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Abstract: As an extension of the static network, the dynamic functional brain network can show
continuous changes in the brain’s connections. Then, limited by the length of the fMRI signal, it is
difficult to show every instantaneous moment in the construction of a dynamic network and there
is a lack of effective prediction of the dynamic changes of the network after the signal ends. In
this paper, an extensible dynamic brain function network model is proposed. The model utilizes
the ability of extracting and predicting the instantaneous state of the dynamic network of neural
dynamics on complex networks (NDCN) and constructs a dynamic network model structure that can
provide more than the original signal range. Experimental results show that every snapshot in the
network obtained by the proposed method has a usable network structure and that it also has a good
classification result in the diagnosis of cognitive impairment diseases.

Keywords: dynamic network; extension; NDCN; fMRI; cognitive impairment diseases

1. Introduction

At present, the clinical diagnosis of neurodegenerative diseases is mainly based on the
scale method, which can quickly evaluate and screen the severity of the patient’s disease,
but it is not sensitive enough for the early stage of disease [1,2]. For these reasons, neu-
roimaging methods are mostly supplemented in the study of changes in brain functional
patterns, such as positron emission tomography (PET), structural magnetic resonance
imaging (sMRI), and functional magnetic resonance imaging (fMRI). Among them, PET
requires contrast agents, which are harmful to the body; sMRI is suitable to capture micro-
scopic levels of neuronal loss and gray matter atrophy; however, not all neurodegenerative
diseases produce these changes. The neuroimaging data represented by fMRI based on
blood oxygenation level dependent (BOLD) have the advantages of being non-invasive,
repeatable, and high spatiotemporal resolution, which not only has an excellent display
effect on brain structure, but can also reflect the timing changes of the brain’s functional
status [3]; therefore, it is an ideal method to study the activity patterns and the relationships
across the brain. Moreover, it provides new insight into the study of the functional status of
the brain in patients with neurodegenerative diseases. Modern brain imaging techniques
and statistical physics, especially complex network theory, provides the necessary basis
and analysis methods for the study of human brain functional networks (BFN) using
neuroimaging data. The studies of BFN based on neuroimaging data such as fMRI are
significant for the analysis and study of neurological diseases [4–6].

The fMRI-based BFN are constructed such that brain regions or voxels are used
as nodes and the correlations of BOLD changes between them are used as connection
conditions, where most of them are static brain functional networks [7,8]. Static networks
can reflect the connectivity pattern of the brain, but ignore the timing change information
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of BOLD signals; however, with the development of temporal graphs, dynamic brain
functional networks (D-BFN) gradually enter the field of view of related researchers and
have received more and more attention.

In the research of D-BFN, Wang et al. [9] explored the association between alterations
in the dynamic brain networks’ trajectory and cognitive decline in the AD spectrum; the re-
sults show that all resting-state networks (RSNs) had an increase in connectivity within
networks by enhancing inner cohesive ability, while 7 out of 10 RSNs were characterized
by a decrease in connectivity between networks, which indicated a weakened connector
among networks from the early stage to dementia. Jie et al. [10] defined a new measure to
characterize the spatial variability of DCNs, and then proposed a novel learning framework
to integrate both temporal and spatial variabilities of DCNs for automatic brain disease
diagnosis. The results of a study on 149 subjects with baseline rs-fMRI data from the
Alzheimer’s disease neuroimaging initiative (ADNI) suggest that the method can not only
improve the classification performance, but also provide insights into the spatio-temporal
interaction patterns of brain activity and their changes in brain disorders. Aldo et al. [11]
proposed that spatial maps constituting the nodes in the functional brain network and
their associated time-series were estimated using spatial group independent component
analysis and dual regression; whole-brain oscillatory activity was analyzed both globally
(metastability) and locally (static and dynamic connectivity). Morin et al. [12] used a dy-
namic network analysis of fMRI data to identify changes in functional brain networks that
are associated with context-dependent rule learning; the results support a framework by
which a stable ventral attention community and more flexible cognitive control commu-
nity support sustained attention and the formation of rule representations in successful
learners. Moguilner et al. [13] proposed data-driven machine learning pipeline based on
dynamic connectivity fluctuation analysis (DCFA) on RS-fMRI data from 300 participant;
the results show that non-linear dynamical fluctuations surpass two traditional seed-based
functional connectivity approaches and provide a pathophysiological characterization of
global brain networks in neurodegenerative conditions (AD and bvFTD) across multicenter
data. Wang et al. [14] investigated the effects of driving fatigue on the reorganization of
dynamic functional connectivity through our newly developed temporal brain network
analysis framework. The method provides new insights into dynamic characteristics of
functional connectivity during driving fatigue and demonstrate the potential for using
temporal network metrics as reliable biomarkers for driving fatigue detection. Different
from conventional studies focusing on static descriptions on functional connectivity (FC)
between brain regions in rs-fMRI, recent studies have resorted to D-BFN to characterize the
dynamic changes of FC, since dynamic changes of FC may indicate changes in macroscopic
neural activity patterns in cognitive and behavioral aspects.

