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Abstract: The study population contains 145 patients who were prospectively recruited for coronary
CT angiography (CCTA) and fundoscopy. This study first examined the association between retinal
vascular changes and the Coronary Artery Disease Reporting and Data System (CAD-RADS) as
assessed on CCTA. Then, we developed a graph neural network (GNN) model for predicting the
CAD-RADS as a proxy for coronary artery disease. The CCTA scans were stratified by CAD-RADS
scores by expert readers, and the vascular biomarkers were extracted from their fundus images.
Association analyses of CAD-RADS scores were performed with patient characteristics, retinal
diseases, and quantitative vascular biomarkers. Finally, a GNN model was constructed for the task
of predicting the CAD-RADS score compared to traditional machine learning (ML) models. The
experimental results showed that a few retinal vascular biomarkers were significantly associated
with adverse CAD-RADS scores, which were mainly pertaining to arterial width, arterial angle,
venous angle, and fractal dimensions. Additionally, the GNN model achieved a sensitivity, specificity,
accuracy and area under the curve of 0.711, 0.697, 0.704 and 0.739, respectively. This performance
outperformed the same evaluation metrics obtained from the traditional ML models (p < 0.05). The
data suggested that retinal vasculature could be a potential biomarker for atherosclerosis in the
coronary artery and that the GNN model could be utilized for accurate prediction.

Keywords: CAD-RADS; coronary artery disease; fundoscopy; fundus image analysis; graph convo-
lutional neural network

1. Introduction

Atherosclerosis is a chronic inflammatory disease of the arteries which is due to the
buildup of plaques adhering to the inner vessel wall. The early detection of atherosclerosis is
crucial for early treatment and prevention. However, current clinical diagnosis techniques,
such as coronary computed tomography angiography, tend to only identify the plaques at
their advanced stages rather than in the early stages. More importantly, medical imaging
is usually utilized when clear symptoms of atherosclerosis, such as acute chest pain, are
observed in high-risk patients. Early subclinical disease detection remains a challenge.
Hence, finding additional variables for the risk stratification or even the early detection of
atherosclerosis is needed.

Changes in the micro-vasculature, such as vessel nicking/narrowing, have been
recognized as early indicators for macro-vascular abnormalities. It was believed that the
common pathophysiologic processes of atherosclerosis may underlie both macro-vascular
and micro-vascular disease [1–3].

The retinal vasculature shares similar anatomical and physiological characteristics
with the coronary circulations [4–6]. It can be non-invasively acquired by a fundus camera
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and quantitatively measured on the digital fundus images using machine learning tech-
niques [7]. Several recent studies have focused on investigating the association between
retinal microvascular changes and the risk factors for cardiovascular diseases. Klein et al. [8]
examined the relationships of retinal arteriolar changes with clinical and subclinical mani-
festations of atherosclerosis. They found that the arteriolar-to-venular ratio (A/V ratio),
after adjusting for present and previous blood pressure and medications, was associated
with the presence of carotid plaque. Hubbard et al. [9] suggested that a lower A/V ratio
was associated with increased blood pressure and incidence of cardiovascular diseases
independently of other known risk factors (e.g., gender, age, blood pressure). Ikram et al.
found that the venular diameters were linearly related to several markers of atherosclerosis
(e.g., leukocyte count, erythrocyte sedimentation rate, HDL levels etc.), and a lower AVR
was significantly related to a higher carotid plaque score [10]. Lyu et al. showed that
the occurrence of retinal vein occlusion was significantly associated with increased LDL
cholesterol levels, increased brachial-ankle pulse wave velocity (baPWV)and the presence
of carotid plaques [11]. Wong et al. studied the association of retinopathy (e.g., the presence
of microaneurysms, hemorrhages, cotton wool spots, hard exudates and etc.) with coronary
artery calcification scores as on cardiac computed tomography [12].

The Coronary Artery Disease Reporting and Data System (CAD-RADS) was proposed
in 2016 and soon became the standardized reporting system for coronary artery disease for
the outpatient, inpatient and emergency department settings [13]. It assesses the stenosis
severity of the coronary arteries on coronary computed tomography angiography (CCTA)
and categorizes the severity into 6 groups: 0 (0%, normal), 1 (1–24%, minimal) and 2
(25–49%, mild), 3 (50–69%, moderate), 4 (70–99%, severe) and 5 (100%, occluded). Based on
these scores, recommendations for subsequent management have been proposed allowing
standardization in medical practices.

Being motivated by previous studies on retinal vascular changes and atherosclerosis, it
is conceivable that the quantitative retinal vascular biomarkers can be used to predict coro-
nary artery disease using CAD-RADS as a proxy for cardiovascular disease. In this study,
we first examined the association between retinal vascular changes and CAD-RADS. Then,
we utilize a graph convolutional neural network (GNN) model to predict the CAD-RADS
(assessed on CCTA) using the quantitative vascular biomarkers (derived from fundus
images) of the same subjects.

2. Materials and Methods

This prospective single-centre study included patients from a tertiary hospital in Hong
Kong from May to October 2019. This study was approved by the local institutional review
board. All subjects gave full written consent for the study. The patients received both
fundoscopy examination and coronary computed tomography angiography on the same
day. The CAD-RADS scores for the patients were stratified based on their CCTA scans.
Their fundus images were processed to extract, in total, 96 vascular biomarkers (detailed
below). A diagram shown in Figure 1 summarizes the pipeline of this study.
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Figure 1. The pipeline diagram for this study. Patients were recruited for CCTA and fundus eye 
examinations on the same day. The CCTA scans were diagnosed and stratified based on the CAD-
RADS guideline. (A,B): The fundus images were acquired and pre-processed by brightness normal-
ization. (C,E): The blood vessel centerlines were manually annotated, and the bifurcation relation-
ship at each junction was labeled. (D): The optic disc was contoured, and the optic disc diameter 
was measured. (F): The type of the vessels was categorized into arteries or veins. (G–J): Multiple 
biomarkers on the extracted vasculature, including the vessel curvature, bifurcation feature, width, 
and the fractal for arteries and veins, were extracted, respectively. We measured the maximum, 
mean, median and minimum value for each biomarker, which yielded, in total, 96 biomarkers for 
each fundus image. At last, we built machine learning models to predict the corresponding CAD-
RADS score. 

