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Abstract: Chest X-ray radiographic (CXR) imagery enables earlier and easier lung disease diagnosis.
Therefore, in this paper, we propose a deep learning method using a transfer learning technique to clas-
sify lung diseases on CXR images to improve the efficiency and accuracy of computer-aided diagnostic
systems’ (CADs’) diagnostic performance. Our proposed method is a one-step, end-to-end learning,
which means that raw CXR images are directly inputted into a deep learning model (EfficientNet v2-M)
to extract their meaningful features in identifying disease categories. We experimented using our pro-
posed method on three classes of normal, pneumonia, and pneumothorax of the U.S. National Institutes
of Health (NIH) data set, and achieved validation performances of loss = 0.6933, accuracy = 82.15%,
sensitivity = 81.40%, and specificity = 91.65%. We also experimented on the Cheonan Soonchunhyang
University Hospital (SCH) data set on four classes of normal, pneumonia, pneumothorax, and tubercu-
losis, and achieved validation performances of loss = 0.7658, accuracy = 82.20%, sensitivity = 81.40%,
and specificity = 94.48%; testing accuracy of normal, pneumonia, pneumothorax, and tuberculosis
classes was 63.60%, 82.30%, 82.80%, and 89.90%, respectively.

Keywords: multi-class classification; deep learning; transfer learning; EfficientNet v2; chest X-ray image

1. Introduction

Lung disease is one of the top causes of death worldwide and includes pneumonia,
pneumothorax, and tuberculosis diseases [1]. For example, pneumonia is a disease that
causes air sacs in the lungs [2]. Its symptoms include fever, cough, shortness of breath, loss
of appetite, stabbing chest pain, low energy, vomiting, and confusion, especially in older
people. Pneumothorax is a disease that can cause complete or partial lung collapse [3]. The
lung collapse can potentially be caused by intense activities such as mountain climbing,
flying, or scuba diving. Those intense activities may cause huge changes in air pressure.
Symptoms of pneumothorax commonly include chest pain, shortness of breath, rapid
breathing, a dry and hacking cough, bluish skin, and fatigue. Tuberculosis is a disease
provoked by an airborne bacterial infection in the lung [4]. Symptoms of tuberculosis
include a cough for three consecutive weeks, a loss of appetite that yields unintentional
weight loss, chills, fever, and night sweats.

Therefore, early assessment and diagnosis can significantly reduce the life-threatening
nature of lung diseases and improve the quality of life of suffering patients [5–8]. In modern
medical image modalities, imaging tests are extremely powerful tools that can help doctors
diagnose a range of conditions. The most commonly used image modalities are the chest
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X-ray radiographic image (CXR) and computed tomography (CT). They are diagnostic
tools that allow doctors to see the internal structures of the body without cutting.

Lung disease detection is currently performed through an examination of CXR images
by a professional radiologist, due to its convenient and non-invasive assessment for overall
findings of the chest situation in brief. It is also suitable for follow-up examination since
disease changes can be observed more easily and earlier. However, there is a common
human error that may be caused by the misreading of a CXR image due to the complex
anatomical structure of the chest. Therefore, computer-aided diagnostic systems (CADs)
are used to help radiologists overcome clinical decisions with more precise diagnosis
and to minimize misreading. To improve the efficiency and accuracy of the diagnostic
performance of CADs, the CXR image has been widely exploited by various methods.

The deep learning (DL) method has outperformed traditional machine learning in
medical image analysis on classification, segmentation, and detection tasks [5,8], which
apply to various data modalities ranging from a 1D signal [9,10], 2D [11–13] to a 3D
image [14]. Compared to the natural RGB image, the CXR image is a grayscale image with
one-channel information. The information of the CXR image is scanned by an X-ray, also
called a radiograph [15]. The X-ray sends radiation through the body. Areas with high levels
of calcium (i.e., bones) block the radiation, causing them to appear white on the image. Soft
tissues (i.e., lungs, heart, liver, muscle, and more) allow the radiation to pass through and
appear in a range from gray to black on the image. The CXR image is commonly stored as
a one-channel grayscale file in png [16] or tiff format [17], which causes a unique challenge
for the DL method. Some research applied the DL model to the one-channel grayscale
CXR image by learning from scratch (with random, initialized weights), which yielded
limited results [18]. To overcome this limitation, an intuitive method is to collect more data.
However, both the collection and labeling of medical data require experts and consume a
lot of time and money. Some other research converted the one-channel grayscale image
to a three-channel image by adding its information three times repeatedly [19–21]. Since
the convolutional neural network (CNN) is the most significant DL model for 2D image
classification, it can learn and distinguish on a three-channel image more precisely than
on a one-channel image. However, the three-channel, converted grayscale image has no
new information. Therefore, by training the DL model on it via learning from scratch still
yielded limited results. The latest solution on a three-channel, converted grayscale image
was to apply a transfer learning technique [11,22–27] by transferring the learned weights of
a model trained on a three-channel natural RGB image and then fine-tuning the model on a
three-channel, converted grayscale image. Although the CXR image is far different from
the natural RGB image, the model trained on the RGB image may extract more general
features, which can help to identify shapes, patterns, edges, and object composition. These
similar features may also be effective for classifying lung diseases.

