Sensitivities and specificities for csPCA segmentation 

rose with increasing tumor volume: tumor volumes > 0.03 cc sensitivity 82% 7 specificity 

of 43%, AUC 0.65; tumor volume > 0.1 cc sensitivity 85%, specificity of 52%, AUC 0.73. 

Tumor volumes > 0.5 sensitivity 94%, specificity 74%, AUC 0.89.  

A total of six studies among the included studies compared DL/ML-approach to hu-

man radiologists [52,57,60,64,72,75]. Overall, due to the small number of studies and be-

cause of the different approaches the results cannot be analyzed together. What these 

studies had in common however was the finding, that at this point AI-based methods 

revealed a performance similar to that of the radiologists’. No study could either show an 

advantage of AI-methods of the radiologists or vice versa. An overview about the results 

can be seen in Table 2. 

Table 2. Display of study results comparing human and AI-based performance. 

Reference Year ML DL Metric Human Radiologist AI-Approach 

Chen T et al. 

[52] 
2019 1 0 AUC 0.867 0.999 

Schelb P et al. 

[57] 
2019 0 1 Sensitivity/Specificity 

98/17% PIRADS ≥ 3 

84/48% PRIADS ≥ 4 

99/25% PIRADS ≥ 3 

83/55% PIRADS ≥ 4 

Mehralivand S 

et al. [60]  
2020 1 0 

AUC 

Sensitivity 

0.816 

89.6% 

0.780 

87.9% 

Sanford T et 

al. [64] 
2020 0 1 Cancer detection rates 

53% PIRADS 3 

61% PRIADS 4 

92% PIRADS 5 

57%, PIRADS 3 

60%, PIRADS 4 

89%  PIRADS 5 

Cao R et al. 

[72] 
2021 0 1 Sensitivity/Specificity 

98/17% PIRADS, ≥3 

85/58% PIRADS, ≥4 

100/17% PIRADS, ≥3 

83/58% PIRADS, ≥4 

Schelb P et al. 

[75] 
2021 0 1 Sensitivity/Specificity 

98/17% PIRADS, ≥3 

85/55% PIRADS, ≥4 

99/24% PIRADS, ≥3 

83/55% PIRADS, ≥4 
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3.2. PIRADS 3 Lesions 

Radiomics can detect with high accuracy csPCA in PI-RADS 3 lesions [59,77]. Hou et 

al. examined in a ML-Radiomics approach the ability of bpMRI to identify csPCA in PI-

RADS 3 lesions in a group of 253 patients with PIRADS 3 lesions in the TZ and PZ of 

whom 59 (22.4%) had csPCA [59]. The ML-Radiomics approach including T2w imaging, 

DWI and ADC had an AUC of 0.89 (95% CI 0.88–0.90) for predicting the presence of csPCA 

in a PIRADS 3 lesion. 

3.3. Extracapsular Extension and Biochemical Recurrence 

He et al. set up a large study including 459 patients who underwent 3T bpMRI before 

prostate biopsy and/or prostatectomy [69]. The aim of the study was first to differentiate 

between benign and malignant tissue second to predict extracapsular extension (ECE) of 

prostate tumor and third to predict positive surgical margins (PSM) after RP. Using Radi-

omics they developed and tested an algorithm that was able to achieve an AUC of 0.905 

for the determination of benign and malignant tissue, 0.728 for the prediction of ECE, and 

a 0.766 for the prediction of PSM. Similarly, Hout et al. found an identical AUC of 0.728 

for the prediction of ECE in a DL-based approach using different CNN-architectures [73]. 

Hence one can infer from the information derived from prostate imaging not only the 

current situation in the gland but can also predict future developments that might take 

place under therapy. 

Biochemical recurrence (BCR) prediction based on radiomics features was examined 

in T2w-images only with higher prediction of BCR (C-index 0.802) than conventional 

scores, particularly also higher than the Gleason scoring system (C-index 0.583) [74]. This 

work is of particular interest as it first, was one of the few multicentric studies (three cen-

ters) with a relatively large number of patients (485) and second, demonstrated the ability 

of DL-based CNN to look beyond the prostate and infer predictions on the future course 

of the disease/patient. 