The D-BFNs are usually established by using the sliding window method, which is
used to segment the BOLD signals into small pieces—this leads to the size of the window
and the length of the split signal directly affecting the effectiveness of the D-BFN. Moreover,
due to the sampling point limitation of the BOLD signals, the number of windows used to
segment the signals will not be too large, so there is no way to establish the instantaneous
BFN of each data segment well. This will lead to the D-BFN established by the sliding
window method being discrete. Moreover, because there is a lack of transition between
network snapshots, some changing trend information cannot be displayed. The problem
that must be faced with the D-BFN based on fMRI data is that the BOLD signal in the data
will not have a long duration, which is determined by the characteristics of high spatial
resolution and general temporal resolution of fMRI data [15,16]. To establish a D-BFN
that can clearly reflect the dynamic changes of brain connectivity, it is necessary not only
to consider how to establish a continuous BFN model that is continuous within the time
range of data acquisition, but also to extend more time sequence information on the basis
of existing time sequence data [17].

Dynamic networks are widely used in social network analysis [18,19], recommendation
systems, epidemiology, and others. Representing a complex network as a time-dependent
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structure allows the network model to exploit not only structural pattern but also tem-
poral patterns. Learning continuous-time dynamics on complex networks is essential for
understanding, predicting, and controlling complex systems in science and engineering.
Nevertheless, this task is very challenging due to the combinatorial complexity of high-
dimensional system structures, the elusive continuous-time nonlinear dynamics, and their
structural dynamics dependence. The brain functional network model based on continuous
time should consider how to simulate the complete temporal dynamics system by using
the existing image data. To meet these challenges, appropriate methods are needed to learn
continuous temporal dynamics on complex brain functional networks in a data-driven
manner. In recent years, graph neural networks (GNN) have attracted much attention
for their excellent performance in a series of network scientific tasks such as link pre-
diction and node classification. Despite the fact that the graph neural network is very
popular and the dynamic network models have demonstrated its advantages, little atten-
tion is paid to graph neural networks used for dynamic networks. Ordinary differential
equation systems (ODEs) [20] area one of the most important mathematical tools used to
generate models in physical, biological, chemical, and engineering fields, among others.
This prompts researchers to provide effective numerical methods to solve such equations.
Higher-order ordinary differential equations are commonly used to solve time-series prob-
lems; therefore, one may consider combining ordinary differential equation systems and
graph neural networks to learn to compute continuous temporal dynamics on BFNs in a
data-driven manner.

D-BFN is usually established by using time window partition to segment BOLD signals,
which leads to the size of window and the length of split signals directly affecting the
effectiveness of dynamic brain function network [13,21]. Moreover, due to the limitation
of sampling points of BOLD signal, the number of divided windows will not be too
significant, so there is no way to establish the instantaneous brain function network of each
data segment, and it is difficult to predict the change trend of BFN in the next stage after
data acquisition.

As there has been no research to consider the dynamic continuity of the network in
the establishment of the model of D-BFN, this paper attempts to calculate the continuity
information. There are some deep learning methods that can establish the time dynamic re-
sponse on the network [22], among which the method of Zang et al. [23] is outstanding. The
neural dynamics on complex networks (NDCN) model proposed by Zang et al. [23] com-
bines ordinary differential equation systems (ODEs) and graph neural networks (GNNs) to
learn continuous-time dynamics on complex networks in a data-driven way. In the view
of Skarding et al. [22], there is, as of yet, no continuous DGNN encoder for any general-
purpose dynamic network; however, while this approach to modeling dynamics has been
discussed by earlier works, to the best of our knowledge, it has not been implemented in
practice. For this reason, we discuss the possibility of using the NDCN method in the study
of D-BFN.

An extensible dynamic brain function network model is established by using the
NDCN. NDCN integrates the GNN layer numerically in continuous time, so as to capture
the continuous-time dynamics on the network. This method mainly includes two important
functions. One is to calculate the network structure of each instantaneous in the dynamic
network within the BOLD signal length by using the existing data, that is, interpolation
prediction. The other is to predict the continuous changes of BOLD signal collected by
dynamic brain function network in the next time, that is, extensible prediction.

