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Abstract: Laboratory medicine is a digital science. Every large hospital produces a wealth of data
each day—from simple numerical results from, e.g., sodium measurements to highly complex output
of “-omics” analyses, as well as quality control results and metadata. Processing, connecting, storing,
and ordering extensive parts of these individual data requires Big Data techniques. Whereas novel
technologies such as artificial intelligence and machine learning have exciting application for the
augmentation of laboratory medicine, the Big Data concept remains fundamental for any sophisticated
data analysis in large databases. To make laboratory medicine data optimally usable for clinical
and research purposes, they need to be FAIR: findable, accessible, interoperable, and reusable. This
can be achieved, for example, by automated recording, connection of devices, efficient ETL (Extract,
Transform, Load) processes, careful data governance, and modern data security solutions. Enriched
with clinical data, laboratory medicine data allow a gain in pathophysiological insights, can improve
patient care, or can be used to develop reference intervals for diagnostic purposes. Nevertheless, Big
Data in laboratory medicine do not come without challenges: the growing number of analyses and
data derived from them is a demanding task to be taken care of. Laboratory medicine experts are
and will be needed to drive this development, take an active role in the ongoing digitalization, and
provide guidance for their clinical colleagues engaging with the laboratory data in research.
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1. Introduction

Laboratory medicine has always been one of the medical disciplines with the highest
degree of digitalization. Since its emergence, automation, electronic transmission of results,
and electronic reporting have become increasingly prevalent [1]. In addition, medical
laboratories maintain extensive databases, not only with test results, but also with results
from quality controls. Furthermore, they are usually equipped with elaborate quality
management systems. It is, therefore, not surprising that laboratory medicine represents a
paradigm discipline for the digitalization of medicine. In contrast, the latest developments
in the data science field, such as artificial intelligence (AI) and machine learning (ML),
have not yet found their way into laboratory medicine across the board. Nevertheless,
the time is now. Three key ingredients for augmenting laboratory medicine have become
available to researchers on a wider scale: learning and training algorithms, necessary
computational power to run said algorithms, and high-volume data [2]. These latest and
future developments of AI and ML in laboratory medicine, however, do not constitute
the main focus of this experience-based opinion article, since several recently published
reviews can offer an excellent overview [1–5]. We will, instead, highlight the principles
required for high-quality, clinical, “big” data. Without solid data as a foundation, even the
most refined algorithms will fail to draw reliable conclusions: “ex falso sequitur quodlibet”,
or, put more coarsely, “garbage in, garbage out”. The manifold requirements and pitfalls for
Big Data analysis in laboratory medicine and fields of application shall be reviewed below.
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2. Definitions Surrounding Big Data

Since the terminology “Big Data” has gained traction in the late 1990s, driven by
the need to address the increasing data collection both in the private and public sector,
there has never been a general agreement upon understanding of the term [6]. Initial
depictions of Big Data were observing the phenomena and stating the emergence of a new
discipline, without a cohesive clarification on what the Big Data term encompasses [7]. A
more formal definition, proposed recently, suggests three main V’s (Volume, Velocity and
Variety) as key dimensions of Big Data with the added requirement for specially designed
technologies and analytics to translate data into value [8]. Subsequently, different scientific
disciplines have attributed and highlighted other dimensionalities to Big Data (e.g., Value
or Veracity [9,10]), while neglecting previously mentioned dimensionalities, making a
holistic semantic definition rather difficult [11,12]. Ultimately, the strength of the “Big Data”
conceptualization lays in its analytics, where Big Data is translated into clinical value.