Figure 1. The pipeline diagram for this study. Patients were recruited for CCTA and fundus
eye examinations on the same day. The CCTA scans were diagnosed and stratified based on the
CAD-RADS guideline. (A,B): The fundus images were acquired and pre-processed by brightness
normalization. (C,E): The blood vessel centerlines were manually annotated, and the bifurcation
relationship at each junction was labeled. (D): The optic disc was contoured, and the optic disc diameter
was measured. (F): The type of the vessels was categorized into arteries or veins. (G–J): Multiple
biomarkers on the extracted vasculature, including the vessel curvature, bifurcation feature, width,
and the fractal for arteries and veins, were extracted, respectively. We measured the maximum, mean,
median and minimum value for each biomarker, which yielded, in total, 96 biomarkers for each fundus
image. At last, we built machine learning models to predict the corresponding CAD-RADS score.
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2.1. Study Population

In this study, we enrolled 173 subjects who were ambulatory patients scheduled for
outpatient radiological investigations (i.e., coronary computed tomography angiography).
The subjects were recruited on the same day as their CCTA scanning for a fundoscopy
examination. Patient demographics, clinical history, and comorbidities were recorded.
Blood pressure and heart rate were measured at the time of enrollment.

2.2. Fundus Examination

The fundoscopy image acquisition was performed on-site in a dedicated room. A
color, non-stereo and non-mydriatic fundus camera, FundusVue (Crystalvue, Taoyuan City,
Taiwan), was used for the image acquisition. The acquired image size was 2592 × 1944 pix-
els, and all images were stored in JPEG compression format. Examinations were performed
in ambient lighting with a dark cloth drape over the participants’ heads during image
acquisition. During the examination, macula-centered, 45◦ field-of-view retinal fundus
photographs were taken for both left and right eyes. The duration of a single screening
took 3–5 min.

2.3. Grading of Fundoscopy Images and Subject Exclusion

To analyze the association between retinopathy and the CAD-RADS scores, all ac-
quired fundus images were independently reviewed by two clinical ophthalmologists
from our institution in Hong Kong with 10 and 12 years of experience in fundus image
interpretation. They scored for the presence or absence of four common eye diseases:
(1) tessellated retina (TR), (2) DM-related retinopathy (DM-R); (3) age-related macular
degeneration (AMD) and (4) pathologic myopia (PM). The readers also graded the image
quality (satisfactory/sub-optimal) during the reading. Figure 2 shows an example of sat-
isfactory and sub-optimal images, respectively. If both left and right eye fundus images
were of poor quality, the patient was excluded from the study. Consequently, 28 subjects
were excluded from the study. The demographics of the remained study population are
summarized in Table 1.

Diagnostics 2022, 12, x FOR PEER REVIEW 4 of 19 
 

 

2.1. Study Population 
In this study, we enrolled 173 subjects who were ambulatory patients scheduled for 

outpatient radiological investigations (i.e., coronary computed tomography angi-
ography). The subjects were recruited on the same day as their CCTA scanning for a fun-
doscopy examination. Patient demographics, clinical history, and comorbidities were rec-
orded. Blood pressure and heart rate were measured at the time of enrollment. 

2.2. Fundus Examination 
The fundoscopy image acquisition was performed on-site in a dedicated room. A 

color, non-stereo and non-mydriatic fundus camera, FundusVue (Crystalvue, Taoyuan 
City, Taiwan), was used for the image acquisition. The acquired image size was 2592 × 
1944 pixels, and all images were stored in JPEG compression format. Examinations were 
performed in ambient lighting with a dark cloth drape over the participants’ heads during 
image acquisition. During the examination, macula-centered, 45° field-of-view retinal fun-
dus photographs were taken for both left and right eyes. The duration of a single screening 
took 3–5 min. 

2.3. Grading of Fundoscopy Images and Subject Exclusion 
To analyze the association between retinopathy and the CAD-RADS scores, all ac-

quired fundus images were independently reviewed by two clinical ophthalmologists 
from our institution in Hong Kong with 10 and 12 years of experience in fundus image 
interpretation. They scored for the presence or absence of four common eye diseases: (1) 
tessellated retina (TR), (2) DM-related retinopathy (DM-R); (3) age-related macular degen-
eration (AMD) and (4) pathologic myopia (PM). The readers also graded the image quality 
(satisfactory/sub-optimal) during the reading. Figure 2 shows an example of satisfactory 
and sub-optimal images, respectively. If both left and right eye fundus images were of 
poor quality, the patient was excluded from the study. Consequently, 28 subjects were 
excluded from the study. The demographics of the remained study population are sum-
marized in Table 1. 

  
(a) (b) 

Figure 2. The image quality of fundoscopy was graded by two ophthalmologists. The fundus images 
with sub-optimal quality were excluded in this study. (a) Satisfactory image; (b) sub-optimal image. 

Figure 2. The image quality of fundoscopy was graded by two ophthalmologists. The fundus images
with sub-optimal quality were excluded in this study. (a) Satisfactory image; (b) sub-optimal image.



Diagnostics 2022, 12, 1390 5 of 18

Table 1. Study population demographics stratified by CAD-RADS score.

0 1 2 3 4 5
Model 1 Model 2

CAD-RADS * ≤ 1 CAD-RADS ≥ 2 CAT ** = 0 CAT = 1

Number of participants 55 15 37 20 13 5 70 75 108 37

No. (%) No. (%) No. (%) No. (%) No. (%) No. (%) No. (%) No. (%) No. (%) No. (%)

Gender
Male 28 (50.91) 7 (46.67) 19 (51.35) 17 (85.0) 10 (76.92) 3 (60.0) 35 (50.0) 49 (65.33) 57 (52.78) 27 (72.97)
Female 27 (49.09) 8 (53.33) 18 (48.65) 3 (15.0) 3 (23.08) 2 (40.0) 35 (50.0) 26 (34.67) 51 (47.22) 10 (27.03)

Tobacco use
Non-smoker 42 (76.36) 11 (73.33) 21 (56.76) 16 (80.0) 7 (53.85) 4 (80.0) 53 (75.71) 48 (64.0) 76 (70.37) 25 (67.57)
Current smoker 3 (5.45) 3 (20.0) 5 (13.51) 2 (10.0) 2 (15.38) 0 (0) 6 (8.57) 9 (12.0) 12 (11.11) 3 (8.11)
Ex-smoker 10 (18.18) 1 (6.67) 11 (29.73) 2 (10.0) 4 (30.77) 1 (20.0) 11 (15.71) 18 (24.0) 20 (18.52) 9 (24.32)