The contributions can be summarized as follows:

1 The NDCN-Brain gives the meaning of the continuous-time network dynamics to
the depth and hidden outputs of GNNs, respectively, and predicts continuous-time
dynamics on BFN.

2 An extended dynamic brain function network model structure is established, which
makes up for the length limitation of fMRI data and improves the temporal resolution
of the network in a certain range.
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3 The network is applied to the auxiliary diagnosis of cognitive impairment and high
diagnostic performance is obtained.

The remainder of the paper is organized as follows, the method used in the model
is introduced in Section 2, and the model is tested in Section 3. Finally, the paper is
summarized in Section 4.

2. Methods
2.1. Overview

An extended dynamic brain function network based on neural dynamics on complex
networks (NDCN) is proposed as shown in Figure 1.
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Figure 1. Overview of dynamic brain function network based on NDCN.

For the D-BFN model described in this study, the BOLD signal is divided into several
slices by window partition, and then the network within each segment is calculated.
Then, in-snapshots within the signal length are obtained by using these segment networks
through NDCN interpolation prediction, and out-snapshots outside the signal are predicted
by extrapolation prediction. These in-snapshots and out-snapshots together constitute a
more complex dynamic brain function network model: NDCN-Brain. Using this network
dynamics analysis method, we can effectively capture the instantaneous network structure
that cannot be obtained by window partition, and predict the network with unknown
signal space. Finally, the D-BFN model was tested. Most of the snapshots (including in and
out) in the established BFN maintain the conventional attributes of the BFN well in the test.
The model was used to classify and predict cognitive impairment data such as Alzheimer’s
(AD), early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and
normal control (NC) through dynamic network features. It was found that the proposed
NDCN-Brain model has a better classification effect than the static network model and the
conventional dynamic network model in terms of classification.

As shown in Figure 1 our method is as follows. First, the fMRI data are preprocessed,
the preprocessed data are registered into the brain template of power264, and then the
BOLD signals of 264 brain regions corresponding to the brain regions are obtained; then,
using time window interval sampling, a plurality of signal segments are collected in
BOLD signals. The adjacency matrices in each signal segment are calculated, and then the
sequential adjacency matrices are brought into the NDCN to obtain the continuous-time
dynamics time system. The interpolation prediction is used to analyze every instantaneous
snapshots (i.e., in-snapshots) in the dynamic time system, and the extrapolation prediction
is used to predict multiple snapshots (i.e., out-snapshots) in the future. These snapshots are
combined to obtain an extended dynamic brain functional network structure (in-snapshots,
out-snapshots). We can use this model to diagnose cognitive impairment. In the diagnosis
process, dynamic network features are extracted first and then diseases are classified based
on SVM.

2.2. The Brain Functional Network Based on NDCN

In this paper, the neural dynamics on complex networks (NDCN) method proposed
by Zang et al. [23] is used to construct a dynamic extensible BFN. This method combines
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ordinary differential equation systems (ODEs) and graph neural networks (GNNs) to
analyze the temporal dynamics of the network in a data-driven manner. Because the brain
functional network can also be described as a continuous dynamic network structure in
time, the NDCN method can be used to construct the network.

2.2.1. Neural Dynamics on Complex Networks

In the theory of Zang et al. [23], a graph structure with dynamic continuity time can
be described as:

dX(t)
dt

= f (X, G, W, t) (1)

In which X(t) ∈ Rn×d can be expressed as n interconnected nodes in a dynamic
continuous system. Each node is characterized by d dimension. G = (V , E) represents a
network structure that captures how nodes interact. W(t) is a parameter that controls how
the system evolves with time. X(0) = X0 is the initial state of the system at time t = 0.
The equation f : Rn×d → Rn×d represents the instantaneous change rate of dynamics on
the graph. In addition, nodes may have various semantic tags Y(X, Θ) ∈ (0, 1)n×k, which
encoded by a hot code, and parameter Θ represents this classification function.

The basic framework of NDCN can be summarized as follows:

arg min L
W(t),Θ(T)

=
∫ T

0
R(X, G, W, t)dt + S(Y(X(T), Θ))

subject to
dX(t)

dt
= f (X, G, W, t), X(0) = X0

(2)

where
∫ T

0 R(X, G, W, t)dt is the “running” loss of the continuous time dynamics on graph
from t = 0 to t = T. S(Y(X(T), Θ)) is the “terminal” loss at time T. By integrating
dX
dt = f (X, G, W, t) over time t from initial state X0, also known as solving the initial value

problem for this differential equation system, can obtain the continuous-time network
dynamics X(t) = X(0) +

∫ T
0 f (X, G, W, τ) at arbitrary time moment t > 0.