Big Data analysis is the assessment of large amounts of information from multiple
electronic sources in unison, by sophisticated analytic tools, to reveal otherwise unrecog-
nized patterns [13]. Sources for Big Data are manifold, including data from laboratory
information systems (LIS), “-omics” data from applications such as NGS (Next Generation
Sequencing) or proteomics, and diagnostic data (Figure 1). If we consider “standard”
laboratory analyses, e.g., clinical chemistry, haematology, or haemostasis testing, the lion´s
share of analysis results consists of numerical results, possibly enriched with reference
ranges. Notably, in terms of size—not comprehensibility from the point of view of a human
observer though—all laboratory results of a medium-sized university laboratory fit on
a standard hard disk. The situation is different with “-omics” data, which, depending
on the technology, can comprise of several hundred megabytes to several gigabytes, be
it NGS, proteome, or metabolome data [14]. A distinction must also be made between
the usually very extensive, often proprietary raw data, and pre-processed data, which are
often available in tabular form and correspond to standard multiplex laboratory analyses
in terms of volume. Other fields with extensive data volumes are diagnostic diagrams,
with information content that may be limited, but which require large storage capacities,
when saved in the form of graphs; and diagnostic image data, e.g., from microscopy or
MRI (magnetic resonance imaging). Another Big Data resource not to be underestimated is
non-patient-related data, i.e., calibration and quality control data, which are often stored
and administrated in specialized databases.
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Figure 1. Patients’ data is entered into the patient data management system (PDMS), predominantly
manually, while information about samples collected as well as about analyses conducted is entered
into the laboratory information system (LIS), either manually or automatically. PDMS and LIS are
connected and exchange parts of their stored data. Both systems feed a “data lake” comprising
various types of data, which can be provided to researchers for Big Data applications.



Diagnostics 2022, 12, 1923 3 of 13

Laboratory data are best suited to the Big Data concept if they are enriched with
clinical data from the hospital’s various IT systems.

3. Transforming Laboratory Medicine into Big Data Science
3.1. Requirements

Even though laboratory medicine databases constitute a rich source of data, frequently
these are ill-suited for the application of data science techniques. Created to fit regulatory
requirements instead of research purposes, most databases store data inefficiently and only
for the minimally required retention period. Providing insufficient data quality for most
research questions, databases are transformed into mere data dumps. So, what are the
prerequisites for optimally usable laboratory medical data [15]? Central attributes data
needs to have to be optimally suited for research use are summarized by the key word
“FAIR”: Finable, Accessible, Interoperable, Reusable [16]. (cf. Table 1).

Table 1. Recommendations for the FAIRification (FAIR+) of laboratory data.

Requirements Implementation

Findability

- Assign PIDs meaningfully.

• Each PID should uniquely identify a single patient, which needs to be consistent between branch
laboratories with parallel systems.

• Develop solutions for unknown emergency patients, which allow correct assignment of test
results when personal data is identified later on.

• Develop solutions for analyses conducted for research purposes. Avoid cumulative PIDs.

- Record actual sampling time instead of planned sampling time.
- Connect all analytical devices to the lab IT system to avoid manual entries.
- Connect the lab IT system to the hospital’s central IT system to enable searches by clinicians

and researchers.

Accessibility

- Protect lab data adequately with:

• secure data storage solutions.
• careful data governance.

- Design ETL processes efficiently.
- Consider the general consent status of patients and allow access to data accordingly.
- Employ modern technical solutions such as multiparty computing and homomorphic encryption for

merging data from different sites.

Interoperability

- Code analyses in a standardized manner, e.g., with LOINC codes.
- Additionally, code the device manufacturer and kit version in a standardized way.
- Code newly developed analyses in a homogenous way, even if no standardized codes are available yet.
- Enable consolidation of data from different labs.

Reusability

- Provide detailed metadata to maximize reproducibility, including:

• LOINC codes.
• batch numbers.
• quality management data.
• SPREC codes.

+ - Offer your laboratory medicine expertise to clinicians and researchers, as no one knows the intricacies
of your laboratory data better than you.

Abbreviations: ETL: extract—transform—load; lab: laboratory; LOINC: Logical Observation Identifiers Names
and Code; PID: patient identifier; SPREC: Standard Preanalytical Code. + signifies the additional human resource
(laboratory expertise).