Retinopathy
Non-retinopathy 35 (63.64) 10 (66.67) 22 (59.46) 12 (60.0) 6 (46.15) 3 (60.0) 45 (64.29) 43 (57.33) 64 (59.26) 24 (64.86)
Tessellated retina 12 (21.82) 3 (20.0) 9 (24.32) 5 (25.0) 3 (23.08) 1 (20.0) 15 (21.43) 18 (24.0) 27 (25.0) 6 (16.22)
DM-related retinopathy 2 (3.64) 0 (0) 2 (5.41) 1 (5.0) 1 (7.69) 0 (0) 2 (2.86) 4 (5.33) 4 (3.7) 2 (5.41)
AMD 6 (10.91) 2 (13.33) 5 (13.51) 1 (5.0) 2 (15.38) 1 (20.0) 8 (11.43) 9 (12.0) 13 (12.04) 4 (10.81)
Pathologic myopia 1 (1.82) 0 (0) 2 (5.41) 1 (5.0) 0 (0) 0 (0) 1 (1.43) 3 (4.0) 4 (3.7) 0 (0)

Comorbidities
Heart failure 2 (3.64) 1 (6.67) 1 (2.7) 2 (10) 1 (7.69) 0 (0) 3 (4.29) 4 (5.33) 5 (4.63) 2 (5.41)
Ischemic heart disease 12 (21.82) 3 (20) 5 (13.51) 8 (40) 2 (15.38) 1 (20) 15 (21.43) 16 (21.33) 10 (9.26) 21 (56.76)
Hyperlipidemia 17 (30.91) 10 (66.67) 15 (40.54) 15 (75) 8 (61.54) 4 (80) 27 (38.57) 42 (56) 40 (37.04) 29 (78.97)
Hypertension 25 (45.45) 7 (46.67) 18 (48.65) 10 (50) 10 (76.92) 4 (80) 32 (45.71) 42 (56) 47 (43.52) 27 (72.97)
Diabetes mellitus 8 (14.55) 2 (13.33) 2 (5.41) 9 (45) 3 (23.08) 1 (20) 10 (14.29) 15 (20) 15 (13.89) 10 (27.03)

mean ± std mean ± std mean ± std mean ± std mean ± std mean ± std mean ± std mean ± std mean ± std mean ± std

Age 54.35 ± 12.33 59.73 ± 10.31 62.86 ± 12.3 61.25 ± 12.51 65.0 ± 8.56 59.2 ± 12.3 55.5 ± 12.06 62.56 ± 11.67 58.48 ± 12.92 61.11 ± 10.37
BMI (kg/m2) 24.52 ± 5.5 25.38 ± 3.16 26.04 ± 4.51 25.68 ± 5.37 25.07 ± 3.14 25.72 ± 1.91 24.7 ± 5.08 25.75 ± 4.38 25.35 ± 5.19 24.94 ± 3.14
Blood pressure (mmHg)

Systolic 129.31 ± 19.83 134.8 ± 16.89 135.11 ± 18.47 123.65 ± 16.5 134.69 ± 17.95 130.2 ± 19.51 130.49 ± 19.26 131.65 ± 18.27 131.16 ± 18.54 130.89 ± 19.41
Diastolic 79.73 ± 13.38 80.47 ± 10.6 81.72 ± 10.52 75.85 ± 10.44 81.62 ± 11.12 79.4 ± 6.58 79.89 ± 12.77 79.98 ± 10.53 79.69 ± 11.7 80.65 ± 11.53

Heart rate (BPM) 74.82 ± 11.46 70.27 ± 14. 71.11 ± 10.56 71.3 ± 12.84 68.23 ± 6.02 71.8 ± 18.47 73.84 ± 12.09 70.71 ± 11.05 73.12 ± 11.83 69.59 ± 10.75
* CAD-RADS: The Coronary Artery Disease Reporting and Data System. ** CAT: The significant CAD-RADS score.
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2.4. Coronary Computed Tomography Angiography (CCTA) Acquisition and Examination

Coronary CT scans were performed on a 320 MDCT scanner (Aquilion One, Canon
Medical System, Tokyo, Japan). All patients underwent a standardized protocol of pre-
medication with oral and intravenous beta-blockers for lowering heart rate to <65 bpm
if needed. Sublingual glyceryl trinitrate (GTN) spray was given prior to scan acquisition.
Prospective ECG gating was used. Intravenous iodinated contrast was injected during scan
acquisition. The scans that were non-diagnostic were excluded from the study and were
not considered further in our study.

2.5. CAD-RADS Score

The CAD-RADS score was developed to standardize CCTA reporting and was assessed
on a per-patient basis. The CAD-RADS score represents the highest-grade coronary artery
lesion documented by CCTA. It ranges from CAD-RADS 0 (zero) for the complete absence
of stenosis and plaque, to CAD-RADS 5 for the presence of at least one totally occluded
coronary artery [13]. The examples of CCTA for CADRADS 1 (minimal) to 5 (occluded) are
shown in Supplementary Figure S1.

In this study, we examined the association between fundus vascular biomarkers and
the CAD-RADS scores via binary classification. We binarized the original CAD-RADS
scores (range from 0 to 5) in two ways, yielding two different predictive models. For model
1, the negative class 0 included CAD-RADS scores ≤1 (i.e., normal and minimal), and the
positive class 1 included CAD-RADS scores ≥2 (i.e., mild, moderate, severe stenosis and
occlusion). This model is intended to discover early signs of atherosclerosis. For model 1,
the control group and the abnormal group were separated equally, where the control group
(class 0) had 70 subjects, and the abnormal group (class 1) had 75 subjects. For model 2,
we divided the study population into patients of non-significant CAD-RADS (CAT = 0)
and significant CAD-RADS (CAT = 1). The subjects of significant CAD-RADS were of
high severity of coronary artery disease. They were the patients, according to their clinical
records, who were scheduled for surgical intervention, or who had prior intervention (stent
or coronary artery bypass graft (CABG) found in the CCTA) or who had been stratified to
CAD-RADS ≥ 4. Then the remainder were regarded as non-significant CAD-RADS.

2.6. Fundus Biomarkers

In this study, we focus on the quantitative biomarkers of the retinal microvasculature,
which can be summarized into four main categories: vessel width, vessel tortuosity, vessel
junction property and vessel fractal dimensions. A diagram is shown in Figure 1. A total of
96 biomarkers were generated.

2.7. Vessel Manual Modelling

Retinal vessel skeletonization is an essential step for the quantitative analysis of
retinal vessel structures. In this study, the vasculature was manually modelled on a
vessel-enhanced map of the fundus images.