Therefore, in this paper, we propose the DL method using a transfer learning technique
to classify lung diseases in CXR images to improve the efficiency and accuracy of a CADs’
diagnostic performance.

Our main contributions are as follows:

• We exploited the convolutional neural network (CNN) model in general (EfficientNet
v2-M model in specific) to classify lung diseases using transfer learning techniques
with empirical hyperparameters to achieve a significant performance;

• Our proposed method was a one-step, end-to-end learning, which means that raw
CXR images were directly inputted into a deep learning model (EfficientNet v2-M) to
extract their meaningful features in identifying disease categories;

• We experimented with our proposed method on the publicly available benchmark data
set of the U.S. National Institutes of Health (NIH) [16] for three classes of pneumonia,
pneumothorax, and normal (no finding); and

• We also experimented on our in-house data set of the Cheonan Soonchunhyang Uni-
versity Hospital (SCH) [17] for four classes of pneumonia, pneumothorax, tuberculosis,
and normal (healthy).
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The remainder of the paper is organized as follows. Section 2 describes previous
and related methods using CNN models via transfer learning techniques. Section 3 then
details our proposed method, while Section 4 analyzes our results. Section 5 compares our
experimental results with other methods; finally, Section 6 concludes our study.

2. Related Works

Hong et al. [11] implemented transfer learning on -six models (VGG19, DenseNet201,
Vanilla EfficientNetB7, EfficientNetB7 + Preprocessing, EfficientNetB7 + Multi GAP, and
EfficientNetB7 + Preprocessing + Multi GAP) to classify lung diseases (pneumonia, pneu-
mothorax, and normal) on CXR images of the NIH data set. EfficientNetB7 achieved
the best performance (accuracy: 85.32%, sensitivity: 77.97%, and specificity: 88.98%).
Hong et al. [11] also implemented transfer learning on six models (VGG19, DenseNet201,
Vanilla EfficientNetB7, EfficientNetB7 + Preprocessing, EfficientNetB7 + Multi GAP, and
EfficientNetB7 + Preprocessing + Multi GAP) to classify lung diseases (pneumonia, pneu-
mothorax, tuberculosis, and normal) on CXR images of the in-house data set. Efficient-
NetB7 achieved the best performance (accuracy: 96.10%, sensitivity: 92.20%, and specificity:
97.40%). Apostolopoulos et al. [22] implemented transfer learning on five models (VGG19,
MobileNetV2, Inception, Xception, and Inception ResNetV2) to classify lung diseases
(pneumonia, COVID-19, and normal) on CXR images of the in-house data set. The VGG19
achieved the best performance (accuracy: 93.48%, sensitivity: 92.85%, and specificity:
98.75%). Yimer et al. [23] implemented transfer learning on Xception models to classify
lung diseases (tuberculosis, pneumonia, COPD, pneumothorax, lung cancer, and normal)
on CXR images of the NIH and in-house data sets. Xception achieved the best performance
(accuracy: 97.30%, sensitivity: 97.20%, and specificity: 99.40%). Liu et al. [24] implemented
transfer learning on six models (DenseNet121, InceptionV3, NASNet, ResNet50, VGG16,
and Xception) to classify lung diseases (tuberculosis and normal) on CXR images of the in-
house data set. DenseNet121 achieved the best performance (accuracy: 83.50%, sensitivity:
82.20%, and specificity: 84.90%).

Zak et al. [25] proposed a two-step DL method to classify lung diseases (pneumonia
vs. tuberculosis) on CXR images of the in-house Shenzhen data set. The first step was to
segment the lung region of interest (ROI) using U-Net and then apply transfer learning
on three models (VGG16, ResNet-50, and InceptionV3), for which the pre-trained weights
were from ImageNet. InceptionV3 achieved the best performance (accuracy: 82.00%,
sensitivity: 82.33%, and specificity: 82.00%). Tian et al. [26] proposed a two-step DL
method to classify lung diseases (pneumothorax vs. normal) on CXR images of the NIH
and in-house SAHZUSM data sets. The first step was to segment the lung ROI using
U-Net and then apply transfer learning on six models (Inception-ResNetV2, DenseNet,
InceptionV3, VGG, NasNet, and ResNet), for which the pre-trained weights were from
ImageNet. The Inception-ResNetV2 achieved the best performance (accuracy: 97.30% and
specificity: 97.20%).