Findable data must be stored in a way that enables easy retrieval. For “standard” ex-
aminations, this is usually realised though a patient identifier (PID) and date, so individual
results can be assigned to the respective patients and collection times. Depending on the or-
ganization of the laboratory, this is easier said than done. Potential pitfalls are, for example,
that the same PIDs might be assigned to different patients in different branch laboratories,
or that analyses conducted for unidentified emergency patients cannot be attributed to
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the correct person when their identity has been clarified. Additionally, results of different
patients might be combined under a “collective” PID for research purposes. Moreover, data
can be confusing when samples are registered with the planned collection date instead of
the actual collection data, resulting in analysis time points prior to collection. Equipment
for special examinations poses particular challenges to findability, as they are frequently
not connected to the LIS. Here, the patient ID may be entered manually into the evaluation
files in a way that does not conform to the standard, which can lead to confusion and
incomplete entries. An example of this are “-omics” analyses: analytical devices routinely
produce and output files too large for transfer and storage in the central LIS. Therefore, they
need to be linked, preferably in a searchable manner to enable offline findability. Likewise,
findability has to be addressed in the sharing of machine-actionable (meta)data online.
Good metadata makes data findable. In web 1.0/2.0 approaches, this was addressed by
the Linked Data Principles, a set of best practices when publishing structured data to the
web [17]. These principles were however proposed before the emergence of FAIR, mean-
ing that little emphasis was put on standardization and a variety of inherently different
schemas were proposed [18]. One of the most recent efforts for making semantic artefacts,
FAIR has been launched by the FAIRsFAIR project, where the authors list recommendations
for findable (meta)data, highlighting the need for GUPRIs (Globally Unique, Persistent
and Resolvable Identifiers), highly enriched and searchable (meta)data descriptions and,
especially relevant for clinical laboratory sciences, the need to publish data and metadata
separately [19]. Findability remains one of the most important aspects of the FAIRification
of Big Data analysis, as a lack of appropriate metadata standards affects the availability
of research data in the long term. A recent study observed decreased findability of UK
health datasets over time [20], a trend also observed in a greater context of data-driven
science, both in terms of the findability of datasets and the reachability of the responsible
authors [21].

The accessibility of laboratory data can also be a challenge. LISs usually do not have
freely accessible query functionalities because of regulatory requirements. Therefore, LISs
that are not connected to central clinical data warehouses must be accessed through the
laboratory IT personnel. This often leads to an enormous amount of additional work, since
laboratory data are highly attractive for a variety of research projects [22]. For use in clinical
data warehouses, the LISs must be electronically connected, and the data prepared via ETL
processes (Extract, Transform, Load). This requires the use of universal web standards
including HTTP (Hypertext Transfer Protocol), standardized data exchange formats (e.g.,
FHIR [23] and the semantic-based Resource Description Framework (RDF) [24,25]) and
tools which allow querying respective data (e.g., SPARQL [26]). Additionally, data models
like OMOP [27,28] or i2b2 [29] are in common use. In true FAIR fashion, LISs must present
standard API (Application Programming Interface) with secure access protocols (e.g., SSL)
for data management and retrieval [19]. Generally, the entire content of the databases is
not transferred, but a limited subset of data (e.g., data records that can be clearly assigned
to patients) is identified and transmitted. A special challenge in this context is posed by
legacy systems that are solely operated in read-only mode, where the effort for the technical
connection must be weighed against the benefit of the further use of the data contained.
Moreover, as the available data for researchers grows, there need to be mechanism in place
to enable privacy protection with the use of de-identification or anonymization algorithms.
While textbook methods, for instance k-anonymity [30] or l-diversity [31], are often cited,
they do not come without their limitations [32–34]. In this context, the question arises as to
who is allowed to access the laboratory data and under what conditions. For example, data
relating to infection serologies or staff medical service is particularly sensitive and requires
careful data governance [35]. Another important aspect is the question of patient consent
for research-project-access needs, to be restricted according to regulatory requirements [36].
The use of patient data in research in Switzerland is governed by the Federal Act on Data
Protection (FADP 1992, art. 3c) and the Human Research Act (HRA RS 810.30). Notably,
the governance of Big Data is not different from “regular” research data: A request on the
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disposal and use of sensitive data must be submitted to a cantonal REC (Research Ethics
Committee). Big Data research proposes novel ethical concerns [37], mostly surrounding
the notions of privacy (hindrance of individual reidentification) and consent (possibility to
later revoke consent), where traditional ethics oversight practice is often unaware of the
direct societal impact of their decisions [38]. A recent study in Switzerland showed that
members of the seven Swiss RECs had broadly differing views regarding the opportunities
and challenges of Big Data, citing insufficient expertise in big data analytics or computer
science, to adequately judge the use of Big Data in clinical research [39]. This situation can
become especially cumbersome for researchers when data from different institutions are
merged—in this case, modern systems that work with secure multiparty computing and
homomorphic encryption, such as the MedCo system, can be a promising approach [40].
Wirth et al. offer a great overview regarding privacy-preserving data-sharing infrastructures
for medical research [41].