Moreover, to further increase the express ability of our model, NDCN encodes the
network signal X(t) from the original space to Xh(t) in a hidden space, and learn the
dynamics in such a hidden space. Then, the NDCN model becomes:

arg min
W(t),Θ(T)

L =
∫ T

0
R(X, G, W, t)dt + S(Y(X(T), Θ))

subject to Xh(t) = fe(X(t), We), X(0) = X0

dX(t)
dt

= f (Xh, G, Wh, t)

X(t) = fd(Xh(t), Wd)

(3)

where the first constraint transforms X(t) into hidden space Xh(t) through encoding
function fe. The second constraint is the governing dynamics in the hidden space. The third
constraint decodes the hidden signal back to the original space with decoding function fd.
The design of fe, f , and fd is flexible and can adapt to any deep neural structure, of which
GNN is the best. NDCN can realize prediction in two directions, namely interpolation
prediction and extrapolation prediction. For one system (0.T], at time t < T, NDCN
predicts the prediction result of instantaneous network in continuous time system, that
is, interpolation prediction, which is named ’in-snapshots’. At time t > T, NDCN has
knowledge of network dynamics outside the system, that is, the prediction results of
extrapolated prediction, which is named ’out-snapshots’.
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2.2.2. Dynamic Network Modeling Based on NDCN

Before constructing a continuous network, the original discrete-time system needs to
be sampled and used for the learning of the continuous-time system. For the fMRI-based
brain function network, the BOLD signals are sampled from front to back by the time
window partition method. The time series of each brain region is segmented. Specifically,
for fMRI data with BOLD signal length T, the whole time series (m is the number of nodes)
BOLDi(i = 1, 2, · · · , m) is divided into several time windows with length t, and the interval
between each window is s, that is, the moving step is s. Finally, n time segments are ob-
tained, and each time period obtained is called a window time. The formula for calculating
the total number of windows generated by the time window method is as follows.

n =
T − t

s
+ 1 (4)

Figure 2 shows a schematic diagram of the sliding time window, where T is the length
of the fMRI time series, t is the size of the sliding time window, and s is the step size of the
sliding time window movement.

t

s

T

Figure 2. Sliding time window schematic diagram.

The Pearson correlation coefficient [24] is used to calculate the correlation between
BOLD signals in each time window, and the calculation method is as follows:

r =

∣∣∣∣∣∣ N ∑ xiyi −∑ xi ∑ yi√
N ∑ x2

i − (∑ xi)
2
√

N ∑ y2
i − (∑ yi)

2

∣∣∣∣∣∣ (5)

where xi, yi represents two brain regions in each time slice. Pearson correlation coef-
ficient was calculated in each slice. Then, we obtain the correlation matrix X(̂t), that
is, an original snapshot of the network. We sample n snapshots in a continuous-time
system

{
X
(
t̂1
)
, . . . , X(tn) | 0 ≤ t1 < . . . < tn ≤ T

}
for NDCN training. After the train-

ing is completed, for any time i < T, we can use interpolation prediction to obtain in-
snapshots X(i); as for the model for j > T, the out-snapshot can be obtained by extrapola-
tion prediction X(j), and finally all the in-snapshot and out-snapshot form an extended
dynamic brain function network model with model time dimension > t. This model
[X(1), ..., X(i), ...X(T), ..., X(j), ...] can be called NDCN-Brain.

2.3. Cognitive Impairment CAD Based on NDCN-Brain

Computer-aided diagnosis (CAD) [25,26] generally includes two parts, namely feature
extraction and classification. Here we use dynamic aggregation coefficient as the feature of
dynamic network and then use support vector machines (SVM) to classify the feature data.

It is known that the brain usually performs multiple functions in the form of partitions,
and even general physiological activities will be completed in a multi-regional cooperative
way, which is also reflected in the brain network. Because the aggregation coefficient is used
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to describe the degree of aggregation between vertices in a graph, the global aggregation
coefficient can give an evaluation of the aggregation degree of the whole graph; therefore,
for a dynamic network structure, each snapshot can give a global aggregation coefficient as
a feature, and these features can form an aggregation coefficient sequence, which is used as
dynamic network features for classification.

For a general graph structure, that is, a snapshot Gsnapshot = (V, E) in this paper,
where V = {v1, v2, ..., vn} represents the set of vertices, E =

{
eij : (i, j) ∈ S ⊂ [1, · · · , n]2

}
denotes the set of edges, and eij denotes the connection of vertices vi and vj.