First of all, the green channel of the color images was extracted and brightness-normalized
as it provided the best contrast for the vasculature [7]. Afterwards, the vessel enhancing
method proposed by Zhang et al. was employed to obtain the vessel probability map
(named soft segmentation) [14]. This technique is based on applying a set of multi-scale
left-invariant derivative (LID) filters and locally adaptive derivative (LAD) filters on the
orientation scores of an image. It robustly enhances elongated structures (i.e., the vascula-
ture) and suppresses the background structure, yielding the enhancement of a complete
retinal vessel network.

Afterwards, we used the open-source Java plugin “NeuronJ” for ImageJ (National
Institutes of Health, Bethesda, MD, USA) to manually model the retinal vasculature on
the vessel enhanced map [15]. First of all, we traced the centerline for each vessel segment
on the image with branching points broken. Then, we determined the vessel type (i.e.,
artery/vein) using the default names for neurons, i.e., axon for arteries and dendrite for the
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veins (as shown in Figure 3). At last, we labelled parent-child relationships for the blood
vessels using the labelling system of “NeuronJ”. If a vessel segment originated from the
optic disc or its parent was not presented in the image, we labelled its parent as “N0”.
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Figure 3. The retinal vasculature was manually annotated by using the “NeuronJ” plugin in ImageJ
software. The vessel centerlines were traced on the vessel soft segmentation map. The parent-child
relationship of the vessels was determined using the labelling system in “NeuronJ”.

2.8. Optic Disc Labelling

The optic disc is an important landmark for retinal image analysis. In this study, we
obtained the boundary of the optic disc by manually clicking 6 points and fitted a rotated
ellipse to these points. Afterwards, the pixel size for the image was estimated by taking
the ratio between the general optic disc diameter (1800 µm) and the longest diameter (in
pixel) [16]. The pixel size was used to convert the vessel width measured in pixels to the
actual width in µm.

2.9. Vessel Width

Many clinical studies have shown that the changes in retinal vessel caliber are as-
sociated with the progress of a variety of systemic diseases [5,17–19]. In this study, we
measured the vessel width using the method proposed by Huang et al. [20,21]. In brief, this
technique utilizes the geodesic active contour model proposed by Caselles et al. [22]. For
every vessel segment, it initializes an enclosed contour by expanding the extracted vessel
centerline. Afterwards, the contour is iteratively deformed to fit a smooth boundary over
the vessel segment on the normalized green channel image. We computed the distance
from one detected vessel edge to the other one for each control point on the contour. The
measured distances with extreme values were eliminated to avoid outliers. The final vessel
width was estimated as the average of the remained edge distances.

The measured distances with extreme values were eliminated to prevent outliers,
and vessel width was calculated as the average of the remaining measurements. Then
the contour was evolved iteratively and fitted to the boundaries of the vessel. Finally, the
vessel caliber was measured by computing the distance from one detected vessel edge to
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the other one. The processing pipeline for the width measurement of the vessel segments is
summarized in Figure 4).
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Figure 4. (a) A vessel centerline is initialized by the vessel skeletonization. (b) An active contour
model is built based on the centerline. (c) The contour iteratively grows and fits the left and right
boundaries of the vessel. (d) The contour is cropped to obtain the left and right boundary (e). (f) The
vessel width is measured by finding the average distances from one side to the other.

2.10. Vessel Tortuosity

The vessel curvature is another important biomarker of the vasculature, which is defined
as the integration of curvature along a curve. In this study, we computed in total 14 curvature-
based metrics for every vessel segment as summarized by Kalitzeos et al. [23]. (1) Arc length

Chord length ;

(2) Arc length
Chord length − 1; (3) Total curvature; (4) Total squared curvature; (5) Total curvature

Arc length ;

(6) Total squared curvature
Arc length ; (7) Total curvature

Chord length ; (8) Total squared curvature
Chord length ; (9) Integrated curvature;

(10) Smooth tortuosity index; (11) Computer-Aided Image Analysis of the Retina (CA-
IAR) tortuosity index; (12) Tortuosity coefficient-01; (13) Tortuosity coefficient-02; and
(14) Standard deviation tortuosity.

2.11. Bifurcation Junction Parameters

The branching pattern at vessel bifurcations might reflect pathological changes in the
circulation system. It was believed that the vasculature is not a totally random network
but has been developed under some optimum physical principles, e.g., the minimum
friction between blood flow and vessel wall, the optimal heart rate to achieve proper blood
supply and the shortest transport distances, etc. In this study, we calculated the bifurcation
properties proposed by Al-Diri et al. [24]. In brief, let d0, d1 and d2 be the width of parent
vessel and its daughter vessels, θ1 and θ2 be the angle between two daughter vessels and
the parent vessels, and θ be the angle between the two daughter vessels. The bifurcation
optimality can be quantitatively measured by various metrics, including: (1) the asymmetry

ratio α =
(

d2
d1

)2
; (2) the area-ratio β =

d2
1+d2

2
d0

; (3) the bifurcation index λ = d2
d1

; (4) diameter

ratio λ1 = d1
d0

and λ2 = d2
d0

; (5) the bifurcation angle θ, θ1 and θ2, where θ = θ1 + θ2.

2.12. Vessel Fractal Dimensions

The last vascular biomarker that describes the overall vascular changes is the fractal
dimension. The fractal dimension measures the general complexity of a self-similar struc-
ture, i.e., the vascular tree. In this study, we computed three fractal methods that are widely
used in the literature for the vasculature (the centerlines): (1) the box dimension DB; (2) the
information dimension DI; and (3) the correlation dimension (DC) [25–27].
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2.13. The GraphSAGE Model

Applying graph analysis to population data for disease prediction is highly benefi-
cial [28]. A population graph is constructed based on two important elements: nodes and
edges, where the nodes are the individuals from a population pool, and the edges are the
user-defined linkage/similarity between every two persons. In this study, we built our
population graph at an image level, where the graph nodes represent the fundus image
samples of the left/right eye of the participants. The nodes are characterized by the quan-
titative vascular biomarkers as introduced above. For the edges, we defined a similarity
score calculated based on the age and gender difference between every two participants. In
brief, if two subjects have the same gender and their age difference was less than 5 years
old, their similarity score was 2. If either one of the criteria matched, the similarity score
was 1. If none of the criteria matched, the similarity score was 0, and the edge between
their nodes was removed. The detail of the similarity score is summarized in Appendix A.