The next big and perhaps most important aspect for Big Data in laboratory medicine
is the necessary semantic interoperability. This means that the individual data items must
be clearly assigned semantically, ideally by means of standardized coding, e.g., along
the lines of LOINC (Logical Observation Identifiers Names and Code). This represents
an enormous challenge, which has been addressed in Switzerland, for example, by the
L4CHLAB project [42]. It is not enough to identify laboratory analyses only by their trivial
name (e.g., “potassium”)—the necessary granularity is defined by the requirements of the
research projects based on it. Thus, a creatinine measurement of any kind may be sufficient
as a “safety lab measurement” but be completely insufficient for a method comparison
study or the establishment of reference intervals. It should be noted that currently there is
no universal standard, as even LOINC does not specify, e.g., device manufacturer and kit
version, which need to be coded additionally. Unique identifiers for medical devices, e.g.,
from the GUDID [43] or EUDAMED database [44], or type identifiers, e.g., from medical
device nomenclatures such as GMDN [45] or EMDN [46], may enrich the LOINC system
and increase its acceptance. Extensive preparatory work to address this issue has been
done by the Swiss Personalized Health Network (SPHN), which established correspond-
ing “concepts” [47]. Particular difficulties arise from historically grown LISs, which are
often not structured according to the 1:1 principle of LOINC nomenclature, preventing a
clean assignment of laboratory analyses to unambiguous codes. This must be considered
especially when replacing and updating LISs, so that the master data remains future-proof
and interoperable [14]. The use of advanced data models such as RDF is beneficial here,
as it allows a data scheme to evolve over time without the need to change the original
data [25]. In the university environment, the latest test technology might be employed,
using analyses that do not yet have a LOINC code assigned, making it necessary to deviate
accordingly. For the consolidation of large amounts of data from different sources, a high
semantic granularity, which is necessary for individual questions, can be problematic, as
equivalent analyses must be defined as such in order to enable comprehensive evaluations.
Here, Minimum Information Checklists (MICs), stating the minimum requirements for
quality and quantity to make data descriptions accurate and useful, could offer a needed
standardization to track data quality from various sources [48,49]. It is essential that a
core vocabulary features support for descriptions to be machine-readable RDF [50], closely
linking the commonly used semantics in laboratory medicine with machine-actionable
descriptions. The use of semantic web technologies, such as RDF, in the laboratory environ-
ment could also help to establish the common use of Electronic Lab Notebooks (ELNs) [51].
Notably, the application of suitable data formats facilitates, but by itself does not guarantee,
actual interoperability of data sets from different data providers. Seemingly trivial details
including spelling, cardinalities, datatypes, consistent use of GUPRIs, or measurement
units must be carefully assessed. In the context of RDF, the Shapes Constraint Language
(SHACL) allows the testing and validating of data against a set of predefined require-
ments [52]. These conditions (SHACL rules) constitute a “shape graph” against which
the actual data (as “data graph”) is matched. The expression of complex constraints is
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facilitated by SHACL-extensions supporting SPARQL and JavaScript [53,54]. Despite the
rise of user-friendly validation tools, semantic standards alone are not a “silver bullet”
against data mayhem. In fact, even with maximum semantic care, the competence of
experts in laboratory medicine remains in high demand. Different automated approaches
for resolving the semantic heterogeneity when mapping different ontologies have been
launched but still require human oversight [55,56]. For many researchers who come from
non-analytical subjects, the differences in the meaning of the analysis codes are not obvi-
ous at first glance. Considerable misinterpretations can occur, e.g., calculation of eGFR
from urine creatinine. Here, the laboratory holds responsibility since it has the necessary
competence to avoid such errors.