Each vertex is connected with a different number of other vertices, and L(i) is used to
represent the set of edges connected with vertex vi:

L(i) =
{

vj : eij ∈ E ∧ eji ∈ E
}

(6)

The number of edges in L(i) is the degree of vertex vi, denoted as ki : k j = |L(i)|.
If Gs

total is used to denote the global aggregation coefficient of snapshot, G4 is used to
denote the number of closed three-point groups in the graph, and G∧ is used to denote the
number of open three-point groups, then

Gs
total =

3× G4
3× G4 + 2× G∧

(7)

If it is expressed in ki, it can also be written as

Gs
total =

3× G4

∑n
i=1(

ki
2
)

(8)

For people with cognitive impairment or the extended dynamic brain functional net-
work model [X(1), ..., X(i), ...X(T), ..., X(j), ...], the feature vector of aggregation coefficient
can be expressed as [G1

total , ..., Gi
total , ...GT

total , ..., Gj
total , ...].

Then, support vector machines (SVM) are used to classify the feature vectors of
different cognitive impairments, which can realize the auxiliary diagnosis of cognitive
impairment diseases.

3. Results
3.1. Experimental Data and Preprocessing

Alzheimer’s disease data are sourced from the Alzheimer’s Disease Neuroimaging
Initiative database http://ADNI.oni.usc.edu/ (accessed on 18 September 2021). The data
obtained include Alzheimer’s (AD), early mild cognitive impairment (EMCI), late mild
cognitive impairment (LMCI), and normal control (NC).

ADNI provides ethics statements for AD, EMCI, LMCI, and NC. For comparison,
95 samples were reserved in each group. Table 1 shows the detailed data.

Table 1. Details of ADNI data set.

Dataset Subjets (Male/Female) Ages Slices TE TR No. TRs

AD 47/48 73.6 ± 15 3.31 mm 30 ms 3.0 s 140
EMCI 47/48 72.7 ± 12 3.31 mm 30 ms 3.0 s 140
LMCI 47/48 74.8 ± 14 3.31 mm 30 ms 3.0 s 140

NC 47/48 75.1 ± 13 3.31 mm 30 ms 3.0 s 140

For each subject, the resting state fMRI DPARSF toolbox [27] and statistical parameter
mapping software package (SPM12) [28] were used to preprocess the data, and the standard
preprocessing was applied to the rs-fMRI data set. First, slice correction was carried out.
The fMRI time series was recalibrated using spatial transformations to compensate for the

http://ADNI.oni.usc.edu/
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effects of head motion. All images are normalized to MNI (Montreal Neurological Institute)
space and resampled to 3 mm voxels. Bandpass filtering (0.01–0.2 Hz) was used to preserve
valid information.

3.2. Network Analysis

In order to verify the effectiveness of the network, the small world attribute was used
as the verification method of each snapshot. In previous studies, it has been found that the
human brain is a complex network with efficient “small world” attributes [29,30]. If the
brain network is in its normal working state, the network mode under most time snapshots
of the dynamic network follows the small world attribute. For the in-snapshots within
<T time and out-snapshots outside >T time in the model, we verified whether the small
world attribute was missing, and compared the differences between different people from
cognitive impairment groups.

The shortest path length of the small world network is smaller than that of the regular
network, and the clustering coefficient of the small world network is larger than that of
the random network. Studies have shown that brain functional networks belong to small
world networks, so the evaluation of brain functional networks can be described by the
small world attributes of brain networks, and can also reflect the activity ability of parts or
whole regions of the brain.

In order to judge the small world characteristics, the characteristic path length L and
aggregation coefficient C are compared with the same measures estimated in random
networks. The number of nodes, average degree, and degree distribution in random
networks are the same as those in interested networks.

Random networks are expressed as HR
L , HR

I , HR
H . The clustering coefficient is expressed

as CR
L , CR

I , CR
H . The shortest path is represented as LR

L , LR
I , LR

H . It is usually expected in a
small world network that γ = C/CR > 1 and λ = L/LR > 1. The characteristics of the
small world are σ = γ/λ, which are usually greater than 1(σ > 1).

In addition, a plurality of signals corresponding to time positions were intercepted
from the original BOLD signals as comparison signals, and `1 loss and `2 loss was used
as comparison to verify the similarity with the actual signals. For position i, a network
composed of BOLD signals with a starting time [i + 3, i− 3] and a length the same as the
time window length intercepted during training was used for comparison.