4. Discussion 

Prostate cancer is a growing medical condition already now being the second most 

common cancer in men in the western world. The detection and grading of prostate cancer 

are shifting more toward MRI and is demanding a higher number of MRI-studies to be 

performed and read. Currently, prostate MRI is considered a specialized exam and re-

quires a highly specific experience to be performed and reported with high quality. A first 

step toward facilitation of mpMRI prostate acquisition, reading, and reporting was PI-

RADS, but surely not the last step [10,12,13]. To put it in a nutshell: prostate MRI is devel-

oping from the holy grail, and only a few radiologists were being able to read it compe-

tently to a commodity in radiology. This is one of the key drivers behind the growing 

demand for computer-assisted diagnostic tools, such as tumor detection and grading, to 

facilitate the diagnostic interpretation of prostate MRI also for less-trained radiologists. 

As the prostate is a densely packed organ with much more information for example as the 

sparsely packed lung, simple machine learning tools based on e.g., density differences 

cannot be successfully employed. To distinguish the different prostatic tissues, such as 

normal transitional and peripheral zones and malignant tissue, higher-developed ma-

chine learning tools are required, often based on radiomics or even deep learning tech-

niques. In the papers included in this review, most approaches using either ML or DL 

were similar to radiologists in their performance [49,54,57,64,75]. For some specific appli-

cations, such as tumor detection in the TZ or detection of clinically significant cancers in 

PIRADS 3 lesions, AI-based methods might even be superior to radiologists’ performance 

[48,59]. 

These AI-based approaches should enable less well-trained radiologists to read and 

report prostate-MRI reports with good quality [57,75]. The literature review showed that 

different approaches to tumor grading and characterization either via ML or DL are 
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capable of differentiating between cancerous and non-cancerous tissue. New approaches 

are even able to autonomously segment the prostate and the tumor within the gland over-

coming a limitation of the elder approaches, where radiologists often had to manually 

segment the lesions, resulting in a highly time-consuming task [72,75]. Apart from many 

site-specific implementations of radiomics, ML and DL, another sign of maturation of AI-

based approaches is that a first commercial tool was already presented [67]. Compared to 

the other algorithms, this commercial tool was trained by big data sets for the initial train-

ing. This development underlines again the trend in imaging toward commoditization of 

imaging and democratization of information technology enabling every radiologist to per-

form on a high-quality imaging. 

Yet, there are some obstacles still to overcome. First, MRI is a tricky imaging tool. A 

major drawback of MRI is the lack of standard quantification of image intensities. Within 

the same image, the intensities for the same material vary as they are affected by bias field 

distortions and imaging acquisition parameters, not always perfectly standardized. In ad-

dition, not only do MR images taken on different scanner vary in image intensities, but 

the images for the same patient on the same scanner at different times may appear differ-

ently from each other due to a variety of scanner- and patient-dependent variables [45]. 

Therefore, the initial step in ML/DL image postprocessing is to normalize the MR intensity 

[45]. This process could induce errors, however. At last, also the reproducibility of CNNs 

varies resulting in interscan differences, though with less impact [78]. Second, most stud-

ies rely on single site source data. Multicentric studies are very rare hence making it 

harder to compare results of AI-based algorithms across different vendors and sequence 

parameters. Third, the choice of imaging sequences and their specific parameters is vari-

able. This work focused on bpMRI of the prostate. Even though for a radiologist imaging 

with T2w-imaging and DWI imaging would be seen as biparametric, things look different 

in the world of AI-based post-postprocessing: sometimes T2w and ADC, sometimes T2w 

and a single high b-value, T2w and multiple b-values or T2, ADC and b-values were used 

(hereby neglecting uncommon outlier studies using DCE and T2 or T1 and T2). Even 

though DWI source date and ADC are based on the same acquisition, their information 

content seems different. It was observed in one study that the use of CHB-DWI led to 

higher specificity while the use of ADC led to highest sensitivity, making the choice of 

sensing modality useful for different clinical scenarios [79]. For example, maximizing 

specificity is important for surgery for removal of prostate where minimizing false posi-

tive rates to avoid unnecessary surgeries is required. On the other hand, for cancer screen-

ing, maximizing sensitivity may be useful to avoid missing cancerous patients [79]. A clear 

definition what would be considered as truly bpMRI or standards for AI-postprocessing 

has not been set up. Yet, there is a first European initiative on the development and stand-

ardization of AI-based tools for prostate MRI [44]. Fourth, DL-based CNNs are notorious 

for being a “black box” in terms of the how the decision was achieved. While this may not 

be entirely true—CNNs can be monitored at any level at some expense—they might never 

be as transparent as ML-based approaches hence scaring some physicians from using 

them on real patients outside studies. Moreover, here, commercialization of the tech-

niques might be helpful as larger companies have the means and money to certify algo-

rithms with the FDA or the EU and thus make them broadly (commercially) available.  