El Asnaoui et al. [27] implemented transfer learning on seven models (VGG16, VGG19,
DenseNet201, Inception-ResNetV2, InceptionV3, ResNet50, and MobileNetV2) to classify
lung diseases (pneumonia, corona virus, COVID-19, and normal) on CXR and CT images
of the in-house data set. Inception-ResNet v2 achieved the best performance (accuracy:
92.18%, sensitivity: 92.11%, and specificity: 96.06%).

3. Materials and Methods
3.1. Data Set

We collected CXR images from the U.S. National Institutes of Health (NIH) [16] for
three classes of pneumonia, pneumothorax, and normal (no finding) and split these images
into training and validation sets, as shown in Table 1.

CXR images of the NIH data set were in png format. The image size was 1024 × 1024
and the bit depth was 8 bits [0–255]. Figure 1 shows example images and their correspond-
ing histograms.
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Table 1. NIH data set.

Class Training Set Validation Set Total

Normal 2676 669 3345
Pneumonia 1114 278 1392

Pneumothorax 4210 1053 5263
Total 8000 2000 10,000
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We also collected CXR images from the Cheonan Soonchunhyang University Hos-
pital (SCH) [17] for four classes of pneumonia, pneumothorax, tuberculosis, and normal
(healthy), and split these images into training, validation, and testing sets, as shown
in Table 2.

Table 2. SCH data set.

Class Training Set Validation Set Testing Set Total

Normal 10,203 500 1000 11,703
Pneumonia 7080 500 1000 8580

Pneumothorax 4631 500 1000 6131
Tuberculosis 7368 500 1000 8868

Total 29,282 2000 4000 35,282

CXR images of the SCH data set were in tiff format. The image size varied from
2000 × 2000 to 3000 × 3000 and the bit depth was 16 bits [0–65,535]. Figure 2 depicts
example images and their corresponding histograms.
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Figure 2. CXR images of SCH data set: (a) image of normal class; (b) histogram of normal class;
(c) image of pneumonia class; (d) histogram of pneumonia class; (e) image of pneumothorax class;
(f) histogram of pneumothorax class; (g) image of tuberculosis class; (h) histogram of tuberculosis class.

3.2. Data Preprocessing
3.2.1. Cropping and Resizing

The CXR images of the NIH data set were already in a square shape (1024 × 1024);
thus, we kept the images as they were. The CXR images of the SCH data set varied in shape;
thus, we cropped the images into square shapes by removing the bottom part because the
bottom region mostly contained the belly part, which contained meaningless information.
Figure 3 depicts examples of cropped images and their corresponding histograms.

Next, the CXR images from both the NIH and SCH were scaled to 688 × 688. Then, we
performed a center cropping, making the images into a 600 × 600 size, which was an 87.5%
cropping. Finally, they were converted into three-channel grayscale images by repeatedly
tripling the information: 600 × 600 × 3.
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3.2.2. Data Augmentation

We performed a data augmentation to increase the number of samples and to diversify
the image in position, orientation, brightness, and more. By the time of writing this paper,
the best state-of-the-art data augmentation technique was RandAugment [28]. Therefore,
we only applied it on the training data set by setting hyperparameters as follows: N = 5
and M = 20. Figure 4 depicts examples of augmented images.
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Next, we concatenated the original images by the augmented images. Therefore, the
number of images in the training set was increased twice, as shown in Table 3. Finally, we
normalized the pixels of the images into [−1, +1].

Table 3. Combination samples of the original and augmented data of the training set.

Data Set Original Set Augmented Set Total

NIH 8000 8000 16,000
SCH 29,282 29,282 58,564

3.3. Model

We implemented a transfer learning technique by exploiting EfficientNet v2 [29] as
a base model and by defining the new top layers as a fine-tuning model. The common
pipeline of transfer learning is firstly to extract features from the source data set and then
fine-tune on the target data set [30]. Figure 5 depicts our proposed transfer learning pipeline.
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3.3.1. Pre-Train

EfficientNet v2 [29] is a deep convolutional neural network that was proven to outper-
form on the ImageNet data set [31], as shown in Table 4. EfficientNet v2 was trained on
the ImageNet data set, and its learned weights were publicly shared. Inspired by its fast
training speed and parameter efficiency, we exploited EfficientNet v2-M and its learned
weights without its top layers as our base model. This process is called pre-train, as shown
in Figure 5.

Table 4. Family models of EfficientNet v2 training on ImageNet.

Model Accuracy Param # FLOPs Inference
Time

Train
Time

EfficientNet v2-S 84.90% 22 M 8.8 B 24 ms 9 ms
EfficientNet v2-M 86.20% 54 M 24 B 57 ms 15 ms
EfficientNet v2-L 86.80% 120 M 53 B 98 ms 26 ms

EfficientNet v2-XL 87.30% 208 M 94 B - 45 ms
Param # refers to number of parameters.