The reusability of laboratory medical data depends to a large extent on the existence
and level of detail of the associated metadata. This includes—as already mentioned—not
only analysis-related data (mapped in the dimensions of LOINC) but also batch numbers,
quality management data, and, if applicable, SPRECs (Sample PREanalytical Codes) [57].
In essence, everything that is or could be of importance for optimal replicability of the
measurement results. It can be problematic that the metadata are stored in separate
databases and cannot be provided automatically via the ETL processes, so that they can
neither be exported nor viewed. Not only the (meta)data needs to be reusable but also the
algorithms and data-processing scripts. With “FAIRly big”, a functional framework for
retracing and verifying the computational processing of large-scale data based on machine-
actionable provenance records, high performance could be observed regarding data sharing,
transparency, and scalability, despite ignoring explicit metadata standards [58]. Reusability
can also refer to the efficient use of statistical models that may arise using machine learning
methodology. The latter may involve a feedback process, where the model is validated
and even further calibrated as information arrives through the expansion of the database
with fresh data. Potential pitfalls impairing reusability may include legislative limitations
imposed by national research acts or legal ambiguities in Data Transfer and Use Agreements
(DTUA) of multicentre cohort studies involving several data providers.

3.2. Risks

The use of laboratory medical data for Big Data analytics does not only have ad-
vantages but is also associated with a considerable number of risks: as all health data,
laboratory values are worthy of special protection. As with all information compiled in
large databases, there is an imminent risk of data leaks, especially if the data are accessible
from the outside. Structured laboratory data can also be copied easily and quickly due
to their small file size, so there is a considerable risk of unauthorized data duplication.
Similarly, data governance must be ensured, which requires a comprehensive authorization
framework—this is easier to implement in closed LISs. Another essential aspect is data
integrity, which must be ensured in particular through the ETL process pipelines and also
for further processing. LISs, as medical products, usually fulfil the necessary standards,
but with self-written transformation scripts this may be different, so enforce a meticulous
quality control. However, this has the advantage that non-data transfer-related errors can
also be detected and deleted. In any case, certification of the IT processes is both sensi-
ble and costly. Post-analytics can also cause difficulties—the IT systems of the receivers
(clinicians or researchers) must be able to handle the data formats supplied and must
not alter or falsify their presentation. Another enormously problematic aspect is change
tracking. In the LISs, laboratory tests are often identified by means of their internal analysis
numbers—if changes occur here, e.g., due to the inclusion of new analyses, changes must
be reported to the peripheral systems—preferably automatically and with confirmation
of knowledge—otherwise serious analysis mix-ups can occur. Finally, when individual
laboratory data are queried, the framework of the findings is no longer guaranteed—the
analyses lose their context and, thus, their interpretability.
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3.3. Chances

The introduction of “Big Data” technologies holds great potential for laboratory
medicine, and some aspects will be specifically addressed here.

Setting up ETL processes inevitably leads to the detection of inadequacies in the struc-
ture and content of the laboratory’s master data. Frequently, LISs have grown over years
and—although continuously maintained—are not organized in a fundamentally consistent
manner. Before one can begin with the extraction and processing of laboratory data, the
data organization, structure, and meta information must already be disclosed in the source
system. A thorough review of this data is recommended to be carried out in the mother
database, because tidying up is in any case necessary, which is quite obviously better done
in the source system than in subordinate databases. Another important aspect is the neces-
sary introduction of clear semantics—this is a laborious process that initially represents
a large workload but is subsequently relatively easy to maintain. Many laboratories are
reluctant to take on this effort—here, the diagnostics manufacturers are asked to supply
the necessary codes (e.g., extended LOINC codes, see above) for the analyses they offer,
e.g., in tabular form, which makes bulk import considerably easier and a matter of a few
days. For researchers, in particular, it is also extremely helpful to have a data catalogue
created in this context. Laboratory catalogues are often available electronically but are
usually organized around request profiles, rather than individual analyses that are often of
importance for research questions. The IT teams of the data warehouses will also be very
grateful for appropriate documentation. This also offers the opportunity to make extensive
metadata accessible and usable for interested researchers. Together with the introduction
of semantics and data catalogues, transparent change tracking should be integrated, so
queries in the data warehouses can be adapted accordingly, if, for example, analyses have
changed, or new kits have been used. Change tracking is also clearly to be advocated from
a good laboratory practice (GLP) point of view.