After the graph was constructed, we trained a graph convolutional neural network
for the CAD-RADS prediction. In this study, we utilized the graph sample and aggregate
network (GraphSAGE) network for the CAD-RADS score prediction [29]. It is a graph neu-
ral network framework developed for inductive representation learning on large graphs,
which have rich node attributes such as high-dimensional node features and complicated
connectivity between the nodes. During the training, the network learns aggregation func-
tions that generate low-dimensional vectors from the embedding of the high-dimensional
node features and the complicated node connectivity. We used a two-layer architecture with
a sum-readout layer as the prediction model. The graph construction and the GNN model
were summarized in Figure 5. The network architecture is summarized in Appendix B.
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Figure 5. (A–E) The population graph was constructed in which the nodes represent the fundus
images characterized by 96 retinal vascular biomarkers, and the edges were the similarity score
determined by the age and gender of the subjects. A GraphSAGE network was applied to the
constructed graph to predict CAD-RADS score of the subjects.
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2.14. Traditional Machine Learning Models

Besides the GraphSAGE model, we also examined the five most commonly used
machine learning models on the same dataset for comparison. We tested the logistic
regression classifier (LR), the linear discriminant analysis classifier (LDA), the k-nearest
neighbour classifier (kNN), the naïve Bayes classifier (NB) and the support vector machine
classifier (SVM). All these classifiers were built-in modules in the scikit-learn (version 1.0.1)
python package [30].

2.15. Feature Selection and Dimensionality Reduction

Feature reduction was performed prior to training the GCN model and the machine
learning classifiers. In this study, we examined various feature selection techniques as
summarized by Li et al. [31]. In this paper, we selected the best feature selection technique
for the CAD-RADS models, respectively, i.e., giving the best area under the curve (AUC)
in a repeated 10-folds cross-validation and reported the corresponding classification per-
formances. The final selected feature selection techniques include: (1) correlation-based
feature selection (CFS) [32]; (2) conditional mutual information maximization (CMIM) [33];
(3) double input symmetrical relevance (DISR) [34]; (4) interaction capping (ICAP) [35];
(5) Laplacian score-based feature selection (LAP) [36]; (6) support vector machine backward
(SVMB) and (7) no feature selection used (all).

2.16. Statistical Study

We examined the odds ratio of the CAD-RADS scores to the presence of the four eye
diseases, diagnosed by the ophthalmologists, by multinomial logistic regression analysis
using SPSS 26 [37]. In the multinomial logistic regression analysis, we firstly adjusted for
age and gender (denoted as OR-model 1) and additionally adjusted for cardiovascular risk
factors, including systolic and diastolic blood pressure, heart rate, body mass index (BMI),
diabetes stage and current cigarette smoking (denoted as OR-model 2).

To evaluate the performance of the machine learning classifiers, we applied a repeated
10 folds cross-validation procedure and computed the average of sensitivity (Sens.), speci-
ficity (Spec.), accuracy (Accu.), the receiver operating characteristic (ROC) curve and its
area under the curve (AUC), F1-scores and precision. We measured these metrics based on
image-wise vs. subject-wise levels. The subject-wise results were obtained by averaging the
left and right eye predictions (if both eyes were available). A McNemar’s test was used to
assess the statistical difference between the GraphSAGE model and the traditional machine
learning models.

We assessed the importance of each feature by examining its odds ratios and the
p-value (under 95% confidence interval) among the CAD-RADS scores of multinomial
logistic regression analysis. p < 0.05 indicates that the feature is significantly associated
with the CADRADS score.

3. Results

A total of 145 subjects were included in the study, of which 78 subjects had both the
eyes included and 67 subjects had only one eye included (either the left or the right eye).
Characteristics of the study population across model 1 and model 2 are shown in Tables 1 and 2.

Table 2. CAD-RADS prediction models and eye disease.

CAD-RADS Model 1 CAD-RADS Model 2

CAD-RADS ≤ 1 CAD-RADS ≥ 2 CAT = 0 CAT = 1

Tessellated retina OR 95%CI p-value OR 95%CI p-value

OR-Model 1 * 1.00 2.139 (0.188, 24.345) 0.54 1.00 - (-, -) -

OR-Model 2 † 1.00 2.257 (0.182, 27.949) 0.526 1.00 - (-, -) -
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Table 2. Cont.

CAD-RADS Model 1 CAD-RADS Model 2

CAD-RADS ≤ 1 CAD-RADS ≥ 2 CAT = 0 CAT = 1

DM-related retinopathy

OR-Model 1 1.00 1.481 (0.24, 9.119) 0.672 1.00 1.64 (0.249, 10.805) 0.607

OR-Model 2 1.00 2.112 (0.3, 14.881) 0.453 1.00 1.542 (0.205, 11.594) 0.674

AMD

OR-Model 1 1.00 1.09 (0.45, 2.636) 0.849 1.00 0.628 (0.225, 1.753) 0.375

OR-Model 2 1.00 1.361 (0.524, 3.532) 0.527 1.00 0.733 (0.245, 2.193) 0.578

Pathologic myopia

OR-Model 1 1.00 1.02 (0.34, 3.057) 0.972 1.00 1.006 (0.284, 3.561) 0.993

OR-Model 2 1.00 1.071 (0.33, 3.476) 0.909 1.00 1.334 (0.344, 5.169) 0.677

* Model 1: adjusted for age, gender. † Model 2: adjusted for the variables in model 1 plus cardiovascular disease
risk factors including systolic blood pressure, heart rate, diabetes (self-reported), BMI and smoking status.

3.1. Association Analysis of CAD-RADS Scores with Patient Characteristics, Retinal Diseases, and
Quantitative Vascular Biomarkers

For the CAD-RADS model 1 CAD-RADS ≤ 1, there were 25/70 (35.71%) subjects
who had retinopathy. Of these, 21.43%, 2.86%, 11.43% and 1.43% of subjects were di-
agnosed with tessellated retina, DM-related retinopathy, AMD and pathologic myopia,
respectively. For CAD-RADS model 1 CAD-RADS ≥ 2, there were 32/75 (42.67%) sub-
jects who had retinopathy. Of these, 24%, 5.33%, 12% and 4% of subjects were diagnosed
with tessellated retina, DM-related retinopathy, AMD and pathologic myopia, respectively.
Subjects with CAD-RADS ≥ 2 were significantly older than subjects with CAD-RADS ≤ 1
(Mann–Whitney U test, p < 0.01), with higher BMI (t-test, p = 0.064), lower heart rate
(Mann–Whitney U test, p = 0.059), and more male than female (Chi-square test, p < 0.05).
No differences were found in terms of blood pressure (both the systolic and diastolic
pressure), tobacco usage, and education level via Chi-square testing.