3.2.1. In-Snapshots Analysis

In the process of training, from the beginning of the signal, a number of BOLD signals
were obtained with five sampling points as the step size and six sampling points as the
signal length; an instantaneous network in every window was established for the training
of the model. The instantaneous snapshots in the signal time range were extracted from
the acquired model and the usability of these in-snapshots was tested. The test consists of
three parts: small world attribute change, signal similarity measure, and the influence of
sampled signal window size.

The first were the `1 loss and `2 loss. In fMRI data, a volume is a time point. According
to the length of the data signal, we can obtain 140 in-snapshots in the model. For primitive
in-snapshots i (predicted value), a network composed of BOLD signals with a [i + 3, i− 3]
time window length intercepted during training (true value) is used for comparison.
The comparison results are shown in Table 2; means and errors of all the same subjects
are shown in the table. The table mainly compares the error between the predicted value
of NDCN model and the network partitioned by traditional windows. In addition, some
other deep learning methods are compared, we use GNN [31] as a graph structure extractor
and use LSTM/GRU/RNN [32] to learn the temporal relationships between ordered
structured sequences.
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Table 2. The `1 loss and `2 loss comparison results of in-snapshots.

Dataset
LSTM-GNN GRU-GNN RNN-GNN NDCN-Brain

`1 Loss `2 Loss `1 Loss `2 Loss `1 Loss `2 Loss `1 Loss `2 Loss

AD 51.8 ± 3.1 33.1 ± 3.6 44.8 ± 3.0 35.3 ± 2.7 43.1 ± 3.4 32.6 ± 4.2 23.7 ± 3.6 12.7 ± 4.4
LMCI 50.7 ± 2.8 34.4 ± 2.4 47.3 ± 2.8 32.6 ± 3.6 42.9 ± 3.6 31.4 ± 4.5 23.4 ± 2.8 14.6 ± 2.7
EMCI 51.5 ± 3.4 36.7 ± 2.8 43.5 ± 3.3 31.8 ± 3.3 46.1 ± 3.3 29.7 ± 4.6 24.5 ± 4.3 13.8 ± 3.3

NC 49.8 ± 2.4 37.9 ± 2.9 42.7 ± 3.6 37.1 ± 2.6 41.7 ± 3.2 33.2 ± 4.3 26.1 ± 4.7 14.3 ± 4.2

It can be seen from the table that the proposed NDCN method, whether `1 loss and `2
loss, NDCN obtains the smallest error value.

In addition, it is necessary to compare the influence of sliding window size on the
obtained results. It can be seen from Figures 3 and 4, that when the size of sliding window is
6, the loss is the smallest; all experiments were carried out on the basis of this window size.
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After that, it was necessary to verify whether every time segment in the dynamic
network obtained by the NDCN model still had the attribute of a small world, which is
an important basis for the usability of the model. In Table 3, no matter what cognitive
impairment, their small world attributes were preserved.

In the experiment, it was found that most snapshots retained the small world attribute,
but the proportion was different among different people with diseases. According to the
experimental results, it is found that the more serious the cognitive impairment is, the more
snapshots lose the small world attribute in their dynamic network. Among them, only
70.7% of the fragments in the dynamic network of AD patients retain the small world
attribute. Healthy people have the largest number, maintaining 92.1%.

Table 3. Average small world results.

Dataset C̄ L̄ C̄R L̄R γ̄ λ̄ σ̄ σ > 1

AD 0.6834 1.8903 0.3947 1.7542 1.7314 1.0775 1.6067 70.7% (99/140)
LMCI 0.6543 1.7654 0.3876 1.6455 1.6880 1.0728 1.5734 83.5% (117/140)
EMCI 0.5874 1.8763 0.4322 1.7355 1.3590 1.0811 1.2571 87.8% (123/140)

NC 0.6446 1.9976 0.3872 1.7365 1.6647 1.1503 1.4471 92.1% (129/140)

3.2.2. Out-Snapshots Analysis

The instantaneous snapshots outside the signal time range were extracted from the
obtained model and the usability of these out-snapshots was tested; 70 out-snapshots
were calculated, which also includes two parts: small world attribute change and signal
similarity measurement. The same comparison method as in-snapshots was adopted.
The `1 loss and `2 loss are shown in Table 4.

Table 4. The `1 loss and `2 loss comparison results of out-snapshots.