3.3.2. Fine-Tune

Since the NIH and SCH data sets were much smaller than ImageNet data set, the
fine-tuning process helped to improve our target models’ generalization ability, as shown in
Figure 5. This fine-tuning copied all EfficientNet v2-M model designs and their parameters
without the top layers. These parameters contained the knowledge learned from the
ImageNet data set, which helped to identify shapes, patterns, edges, and object composition.
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We assumed that these general and similar features would also be effective for classifying
lung diseases in CXR images.

3.3.3. Train from Scratch

Since the ImageNet data set contained 1000 classes, the original EfficientNet v2 model
was composed of the top layers to classify 1000 classes accordingly. However, our target
classes were three classes (normal, pneumonia, and pneumothorax) of the NIH data set
and four classes (normal, pneumonia, pneumothorax, and tuberculosis) of the SCH data
set. Therefore, we defined the new top layers to fine-tune the extracted features into our
target model.

Firstly, we trained our new top layers from scratch with a random initialize weight on
the NIH or SCH data set, as shown in Table 5. The input layer had a shape of 600 × 600 × 3.
Then, the input tensor passed to the base model (EfficientNet v2-M). The base model
convoluted the input tensor into the last layer (before the top layer) with a shape of
19 × 19 × 1280, which produced 53,150,388 parameters. Next, we aggregated all the fea-
tures using global average pooling 2D into 1280 features. Then, the dropout layer (rate
was 0.4) was applied to avoid the overfitting issue. Finally, we aggregated the 1280 features
into our target classes (three classes for NIH data set or four classes for SCH data set),
which produced 3843 or 5124 parameters, respectively. We froze the base model (the base
model was not trained). Thus, only 3843 or 5124 parameters were trained. This means
that only 3843 or 5124 parameters were updated via gradient descent to minimize the loss
during training. Meanwhile, 53,150,388 parameters were not trained and were updated by
the entire model only during the forward pass.

Table 5. Our target model trained on the new top layers of the NIH or SCH data set.

Layer Output Shape Param #

Input (None, 600, 600, 3) 0
Efficientnetv2-m (None, 19, 19, 1280) 53,150,388

Global_average_pooling2d (None, 1280) 0
Dropout (None, 1280) 0

Dense (None, 3) or (None, 4) 3843 or 5124

Total params: 53,154,231 or 53,155,512
Trainable params: 3843 or 5124
Non-trainable params: 53,150,388

Param # refers to number of parameters.

Next, we trained a complete model (the base model and new top layers) on the NIH
or SCH data set by enabling the base model to unfreeze, as shown in Table 6. This helped
to achieve incremental improvements by re-training the pre-trained features with new
top layers on our data sets (NIH or SCH data set). We set the training option of the
batch normalization layers of the base model to False so that they were not trained. This
helped to prevent damage to the features learned by the model so far. Thus, 52,862,199 or
52,863,480 parameters were re-trained while 292,032 were not.

Table 6. Our target model trained on a complete model (base model and new top layers) of the NIH
or SCH data set.

Layer Output Shape Param #

Input (None, 600, 600, 3) 0
Efficientnetv2-m (None, 19, 19, 1280) 53,150,388

Global_average_pooling2d (None, 1280) 0
Dropout (None, 1280) 0

Dense (None, 3) or (None, 4) 3843 or 5124

Total params: 53,154,231 or 53,155,512
Trainable params: 52,862,199 or 52,863,480
Non-trainable params: 292,032

Param # refers to number of parameters.
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3.4. Train

We conducted an experiment on a computer with an Intel CPU i9-9940X 3.30 GHz,
64-GB RAM, NVidia Geforce RTX 3090 (1755 MHz, 10,496 cores, 24 GB). The code was
written in Python 3.9 and Tensorflow 2.8 with CUDA 11.2 and cuDNN 8.

Since the data of each class had a different number of samples, we defined a class
weight on the training set, as shown in Table 7. The class weights helped to balance the data
samples by assigning a low weight to large samples and a high weight to small samples [32].
The assigned class weights, C, were calculated as follows:

Ci =
∑N

i Si

N × Si
, (1)

where N is the number of classes (N = 3 for the NIH data set or N = 4 for the SCH data
set) and Si is the number of samples of class i.

Table 7. Class weights of the training set of the NIH and SCH data sets.

Data Set Class Training Set Class Weight

NIH Normal 5352 0.9965
Pneumonia 2228 2.3937

Pneumothorax 8420 0.6334

SCH Normal 20,406 0.7537
Pneumonia 14,160 1.0280

Pneumothorax 9262 1.4387
Tuberculosis 14,736 0.9946

We applied the Lookahead optimizer [33] to wrap the Rectified Adam optimizer [34].
This wrapping improved learning stability by helping the Rectified Adam optimizer escape
from local minima and lowering the loss variance. Additionally, we applied a warm-up by
setting the warm-up proportion to 0.1. Since we had two trainings, the learning rates were
set as follows.