For the CAD-RADS model 2 non-significant CAD-RADS group, there were 44/108
(40.74%) subjects who had retinopathy. Of these, 25%, 3.7%, 12.04% and 3.7% of subjects
were diagnosed with tessellated retina, DM-related retinopathy, AMD and pathologic
myopia, respectively. For the OR-model 2 significant CAD-RADS group, there were 13/37
(35.14%) subjects who had retinopathy. Of these, 16.22%, 5.41%, and 10.81% were diagnosed
with tessellated retina, DM-related retinopathy, and AMD, respectively. The differences
in terms of age and BMI for CAD-RADS-S = 0 and CAD- RADS-S = 1 were not significant
(Mann–Whitney test, p = 0.32 and p = 0.87, respectively). Subjects of CAT = 1, compared to
those of CAT = 0, generally had lower heart rates (Mann–Whitney test, p = 0.054) and were
more likely to be male (Chi-square test, p < 0.05). No differences were found in terms of
blood pressure (both the systolic and diastolic pressure), tobacco usage and education level
via Chi-square testing.

In the multinomial logistic regression shown in Table 2, after adjusting for age, gender
(OR-model 1), and additionally adjusting for cardiovascular risk factors (OR-model 2), we
found no associations between the two CAD-RAD models and the ophthalmologist-diagnosed
retinopathy (see Supplementary Table S1). In Supplementary Table S2, we summarized the
results between two CAD-RADS models and each of the extracted retinal vascular biomark-
ers. For CAD-RADS model 1, it was found that a few retinal vascular biomarkers were
significantly associated with adverse CAD-RADS scores. These were mainly pertaining to
arterial width, arterial angle, venous angle, and features relating to fractal dimensions.

3.2. GNN and Traditional Machine Learning Models

Table 3 summarises the classification results of the CAD-RADS GNN models (model
1 and model 2). In this study, we reported the performance of the model in terms of
image-wise level and subject-wise level.
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Table 3. The classification performance of GraphSAGE and other machine learning models on the CAD-RADS model 1 and model 2, in terms of image-wise and
subject-wise classification. Bolded values indicate the best performance across the models.

Methods ** Feature Selection Sens. Spec. Accu. AUC F1-Score Precision p-Value *

CAD-RADS Model 1 (class 0: CAD-RADS ≤ 1; class 1: CAD-RADS ≥ 2) for image-wise classification

GraphSAGE all 0.711 (0.621, 0.786) 0.697 (0.605, 0.776) 0.704 (0.644, 0.764) 0.739 (0.675, 0.804) 0.711 (0.672, 0.746) 0.711 (0.621, 0.786) -

LR CFS 0.509 (0.418, 0.599) 0.541 (0.448, 0.632) 0.525 (0.459, 0.59) 0.521 (0.445, 0.596) 0.514 (0.473, 0.555) 0.537 (0.443, 0.628) <0.01

LDA DISR 0.553 (0.461, 0.641) 0.468 (0.377, 0.561) 0.511 (0.446, 0.577) 0.507 (0.431, 0.583) 0.546 (0.505, 0.586) 0.521 (0.432, 0.608) <0.05

KNN CFS 0.158 (0.102, 0.236) 0.862 (0.785, 0.915) 0.502 (0.437, 0.568) 0.527 (0.451, 0.603) 0.184 (0.152, 0.221) 0.545 (0.38, 0.702) <0.01

NB CFS 0.491 (0.401, 0.582) 0.495 (0.403, 0.588) 0.493 (0.428, 0.559) 0.52 (0.444, 0.596) 0.494 (0.453, 0.535) 0.505 (0.413, 0.596) <0.01

SVM all 0.535 (0.444, 0.624) 0.569 (0.475, 0.658) 0.552 (0.486, 0.617) 0.604 (0.53, 0.678) 0.541 (0.5, 0.581) 0.565 (0.471, 0.654) <0.01

CAD-RADS Model 1 (class 0: CAD-RADS ≤ 1; class 1: CAD-RADS ≥ 2) for subject-wise classification

GraphSAGE LAP 0.747 (0.638, 0.831) 0.571 (0.455, 0.681) 0.662 (0.585, 0.739) 0.769 (0.708, 0.831) 0.725 (0.679, 0.768) 0.651 (0.546, 0.743) -

LR CFS 0.507 (0.396, 0.617) 0.543 (0.427, 0.654) 0.524 (0.443, 0.605) 0.512 (0.436, 0.588) 0.514 (0.463, 0.564) 0.543 (0.427, 0.654) < 0.01

LDA DISR 0.453 (0.346, 0.566) 0.5 (0.386, 0.614) 0.476 (0.395, 0.557) 0.526 (0.45, 0.601) 0.461 (0.411, 0.512) 0.493 (0.378, 0.608) <0.05

KNN CFS 0.387 (0.285, 0.5) 0.657 (0.54, 0.758) 0.517 (0.436, 0.599) 0.531 (0.455, 0.607) 0.411 (0.361, 0.463) 0.547 (0.415, 0.673) <0.01

NB CFS 0.453 (0.346, 0.566) 0.514 (0.4, 0.628) 0.483 (0.401, 0.564) 0.492 (0.416, 0.568) 0.462 (0.412, 0.513) 0.5 (0.384, 0.616) <0.01

SVM SVMB 0.653 (0.541, 0.751) 0.614 (0.497, 0.72) 0.634 (0.556, 0.713) 0.697 (0.629, 0.765) 0.652 (0.602, 0.698) 0.645 (0.533, 0.743) <0.05

CAD-RADS Model 2 (class 0: CAT = 0; class 1: CAT = 1) for image-wise classification

GraphSAGE all 0.544 (0.416, 0.666) 0.681 (0.606, 0.747) 0.646 (0.583, 0.709) 0.692 (0.608, 0.776) 0.497 (0.442, 0.552) 0.369 (0.274, 0.476) -

LR CFS 0.561 (0.433, 0.682) 0.5 (0.425, 0.575) 0.516 (0.45, 0.581) 0.513 (0.426, 0.601) 0.466 (0.414, 0.519) 0.278 (0.205, 0.366) >0.05

LDA CFS 0.544 (0.416, 0.666) 0.428 (0.355, 0.504) 0.457 (0.392, 0.523) 0.497 (0.41, 0.584) 0.438 (0.387, 0.49) 0.246 (0.179, 0.328) >0.05

KNN CFS 0.228 (0.138, 0.352) 0.819 (0.754, 0.87) 0.668 (0.606, 0.73) 0.561 (0.473, 0.649) 0.24 (0.193, 0.294) 0.302 (0.186, 0.451) >0.05

NB LAP 0.544 (0.416, 0.666) 0.422 (0.349, 0.498) 0.453 (0.388, 0.518) 0.498 (0.411, 0.585) 0.437 (0.386, 0.489) 0.244 (0.178, 0.326) >0.05

SVM LAP 0.544 (0.416, 0.666) 0.488 (0.413, 0.563) 0.502 (0.437, 0.568) 0.514 (0.426, 0.601) 0.451 (0.399, 0.503) 0.267 (0.195, 0.354) >0.05
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Table 3. Cont.