Dataset
LSTM-GNN GRU-GNN RNN-GNN NDCN-Brain

`1 Loss `2 Loss `1 Loss `2 Loss `1 Loss `2 Loss `1 Loss `2 Loss

AD 52.6 ± 3.3 31.7 ± 3.4 43.2 ± 2.8 34.3 ± 2.2 44.2 ± 3.5 32.7 ± 4.3 22.6 ± 3.4 14.8 ± 4.2
LMCI 51.2 ± 2.4 32.1 ± 3.3 45.2 ± 3.1 34.2 ± 3.4 43.6 ± 3.4 31.8 ± 4.1 22.3 ± 2.5 13.9 ± 4.7
EMCI 49.5 ± 3.2 33.6 ± 3.1 45.3 ± 2.8 33.6 ± 3.4 42.2 ± 3.7 28.7 ± 4.3 27.4 ± 3.3 14.6 ± 4.3

NC 52.0 ± 2.3 32.4 ± 3.9 43.6 ± 2.6 32.2 ± 3.6 43.1 ± 3.5 29.2 ± 4.1 25.7 ± 3.7 12.8 ± 3.7

It can be seen that, compared to other deep learning methods, out-snapshots using the
NDCN model also feature small errors.

After that, it is still necessary to verify whether every time segment in the dynamic
network obtained by NDCN model still has the attribute of small world, which is an
important basis for the usability of the model. In Table 5, no matter what people with
cognitive impairment, their small world attributes have been preserved.

Table 5. Average small world results.

Dataset C̄ L̄ C̄R L̄R γ̄ λ̄ σ̄ σ > 1

AD 0.6907 1.7532 0.4533 1.6732 1.5237 1.0478 1.4541 65.7% (46/70)
LMCI 0.6343 1.7344 0.3673 1.5433 1.7269 1.1238 1.5366 75.7% (53/70)
EMCI 0.5874 1.5673 0.3576 1.5312 1.6426 1.0235 1.6047 84.3% (59/70)

NC 0.6456 1.834 0.2398 1.6322 2.6922 1.1236 2.3960 88.6% (62/70)

In the experiment, it was found that most out-snapshots retained the small world
attribute, but the proportion was different among people with different diseases. According
to the experimental results, it is also found that the more serious the cognitive impairment is,
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the more snapshots lose the small world attribute in their dynamic network. Among them,
only 65.7% of the fragments in the dynamic network of AD patients retain the small-world
attribute. Healthy people have the largest number, maintaining 88.6%.

3.2.3. Comparison with Continuous Dynamic Network Models

In the existing research, there have been some methods that can be used to calculate the
continuous time dynamics model, but these calculation methods have unique pertinence
and are not fully applicable to the brain function network; therefore, we compare some
methods here to prove the superiority of the NDCN-Brain method, such as RNN-based,
TTP-based, and time-embedding-based models by NC subjects.

It can be seen from Table 6 that NDCN model is more suitable for the modeling of
continuous dynamic brain function network.

Table 6. Comparison with continuous dynamic network models.

Model Type Model Name `1 Loss `2 Loss

RNN-based Streaming GNN [33] 34.6 ± 4.2 22.8 ± 3.9
JODIE [34] 35.3 ± 2.8 23.6 ± 3.1

TTP-based

Know-Evolve [35] 38.6 ± 5.4 28.1 ± 2.8
DyREP [36] 33.7 ± 4.1 42.6 ± 2.2

LDG [37] 41.6 ± 3.4 27.5 ± 5.3
GHN [38] 33.4 ± 4.2 25.9 ± 4.5

Time-embedding-based TGAT [39] 33.7 ± 2.7 26.5 ± 3.8
TGN [40] 29.6 ± 4.2 16.7 ± 3.6

NDCN NDCN-brain 25.7 ± 3.7 12.8 ± 3.7

3.2.4. Auxiliary Diagnosis for Cognitive Impairment

The purpose of ADNI is to develop a multisite, longitudinal, prospective, and nat-
uralistic study of normal cognitive aging, mild cognitive impairment (MCI), and early
Alzheimer’s disease as a public domain research resource to facilitate the scientific eval-
uation of neuroimaging and other biomarkers for the onset and progression of MCI
and Alzheimer’s disease (AD) [41]. Early mild cognitive impairment (EMCI), late mild
cognitive impairment (LMCI), and AD are different stages in the development of AD
(NC→EMCI→LMCI→AD). Identifying different stages is helpful to understand the charac-
teristic changes of brain network in corresponding stages, and provide reference for disease
research and prevention; therefore, the proposed method is used to distinguish the stages
of Alzheimer’s development.

Auxiliary diagnosis mainly uses SVM to classify the features. The network structure
includes in-snapshots and out-snapshots. Here, the aggregation coefficient of network
[G1

total , ..., Gi
total , ...GT

total , ..., Gj
total , ...] was used as the feature. In the experimental compari-

son, the traditional window partition method was used as the baseline. Three classifiers,
KNN, naive Bayesian (NB), and SVM were compared [42,43]. The experimental results are
shown in Table 7.