(1) Train on the new top layers: We set an initial learning rate of 1e-3 and a minimum
learning rate of 1e-4 because the new top layers were small. We trained these layers
for 50 epochs.

(2) Train on the complete model: We set the initial learning rate of 1e-4 and minimum
learning rate of 1e-6 because the base model was very large. Thus, the very low
learning rate helped to prevent overfitting when re-training on our small data set. We
trained it for 25 epochs.

In both trainings, the clip norm of the Rectified Adam optimizer was set to 1.0. This
gradient clipping helped to avoid exploding gradients [35]. Additionally, we applied the
categorical cross-entropy loss, for which its label smoothing was set to 0.1 [36]. Table 8
summarizes our empirical hyperparameters.

Table 8. Summary of our empirical hyperparameters.

Parameters Value

Image shape 600 × 600 × 3
Pixel normalization [−1, +1]
Data augmentation RandAugment (N = 5, M = 20)

Base model EfficientNet v2-M (pre-trained weights = ImageNet)
Model regular Dropout (rate = 0.4)

Model optimizer Lookahead, Rectified Adam (clip norm = 1)
Warm-up proportion 0.1

Learning rate 1st train = [1e-3, 1e-4], 2nd train = [1e-4, 1e-6]
Loss Categorical cross entropy (label smoothing = 0.1)

Classifier Softmax
Class NIH data set = 3, SCH data set = 4
Epoch 1st train = 50, 2nd train = 25

Batch size 8
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4. Results
4.1. Evaluation Metrics

We followed the evaluation metrics of a classification study. We used accuracy (Acc)
to evaluate the overall quality of our classification. Since our number of samples was
imbalanced, we additionally used sensitivity (Sen) to evaluate the quality of positive
prediction and specificity (Spe) to evaluate the quality of negative prediction. They were
calculated as follows.

Acc =
TP + TN

TP + TN + FP + FN
, (2)

Sen =
TP

TP + FN
, (3)

Spe =
TN

TN + FP
, (4)

where TP, FP, TN, and FN represent true positive, false positive, true negative, and false
negative, respectively.

4.2. Three-Class Classification

Figure 6 depicts the training and validation performance of the NIH data set on the new
top layers. Loss, accuracy, sensitivity, and specificity of training were 0.8847, 62.86%, 48.66%,
and 89.42%, respectively. Since we trained on very small parameters (3843 parameters) from
scratch, the training performance was low. Additionally, we noticed that the validation
performance (Loss = 0.7759, Acc = 73.35%, Sen = 61.45%, and Spe = 92.02%) was better than
the training performance. We assumed that this case occurred because of regularization
mechanisms. When training, the features were set to zero by 40% since we used dropout
(rate = 0.4); however, all features were fully used when validating. Additionally, even after
concatenating the original and augmented images, our training set (16,000 images) was
still small compared to the model network (EfficientNet v2-M). However, we found that
this was not an issue due to this training not being our final target. Conversely, it helped
the new top layers to tune in to our target model well at the next training.

To identify the three classes of lung diseases, the validation performance (Loss = 0.7759,
Acc = 73.35%, Sen = 61.45%, and Spe = 92.02%) of only the new top layers was not so
bad but also not yet acceptable. Therefore, we re-trained (second train) on the complete
model. Figure 7 depicts the training and validation performances of the NIH data set
on the complete model. The loss, accuracy, sensitivity, and specificity of training were
0.4597, 90.59%, 89.18%, and 96.27%, respectively. Since we trained on the complete model
excluding batch normalization layers (52,862,199 parameters) from the pre-trained weights
of ImageNet and our recently trained new top layers, the train performance was improved.
The validation performance (Loss = 0.6933, Acc = 82.15%, Sen = 81.40%, and Spe = 91.65%)
was also improved. In this training, we noticed that the dropout mechanism did not cause
a validation performance higher than the training one, which expressed that it was trained
and fit the model well. Additionally, we noticed that the loss started to converge after
epoch 15. Thus, we assumed that 25 epochs were enough for this training.

Table 9 shows a summary of the validation performance of the NIH data set on the
first train (train from scratch on our new top layers) and the whole train (second train) on
the complete model. The performance of the second train was improved acceptably.