As seven studies made use of the ProstatEx data, it is worth looking at the overall 

conclusions the creators of the dataset and initiators of the contest published [80]: the ma-

jority of the 71 methods submitted to the challenge (classifying prostate lesions as clini-

cally significant or not) the majority of those methods outperformed random guessing. 

They conclude that automated classification of clinically significant cancer seems feasible. 

While in the second contest (computationally assigning lesions to a Gleason grade group) 

only two out 43 methods did marginally better than random guessing. The creators also 

conclude that more images and larger data sets with better annotations might be necessary 

to draw significant conclusions, which brings up again the question of means and money. 

Another conclusion that can be drawn when looking at the included studies is that 3 T 



Diagnostics 2022, 12, 799 17 of 23 
 

 

imaging seems to be the standard. This is partly because there is substantial overlap in the 

source data (ProstatEx) and that, of course, studies are being conducted at University 

Medical Centers which most often have state-of-the-art equipment. For radiology depart-

ments in smaller hospitals or private practices having a 3 T system is less likely. Regarding 

how far the results of 3T e.g., DWI can be transferred to 1.5 T and how the technological 

improvement of 1.5 T in the field of signal reception and processing is supportive remain 

unclear. One might speculate that a state-of-the-art 1.5 T will yield comparable image 

quality to an elder 3 T system. Looking at the source data of the different studies one can 

roughly estimate that 30% of these were acquired on elder (>14a) 3 T systems. 

There are some unexpected studies with novel approaches to patient care that should 

be to highlighted. One was therapy assessment with pre- and post-IMRT T2w-imaging 

[40] for “delta radiomics”, using radiomic features extracted from MR images for predict-

ing response in prostate cancer patients. While there was only one study with this specific 

design, extrapolating ECE or BCR has roughly the same line of thought: could not it be 

possible to predict for changes in the future with imaging features measured today 

[69,73,74]. The AUC values of these studies were unexpectedly high (0.801–0.905) as well 

as the number of included patients.  

Limitations 

This review has several limitations that need to be mentioned. First, ML and DL are 

extremely fast evolving techniques. Data provided in this review simply display a snap-

shot of the ongoing development. With the ever more powerful hardware and algorithms, 

future improvements seem likely. Most results are based on small feasibility studies, and 

larger applications of ML and DL in prostate imaging are not yet available. Whether their 

results match the promising initial studies remains unclear. Second, the inclusion criteria 

were narrow so that only 29 studies could be included. With the small sample size, differ-

ent targets, and the different foci of the studies no wholistic analysis could be performed. 

Opening up the time window for the included studies would have led to inclusion of elder 

techniques potentially biasing the results. 

5. Conclusions 

In summary, this study investigated the current status of bpMRI of the prostate with 

postprocessing using ML and DL with a focus and tumor detection and grading. The pre-

sented results are very promising in terms of detection of csPCA and differentiation of 

prostate cancer from non-cancerous tissue. ML and DL seem to be equally good in terms 

of classification of single lesion according to the PIRADS score. Most approaches however 

rely on human interference and contouring the lesions. Only a few newer approaches au-

tomatically segment the entire gland and lesions, along with lesion grading according to 

PIRADS. There still exist a large variability and methods and just a few multicentric stud-

ies. No AI-postprocessing technique is considered gold standard at this time while there 

seems to be a trend toward CNNs. Regarding the actual MRI-sequences, most studies 

used T2w-imaging and either b-values from DWI or the ADC maps from DWI. The appli-

cation of ML and DL to bpMRI postprocessing and the assistance in the reading process 

surely represent a step into the future of radiology. Currently however, these techniques 

remain at an experimental level and are not yet ready or available for a broader clinical 

application. 
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Abbreviations 

ACR American College of Radiology 

ADC Apparent Diffusion Coefficient 

AFMS Anterior Fibromuscular Stroma (of the Prostate) 