Methods ** Feature Selection Sens. Spec. Accu. AUC F1-Score Precision p-Value *

CAD-RADS Model 2 (class 0: CAT = 0; class 1: CAT = 1) for subject-wise classification

GraphSAGE CFS 0.649 (0.488, 782) 0.75 (0.661, 0.822) 0.724 (0.651, 0.797) 0.753 (0.674, 0.832) 0.603 (0.534, 0.668) 0.471 (0.341, 0.605) -

LR CFS 0.568 (0.409, 0.713) 0.444 (0.354, 0.538) 0.476 (0.395, 0.557) 0.501 (0.414, 0.588) 0.459 (0.395, 0.523) 0.259 (0.176, 0.364) >0.05

LDA CFS 0.541 (0.384, 0.69) 0.463 (0.372, 0.557) 0.483 (0.401, 0.564) 0.501 (0.414, 0.588) 0.442 (0.379, 0.508) 0.256 (0.173, 0.363) >0.05

KNN CFS 0.243 (0.134, 0.401) 0.759 (0.671, 0.83) 0.628 (0.549, 0.706) 0.572 (0.485, 0.66) 0.246 (0.189, 0.313) 0.257 (0.142, 0.421) >0.05

NB CMIM 0.568 (0.409, 0.713) 0.417 (0.328, 0.511) 0.455 (0.374, 0.536) 0.52 (0.432, 0.607) 0.453 (0.39, 0.517) 0.25 (0.17, 0.352) <0.05

SVM SVMB 0.595 (0.435, 0.737) 0.556 (0.462, 0.646) 0.566 (0.485, 0.646) 0.565 (0.477, 0.653) 0.505 (0.439, 0.57) 0.314 (0.218, 0.43) >0.05

* p-value based on McNemar’s testing. ** Abbreviations: GraphSAGE—the graph sample and aggregate network; LR—logistic regression classifier; LDA: linear discrimation analysis
classifier; KNN- K-nearest neightbour classifier; NB—naive Bayesian classifer; SVM—support vector machine classifier.
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For the image-wise prediction on CAD-RADS model 1, the GraphSAGE network, using
all the vascular biomarkers, achieved 0.711 (95%CI: (0.621, 0.786)) for sensitivity, 0.697 (95%CI:
(0.605, 0776)) for specificity, 0.704 (95%CI: (0.644, 0.764)) for accuracy, 0.739 (95%CI: (0.675,
0.804)) for the AUC, 0.711 (95%CI: (0.672, 0.746)) for F1-score and 0.711 (95%CI: (0.621, 0.786))
for precision. The SVM model, using all the extracted features, achieved an AUC of 0.604
(95%CI: (0.53, 0.678)). Other traditional machine learning models, using either CFS or DISR
feature selection methods, achieved AUCs range from 0.507 to 0.527.

For the subject-wise prediction on CAD-RADS model 1, the GraphSAGE network,
with the features selected by the LAP method achieved 0.747 (95%CI: (0.638, 0.831)) for
sensitivity, 0.571 (95%CI: (0.455, 0.681)) for specificity, 0.662 (95%CI: (0.585, 0.739)) for
accuracy, 0.769 (95%CI: (0.708, 0.831)) for AUC, 0.725 (95%CI: (0.679, 0.768)) for F1-score
and 0.651 (95%CI: (0.546, 0.743)) for precision. The SVM model, with the features selected
by the SVMB method, achieved an AUC of 0.697 (95%CI: (0.629, 0.765)). The remaining
machine learning models obtained AUCs ranging from 0.492 to 0.531.

For the image-wise prediction on CAD-RADS model 2, the GraphSAGE network,
using all the vascular biomarkers, achieved 0.544 (95%CI: (0.416, 0.666)) for sensitivity,
0.681 (95%CI: (0.606, 0.747)) for specificity, 0.646 (95%CI: (0.583, 0.709)) for accuracy, 0.692
(95%CI: (0.608, 0.776)) for the AUC, 0.497 (95%CI: (0.442, 0.552)) for F1-score and 0.369
(95%CI: (0.274, 0.476)) for precision. The other prediction models achieved AUCs ranging
from 0.497 to 0.561.

For the subject-wise prediction on CAD-RADS model 2, the GraphSAGE network, with
the features selected by the CFS method, gave 0.649 (95%CI: (0.488, 0.782)) for sensitivity,
0.75 (95%CI: (0.661, 0.822)) for specificity, 0.724 (95%CI: (0.651, 0.797)) for accuracy, 0.753
(95%CI: (0.674, 0.832)) for AUC, 0.603 (95%CI: (0.534, 0.668)) for F1-score and 0.471 (95%CI:
(0.341, 0.605)) for precision. The other machine learning models achieved AUCs ranging
from 0.501 to 0.572.

4. Discussion

Common fundus examinations only focus on finding pathological patterns, such as
micro-aneurysms, exudates and edema, etc. [7]. It is almost impossible for ophthalmologists
to quantitatively measure the various properties of the blood vessels, as there are no such
metrics. Therefore, artificial intelligence and machine learning techniques are essential to
access these parameters for disease prognostics. In this study, we studied the association
between the changes in the retinal vasculature and the changes in the coronary vasculature.
The retinal vasculature was manually annotated and quantitatively measured by 96 vascular
biomarkers. The stenosis severity of the coronary artery was assessed by the CAD-RADS
score for a standardized CAD reporting system. We attempted to use fundus vascular
features to predict patients’ CAD-RADS scores by using a graph neural network. We
divided our dataset in two ways: (1) CAD-RADS ≤ 1 and CAD-RADS ≥ 2 (model 1);
(2) CAT = 0 and CAT = 1 (model 2).