Classification mainly focuses on the distinction between cognitive impairment and
normal population. From the experimental results, it can be seen that the classification
effect for Alzheimer’s is the best, which is 82.5%, while late cognitive impairment and early
cognitive impairment are second (77.5% and 72.5%). This is because the more serious the
cognitive impairment, the higher the discrimination of its dynamic network. Finally, we can
see that the dynamic network of NDCN model has certain advantages compared with direct
window partition. It can not only use the information of BOLD signal, but also predict the
network information in the future, and integrate its characteristics for classification.
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Table 7. Auxiliary diagnosis for cognitive impairment.

Dataset Classifier Method Accuracy % Sensitivity % Specificity % AUC

AD vs NC

KNN Baseline 65.0 70.0 60.0 0.65
NDCN-brain 79.5 82.0 79.0 0.81

NB Baseline 67.5 75.0 60.0 0.67
NDCN-brain 81.4 81.0 82.5 0.84

SVM Baseline 70.0 75.0 65.0 0.69
NDCN-brain 82.5 85.0 80.0 0.87

LMCI vs NC

KNN Baseline 62.5 75.0 50.0 0.59
NDCN-brain 74.5 78.0 73.0 0.78

NB Baseline 60.0 65.0 55.0 0.63
NDCN-brain 76.5 77.5 73.0 0.75

SVM Baseline 62.5 70.0 55.0 0.63
NDCN-brain 77.5 80.0 75.0 0.78

EMCI vs NC

KNN Baseline 57.5 60.0 55.0 0.56
NDCN-brain 71.5 72.5 65.0 0.70

NB Baseline 60.0 60.0 60.0 0.57
NDCN-brain 70.5 75.0 70.0 0.74

SVM Baseline 62.5 75.0 50.0 0.59
NDCN-brain 72.5 75.0 70.0 0.74

In addition, the influence of in-snapshots and out-snapshots on classification is verified.
Here, the classifier only uses SVM. In Table 8, the baseline is the method of window
partition, and the results of in-snapshots and out-snapshots are compared, respectively.
The experimental results show that the NDCN method has the best diagnostic effect.

Table 8. The influence of in-snapshots and out-snapshots.

Dataset Method Accuracy % Sensitivity % Specificity % AUC

AD vs. NC Baseline 70.0 75.0 65.0 0.69
In-snapshots 77.5 78.0 80.5 0.82

Out-snapshots 74.5 75.0 78.0 0.78
NDCN-brain (In + Out) 82.5 85.0 80.0 0.87

LMCI vs. NC Baseline 62.5 70.0 55.0 0.63
In-snapshots 72.0 73.0 65.0 0.75

Out-snapshots 68.5 72.0 68.0 0.70
NDCN-brain (In + Out) 77.5 80.0 75.0 0.78

EMCI vs. NC Baseline 62.5 75.0 50.0 0.59
In-snapshots 68.5 75.0 70.0 0.68

Out-snapshots 65.5 70.0 65.0 0.64
NDCN-brain (In + Out) 72.5 75.0 70.0 0.74

It can be inferred that when the degree of cognitive impairment deepens, the accumu-
lation of brain structure decreases, and the network in the normal brain will show higher
accumulation. The accumulation of cognitive impairment patients will become worse,
and the realization of function will be limited. This is why clustering coefficient can be
used as a feature for classification. In addition, because the dynamic network construction
method used in this paper is no longer directly practical time window, but increases the
inference of network timing changes, and the information is retained more completely, so it
has better classification performance.

4. Conclusions

In order to solve the problems of instantaneous network extraction and network devel-
opment prediction outside the signal, an extensible dynamic brain function network model
is proposed. The model utilizes the ability of extracting and predicting the instantaneous
state of the dynamic network of NDCN and constructs a dynamic network model structure
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that can provide more than the original signal range. Experimental results show that every
snapshot in the network obtained by the proposed method has a usable network structure
and it also has a good classification result in the diagnosis of cognitive impairment diseases.

The method proposed in this paper calculates the time dynamic response of brain
function network. There is still some room for improvement. The model calculates the
internal characteristics of the network, but this feature is only used to calculate the time
dynamic response, while the feature used in disease classification is the agglomeration
coefficient after extracting time segments, which cannot fully reflect the changes of network
connection under each time slice. In addition, by changing the loss function, the char-
acteristic information of the network can be further extracted. If the connection change
information of network nodes can be extracted, the model can also be used in the research
of network integration and separation, which will be verified by further experiments. The
model only analyzes the brain network of Alzheimer’s disease and its application in other
diseases needs to be developed.
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