Figure 8 shows the confusion matrix of normal, pneumonia, and pneumothorax classes
of the validation set of the NIH data set. Our model correctly predicted for the normal class
521 images (77.88%) out of 669 images while it confused as pneumonia 29 images (4.33%)
and pneumothorax 119 images (17.79%). It correctly predicted for the pneumonia class
149 images (53.60%) out of 278 images while it confused as normal 41 images (14.75%) and
pneumothorax 88 images (31.65%). Finally, it correctly predicted for the pneumothorax
class 973 images (92.40%) out of 1053 images while it confused as normal 42 images (3.99%)
and pneumonia 38 images (3.61%). We found that our model predicted for pneumothorax
better than the others.
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Table 9. Summary of the validation performance of the NIH data set.

Train Loss Accuracy Sensitivity Specificity

Train from scratch (1st train) 0.7759 73.35% 61.45% 92.02%
Whole train (2nd train) 0.6933 82.15% 81.40% 91.65%
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Figure 8. Confusion matrix of the pneumonia, pneumothorax, and normal classes of the validation
set of the NIH data set: (a) numerical; (b) percentage.

Figure 9 depicts example predictions for the normal, pneumonia, and pneumothorax
classes of the validation set of the NIH data set. The true label is shown in blue. If our
prediction was correct, it will still show in blue with its confidence score. Otherwise, if
our prediction was wrong, it will show in red. We predicted the first 25 images of the
normal class and demonstrated their prediction scores, as shown in Figure 9a. There were
18 images that were correctly predicted (blue color) and seven images that were wrong
(red color). We also predicted another 25 random images of the validation set, as shown
in Figure 9b. There were 20 images that were correctly predicted and five images that
were wrong.

4.3. Four-Class Classification

Figure 10 depicts the training and validation performance of the SCH data set on
new top layers. Loss, accuracy, sensitivity, and specificity of training were 1.1239, 55.12%,
29.95%, and 96.10%, respectively. We still faced the same problem of low performance since
we trained on very small parameters (5124) from scratch. However, we did not have the
issue of applying dropout regularization since the validation performance (Loss = 1.1790,
Acc = 50.55%, Sen = 29.95%, and Spe = 95.42%) was lower than the training performance.
We assumed that this was because our training set (58,564 images) was enough for a model
network (EfficientNet v2-M). Even though the validation performance was low, we found
that it was not an issue; also, this training was not our final target. Conversely, it helped
the new top layers to tune in to our target model well at the next training.
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(b) accuracy; (c) sensitivity; (d) specificity.

We re-trained (second train) on the complete model. Figure 11 depicts the training
and validation performances of the SCH data set on the complete model. Loss, accuracy,
sensitivity, and specificity of training were 0.4907, 92.59%, 90.73%, and 98.20%, respec-
tively. Since we trained on the complete model excluding the batch normalization lay-
ers (52,863,480 parameters) from the pre-trained weights of ImageNet and our recently
trained new top layers, the train performance was improved. Validation performance
(Loss = 0.7658, Acc = 82.20%, Sen = 81.40%, and Spe = 94.48%) was also improved. In this
training, the number of classes increased to four. However, since we also increased the
sample numbers of the training set, we could maintain the performance.

Table 10 summarizes the validation performance of the SCH data set on the first
training (from scratch on our new top layers) and the whole training (second training) on
the complete model. The performance of the second training was acceptably improved.
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(b) accuracy; (c) sensitivity; (d) specificity.

Table 10. Summary of the validation performance of the SCH data set.

Train Loss Accuracy Sensitivity Specificity

Train from scratch (1st train) 1.1790 50.55% 29.95% 95.42%
Whole train (2nd train) 0.7658 82.20% 81.40% 94.48%

Figure 12 shows the confusion matrix of the normal, pneumonia, pneumothorax, and
tuberculosis classes of the testing set of the SCH data set. Our model correctly predicted for
the Normal class 636 images (63.60%) out of 1000 images while it confused as pneumonia
229 images (22.90%), pneumothorax 43 images (4.30%), and tuberculosis 92 images (9.20%).
It correctly predicted for the pneumonia class 823 images (82.30%) out of 1000 images while
it confused as normal 0 image (0%), pneumothorax 13 images (1.30 %), and tuberculosis
164 images (16.40%). It correctly predicted for the pneumothorax class 828 images (82.80%)
out of 1000 images while it confused as normal 0 image (0%), pneumonia 75 images (7.50%),
and tuberculosis 97 images (9.70%). Finally, it correctly predicted for the tuberculosis
class 890 images (89.90%) out of 1000 images while it confused as normal 0 image (0%),
pneumonia 98 images (9.80%), and pneumothorax 12 images (1.20%). We found that our
model predicted for tuberculosis better than the others and expressed that those three
classes of diseases were not confused with the normal class.