AI Artificial Intelligence 

AS Anterior stroma (of the Prostate) 

AUC Area under the Curve 

BCR Biochemical Recurrence 

bp bi-parametric 

BPH Benign Prostate Hyperplasia 

ciPCA Clinically Insignificant Prostate Cancer 

CNN Convoluted Neural Network 

csPCA Clinically Significant Prostate Cancer 

CZ Central Zone (of the Prostate) 

DCE Dynamic Contrast-Enhanced Imaging 

DL Deep-Learning 

DRE Digital Rectal Examination 

DWI Diffusion-Weighted Imaging 

ECE Extracapsular Extension 

ESUR European Society of Urologic Radiology 

GS Gleason Score 

HBV High b-Value (of DWI) 

IMRT Intensity-Modulated Radiation Therapy 

ML Machine-Learning 

mp multi-parametric 

MR Magnetic Resonance 

MRI Magnetic Resonance Imaging 

nsPCA Non-Significant Prostate Cancer 

PZ Peripheral Zone (of the Prostate) 

PCA Prostate Cancer 

PIRADS Prostate Imaging Reporting and Data System 

PSM Positive Surgical Margins 

RP Radical Prostatectomy 

T2w T2-weighted Imaging 

TSE TurboSpinEcho 

TZ Transitional Zone (of the Prostate) 

up uni-parametric 
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Appendix A 

Table A1. Display of PRISMA items. 

PRISMA Item Description 

Title 
Current Value of Biparametric Prostate MRI with Machine-Learning or Deep-Learning in the 

Detection, Grading and Characterization of Prostate Cancer: a systematic review. 

Main objective 
Assessing the current value of deep-learning and machine-learning applied to biparametric 

MRI of the prostate 

Inclusion and exclusion 

criteria 

Inclusion criteria: 

- Study listed in Pubmed 

- Search terms: “prostate” and “magnetic” and either “deep learning” or “machine learn-

ing” or “radiomics” 

- Full text access available through University of Heidelberg 

- Paper type: original investigation/research 

- Focus: Detection or grading of prostate cancer with biparametric prostate MRI 

- Language: English or German 

- Year of publication 2019–2021 

Exclusion criteria: 

- No full text access 

- Wrong paper type: reviews, meta-analysis 

- Wrong focus (e.g., prostate segmentation, radiation therapy planning) 

- Wrong technique (uniparametric or multiparametric prostate MRI) 

Information source and 

access time 
PubMed query in August 2021 

Methods to assess risk 

of bias in included 

studies 

No structured program was used to assess bias in study selection. Internal review by the 

authors and critical appraisal of the data was performed. 

Methods to present and 

synthesize results 
Descriptive statistics, listing in tabular form 

Number of studies and 

participants included 

29 publications included 

7466 participants included 

Main outcomes 

Very heterogenous data did not allow for a general interpretation of all studies.  

Tumor detection and grading with machine-learning and deep-learning techniques is feasible 

in trials and shows promising results. Reported values for AUC ranging from 0.71 to 0.999. In 

studies comparing human radiologists to deep-learning algorithms comparable, statistically 

not different results for tumor detection were found.  

Limitations 

- No overall statistical analysis feasible due to the heterogeneity of methods and inclusion 

criteria reported 

- 7 out of 29 studies based on the same dataset (ProstatEx, Radbound Nijmwegen, The Neth-

erlands) 

- Heterogenous studies with different inclusion criteria and ground truth (i.e., if Gleason 

Grade constitutes high-grade cancer or not) 

- Often lacking demographic and statistical data 

General interpretation 

Detection of clinically significant prostate cancer and differentiation of prostate cancer from 

non-cancerous tissue using machine-learning and deep learning is feasible with promising  

results. Some techniques of machine-learning and deep-learning currently seem to be equally 

good as human radiologists in terms of classification of single lesions according to the PIRADS 

score. 

Primary source for 

funding 
No general funding. Publication costs are covered by the Universtiy of Pisa, Pisa, Italy. 
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Register name and 

registration number 
No registration  
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