In this study, we examined the association between each fundus feature and the
CAD-RADS score using multinomial logistic regression analysis. As summarized in Sup-
plementary Table S2, the widths of both arteries and veins were significantly associated
with the CAD-RADS (p < 0.05). This finding is consistent with other studies carried out
among patients with diabetes, cardiovascular diseases and atherosclerosis [3,12,38]. More-
over, we found that the curvatures for both arteries and veins were significantly associated
with the CAD-RADS (p < 0.05). The bifurcation angle and the fractal dimension showed no
significant difference.

The results shown in Table 3 implied that linking the individuals as a graph based
on their similarity in terms of age and gender was beneficial to the predictive task. The
CAD-RADS classification performances of GNN on CAD-RADS models 1 and 2 outper-
formed the traditional machine learning classifiers. Our GNN model achieved an AUC
of 0.739 (95%CI: (0.675, 0.804)) for image-wise classification, 0.769 (95%CI: (0.708, 0.831))
for subject-wise classification on model 1, and 0.692 (95%CI: 0.608, 0.776) for image-wise
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classification and 0.742 (95%CI: (0.662, 0.822)) for subject-wise classification on model 2. The
classification performance of the GNN model significantly outperformed other traditional
machine learning models, including LR, LDA, KNN, Gaussian NB and SVM on model 1
(McNemar test, p < 0.05).

In our study population, 78 subjects had both the left and the right eye images
included, while 67 subjects (46%) had one eye image excluded due to suboptimal im-
age quality as assessed by ophthalmologists. Therefore, we built our prediction models
based on an image-wise level and evaluated the performance on both the image-wise level
and subject-wise level. As we can compare the AUC of the GNN model regarding the
image-wise and subject-wise classification from Table 3, the AUC of GNN on model 1 was
0.739 (95%: (0.675, 0.804)) for image-wise classification and 0.769 (95%CI: (0.708, 0.831)) for
subject-wise classification. For model 2, the AUC of GNN was 0.692 (95%CI: (0.608, 0.775))
for image-wise classification and 0.742 (95%CI: (0.662, 0.822)) for subject-wise classification.
Although not statistically significant, it is implied that using the eye images from both
eyes tended to yield better predictions for model 2, predicting more severe or established
coronary artery disease, as indicated by a higher AUC.

We performed a comparison study on the performance achieved using a one-, two-,
three- and four-layer GraphSAGE architecture. The accuracies with 95% CIs were 88.10%
(83.10–93.10), 82.50% (76.60–88.40), 75.00% (68.3–81.7) and 73.10% (66.30–80.00), respectively.
The p-values of the Z-test (mean-test) showed that one-layer architecture was significantly
better than three-layers and four-layers (p < 0.001). The difference between one layer and
two layers was not significant (p = 0.35). Since the two-layer and three-layer architectures
were commonly used according to the work by Dwivedi et al. [39], we utilized a two-layer
architecture in this study.

There are some limitations to our study. First, we compared the diagnostic perfor-
mance of GNN and traditional machine learning models. The results showed that using a
graph-based model outperformed the traditional methods. Due to the small sample size of
the study population, we were unable to build a prognostic model with optimal diagnostic
performance. Prospective multi-centre studies of large samples will be needed. Therefore,
this study is only a proof-of-concept study. Second, we obtained the retinal vasculature
by manual annotation using the “ImageJ” software. Since we had a limited number of
fundus images, we wanted to include as many blood vessels as possible. We decided to
manually annotate the vasculature and focused on developing the pipeline for vascular
feature extraction and building the classification models. In the future, when more fundus
images are available, a fully automatic blood vessel segmentation and modeling technique
will be required for extracting the vascular structure [40–42]. Finally, we only included
similarity scores based on two types of demographic information (i.e., age and gender). We
also tried to incorporate other patient demographic information, such as smoking status,
education level and BMI, but the classification results were not significantly improved. This
might be due to the small sample size in our study population; thus, introducing more
complicated similarity scores did not help improve the GNN model’s performance. Last
but not least, in order to simplify the study, the ophthalmologists only labeled four common
eye diseases, i.e., tessellated retina, DM-related retinopathy, AMD and pathologic myopia.
Other eye diseases, such as hypertension retinopathy, cataracts and glaucoma, were not
included in the list of abnormal conditions, and their associations to atherosclerosis were
not studied. In our future work, we plan to assess them in a larger population study.

5. Conclusions

In this study, we introduced a graph analysis and graph convolutional neural network for
the prediction of CAD-RADS by using quantitative retinal vascular biomarkers. The classifica-
tion performance outperformed traditional machine learning models. The results showed that
by linking the subjects via their age and gender, the retinal vasculature is potentially predictive of
the stenosis severity in the coronary artery. These data suggested that common pathophysiologic
processes may underlie both micro-vasculature and macro-vasculature.
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Appendix A

Let ni: nj be the two nodes representing two images of patients, gi, gj be their genders,
and ai, aj be their ages, the similarity score (denoted as SimScore) is calculated by:

SimScore
(
ni, nj

)
= Di f f

(
gi, gj

)
+ Di f f

(
ai, aj

)
,

where

Di f f
(

gi, gj
)
=

{
1, i f gi = gj

0, i f gi 6= gj

Di f f
(
ai, aj

)
=

{
1, i f

∣∣ai − aj
∣∣ ≤ 5

0, i f
∣∣ai − aj

∣∣ > 5.

The value of SimScore
(
ni, nj

)
could be either 0, 1 or 2, thus SimScore

(
ni, nj

)
> 0

results in an edge between nodes ni and nj. A larger SimScore
(
ni, nj

)
indicated a stronger

connection between the two nodes.

Appendix B

In this study: we built a GraphSAGE network with two SAGEConv layers with the
mean pooling aggregator. The network architecture is summarized in the Table A1 below.

Table A1. The GraphSAGE network architecture used in this study, which was a two-layer network
with one dropout layer.

Layers Input Features Output Features Parameters

Input = G 96 - -
SAGEConv 96 128 Aggregator = mean

ReLU - - -
Dropout layers - - Probability = 0.5

SAGEConv 128 2 Aggregator = mean
Softmax layer 2 2 -

Loss - - Cross-entropy loss

https://www.mdpi.com/article/10.3390/diagnostics12061390/s1
https://www.mdpi.com/article/10.3390/diagnostics12061390/s1
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