Diagnostics 2022, 12, 915 18 of 24

Diagnostics 2022, 12, x FOR PEER REVIEW 19 of 26 
 

 

tuberculosis 164 images (16.40%). It correctly predicted for the pneumothorax class 828 
images (82.80%) out of 1000 images while it confused as normal 0 image (0%), pneumonia 
75 images (7.50%), and tuberculosis 97 images (9.70%). Finally, it correctly predicted for 
the tuberculosis class 890 images (89.90%) out of 1000 images while it confused as normal 
0 image (0%), pneumonia 98 images (9.80%), and pneumothorax 12 images (1.20%). We 
found that our model predicted for tuberculosis better than the others and expressed that 
those three classes of diseases were not confused with the normal class. 

 
(a) 

 
(b) 

Figure 12. Confusion matrix of the Pneumonia, Pneumothorax, Tuberculosis, and Normal class of 
testing set of the SCH data set: (a) numerical; (b) percentage. 

Figure 13 depicts an example prediction for the normal, pneumonia, pneumothorax, 
and tuberculosis classes of the testing set of the SCH data set. The true label is shown in 
blue. If our prediction was correct, it will still show in blue with its confidence score. Oth-
erwise, if our prediction was wrong, it will show in red. We predicted the first 25 images 
of the normal class and demonstrated their prediction scores, as shown in Figure 13a. 
There were 21 images that were correctly predicted (blue color) and four images that were 
wrongly predicted (red color). We also predicted another 25 random images of the testing 
set, as shown in Figure 13b. There were 21 images that were correctly predicted and four 
images that were wrongly predicted. 

Figure 12. Confusion matrix of the Pneumonia, Pneumothorax, Tuberculosis, and Normal class of
testing set of the SCH data set: (a) numerical; (b) percentage.

Figure 13 depicts an example prediction for the normal, pneumonia, pneumothorax,
and tuberculosis classes of the testing set of the SCH data set. The true label is shown in blue.
If our prediction was correct, it will still show in blue with its confidence score. Otherwise,
if our prediction was wrong, it will show in red. We predicted the first 25 images of the
normal class and demonstrated their prediction scores, as shown in Figure 13a. There were
21 images that were correctly predicted (blue color) and four images that were wrongly
predicted (red color). We also predicted another 25 random images of the testing set, as
shown in Figure 13b. There were 21 images that were correctly predicted and four images
that were wrongly predicted.
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5. Discussion
5.1. Experimental Analysis

We followed an experimental analysis of a DL design and algorithm study [37,38]. We
conducted an experiment with a vanilla method of three CNN models such as VGG19,
DenseNet201, and EfficientNet B7 on the same data of NIH data set. This experiment was
to compare our proposed method and a vanilla method of three CNN models. Table 11
shows the performance comparison of a three-class classification (normal, pneumonia, and
pneumothorax). The VGG19 model achieved validation performance as Acc = 62.40%,
Sen = 62.58%, and Spe = 62.03%. The DenseNet201 model achieved validation performance
as Acc = 30.45%, Sen = 15.92%, and Spe = 59.34%. The EfficientNet B7 model achieved
validation performance as Acc = 60.45%, Sen = 63.86%, and Spe = 53.66%. The Efficient-
Net v2-M model achieved validation performance as Acc = 82.15%, Sen = 81.40%, and
Spe = 91.65%. We can see that the DenseNet201 model achieved the lowest performance
while EfficientNet v2-M achieved the highest performance. Therefore, we can assume that
our proposed method with EfficientNet v2-M model is the best choice among those vanilla
models in lung diseases’ classification.

Table 11. Performance comparison of three-class classification on validation set of NIH data set (%).

Method Model Accuracy Sensitivity Specificity

Vanilla VGG19 62.40 62.58 62.03
Vanilla DenseNet201 30.45 15.92 59.34
Vanilla EfficientNet B7 60.45 63.86 53.66
Ours EfficientNet v2-M 82.15 81.40 91.65

Bold face represents higher score in column.

We conducted the experimental analysis only on the NIH data set. After we figured
out that our proposed method with EfficientNet v2-M model outperformed other CNN
models, we did not conduct the experimental analysis on the SCH data set because we
assumed that our proposed method would still outperform the others on the SCH data set.
Therefore, we experimented with our proposed method with the EfficientNet v2-M model
on the SCH data set only.

5.2. Method Comparison

Table 12 shows the performance comparison on the multi-class classification. We
can see that some papers [25,26] used the two-step method. First, they segmented the
ROI of the lung region using U-Net and then classified them using InceptionV3 and
Inception-ResNetV2, respectively. This two-step method is costly in both time and effort.
It requires a data set for segmentation and classification. Additionally, it strongly relies
on the segmentation model. If the performance of segmentation is low, it will yield low
performance on classification, too. Another paper [27] used two types of data (CXR and
CT). This method requires a lot of data set collection. Other papers [11,22–24] used one type
of data (CXR) and a one-step method that was similar to our proposed method. However, it
is hard to compare the performance since they used a different number of classes and data
sets. Only one paper [11] conducted the same configuration as ours on the NIH data set.

Table 13 shows the performance comparison on multi-class classification on the NIH
data set between Hong et al. [11] and ours. We can see that Hong et al.’s [11] outperformed
ours on accuracy. However, since the number of samples was imbalanced, only accuracy
did not express the performance precisely. Therefore, we additionally used sensitivity (Sen)
to evaluate the quality of positive prediction, and specificity (Spe) to evaluate the quality of
negative prediction. We can see that our method outperformed that of Hong et al. [11] on
sensitivity and specificity, respectively. This means that, among positive images, our model
correctly predicted 81.40%. Additionally, among negative images, our model correctly
predicted 91.65%.
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Table 12. Performance comparison on multi-class classification.

Paper Data Set Image Class Step # Model Performance

[25] In-house CXR Pneumonia,
Tuberculosis 2 U-Net,

InceptionV3

Acc = 82.00%,
Sen = 82.33%,
Spe = 82.00%

[26] NIH,
In-house CXR Pneumothorax,

Normal 2 U-Net,
Inception-ResNetV2

Acc = 97.30%,
Spe = 97.20%

[27] In-house CXR,
CT

Pneumonia,
Corona virus,

COVID-19,
Normal

1 Inception-ResNetV2
Acc = 92.18%,
Sen = 92.11%,
Spe = 96.06%

[22] In-house CXR
Pneumonia,
COVID-19,

Normal
1 VGG19

Acc = 93.48%,
Sen = 92.85%,
Spe = 98.75%

[23] NIH,
In-house CXR

Tuberculosis,
Pneumonia,

COPD,
Pneumothorax,

Lung cancer,
Normal

1 Xception
Acc = 97.30%,
Sen = 97.20%,
Spe = 99.40%

[24] In-house CXR Tuberculosis,
Normal 1 DenseNet121

Acc = 83.50%,
Sen = 82.20%,
Spe = 84.90%

[11] NIH CXR
Pneumonia,

Pneumothorax,
Normal

1 EfficientNet B7
Acc = 85.32%,
Sen = 77.97%,
Spe = 88.98%

[11] In-house CXR

Pneumonia,
Pneumothorax,
Tuberculosis,

Normal

1 EfficientNet B7
Acc = 96.10%,
Sen = 92.20%,
Spe = 97.40%

Ours NIH CXR
Pneumonia,

Pneumothorax,
Normal

1 EfficientNet v2-M
Acc = 82.15%,
Sen = 81.40%,
Spe = 91.65%

Ours In-house CXR

Pneumonia,
Pneumothorax,
Tuberculosis,

Normal

1 EfficientNet v2-M
Acc = 82.20%,
Sen = 81.40%,
Spe = 94.48%

Step # refers to number of steps.

Table 13. Performance comparison on multi-class classification on the NIH data set (%).

Paper Model Accuracy Sensitivity Specificity

[11] EfficientNet B7 85.32 77.97 88.98
Ours EfficientNet v2–M 82.15 81.40 91.65

Bold face represents higher score in column.

6. Conclusions

In this paper, we proposed the EfficientNet v2-M model using the pre-trained weights
of ImageNet to classify lung diseases on CXR images to improve the efficiency and accuracy
of CADs’ diagnostic performance. Our proposed method was a one-step, end-to-end
learning. Firstly, the data were augmented to increase the number of samples and variance
diversities. Then, they were directly inputted into a deep learning model to extract their
meaningful features in identifying disease categories. In the transfer learning process, the
first training was conducted on our new, defined top layers and the second training was
conducted on the entire model.

Our method predicted for the three classes of normal, pneumonia, and pneumothorax
of the NIH data set and achieved validation performances of Loss = 0.6933, Acc = 82.15%,
Sen = 81.40%, and Spe = 91.65%. Our method predicted for the four classes of normal,
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pneumonia, pneumothorax, and tuberculosis of the SCH data set and achieved validation
performances of Loss = 0.7658, Acc = 82.20%, Sen = 81.40%, and Spe = 94.48%. The testing
accuracies for the normal, pneumonia, pneumothorax, and tuberculosis classes were 63.60%,
82.30%, 82.80%, and 89.90%, respectively.

We learned that classifying multi-class lung diseases on CXR images (grayscale image)
is very challenging without data augmentation and transfer learning. Additionally, we
also figured out that the regularization mechanism (dropout) posed a trade-off between
losing a great deal of meaningful information and overfitting. If we give a high dropout
rate, we will face losing a lot of important features. On the other hand, if we give a low rate,
the model will fit well on the training set but not the validation or testing set. Finally, we
empirically and optimally tuned our hyperparameters to achieve a significant performance
on multi-class lung diseases’ classification.
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