Another aspect of outstanding importance for laboratory medicine as a scientific
subject is the visibility and documentability of the contribution of laboratory medicine to
research projects. In the vast majority of clinical studies, laboratory data play an extremely
important role, be it as outcome variables, as safety values, as quality and compliance
indicators, or as covariates. With a transparent database and query structure, the use and
publication impact of laboratory data can be shown more clearly and the position of the
laboratory in the university environment as an essential collaboration and research partner
can be strengthened. Other aspects include the improved use of patient data for research
purposes—turning laboratory databases from graveyards of findings into fertile ground for
research, an aspect that is certainly in the interest of patients in the context of improvement
of treatment options. The improved indexability of laboratory data in large “data lakes”
would also allow to link them to clinical data. Conversely, this also opens up completely
new research possibilities for laboratory scientists, as the laboratory values no longer stand
alone, but can be analysed in a clinical context. Last but not least, a cleanly curated database
is an essential foundation for AI applications. It is like in most data science projects: 80% of
the effort is data tidying, and 20% is the “fun part” of the analysis. Here the laboratories
have to point out their very important, but little prestigious and extremely tedious role.
They are essential partners in the vast majority of research collaborations.

3.4. Fields of Application

Big Data, with its technological environment, does not yet represent a translation into
medical fields of application, but it should be regarded as a basis and facilitator for a large
number of potential uses. Mainly applications come into consideration that already require
a large amount of information to be processed and, thus, bring the human part of the
evaluation pipeline to a processing limit. These include, of course, data-intensive “-omics”
technologies, including not only pattern recognition in specialized metabolic diagnostics
and new-born screening but also technical and medical validation and quality management.
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Further applications can be population-based evaluations such as the creation of reference
value intervals. In the following, some of the potential fields of application are described.

An obvious field for Big Data technologies in laboratory medicine are “-omics” appli-
cations [59–61]. These have been developed for nucleic acid-based techniques as, e.g., ge-
nomics [62,63], transcriptomics [64], and epigenomics [65], as well as for mass spectrometry-
based methodologies such as proteomics [66,67], metabolomics [68,69], lipidomics [70], and
others. The particular challenges in this field include connecting the analysis systems to
the corresponding data lakes—it is no longer possible to work with traditional database
technologies and new approaches, for example, hadoop [71] become necessary. Even more
than in the case of highly standardized routine procedures in classical laboratory medicine,
metadata play an outstanding role in evaluability, comparability, and replicability. In
addition, the raw data generated with these procedures are often formatted in a proprietary
manner and are also of enormous size—comparable only with the data sets of the imaging
disciplines. For retrieval, indexing and linking to the respective patient must be ensured;
this can be achieved, for example, by linking tables of processed results instead of raw data
output. The extent to which transformation and evaluation steps already make sense in the
ETL process depends on the respective question, but following the FAIR principles, open
file formats should be made available in addition to raw data, even if the transformation
process is often accompanied by a loss of information (e.g., in mass spectrometry).

Moreover, in other diagnostic fields where a large number of different analyses have
to be medically validated synoptically, Big Data technologies offer a good basis for the
development of pattern recognition and AI algorithms, which not only help to automate
workflows efficiently but also can recognize conspicuous patterns without fatigue and,
thus, lead to a reduced false negative rate. New-born screening is a prime example of
this [72], but complex metabolic diagnostics will also benefit from data that is machine
learning ready—there is still considerable potential for development [73]. For algorithms
to be registered as “medical devices”, the hurdles to be taken are fairly high, including
proper assessment of potential risks, detailed software design specifications, traceability,
data security, etc., just to name a few obligations to be compliant with the new “Medical
Device Regulation” (MDR) of the European Union [74]. Moreover, to be used in hospital
settings, data collection requires strict quality-management systems certified in accordance
with ISO 13485 [75]. Currently, European notified bodies or other authorities such as the
U.S. Food and Drug Administration (FDA) or the UK Medicines and Healthcare products
Regulatory Agency (MHRA) have started to adapt guidelines for Good Machine Learning
Practice (GMLP) for the development of AI and ML applications as medical devices or
have overhauled their existing regulations [76–78]. We are now witnessing the clearance
of the first AI-based algorithms for prediction and diagnostics for use with patients. The
“IDx-DR” algorithm, which detects diabetic retinopathy from retinal images, is an inspiring
example [79]. It was the first medical device using artificial intelligence to be approved by
the FDA, in April 2018, and for use on the European market, in April 2019. [80,81] Data
from a multi-centre study with 900 patients enrolled at 10 different sites were a cornerstone
for the approval of the “IDx-DR” algorithm—a masterpiece, unthinkable without proper
“Big Data” management [79].

Besides laboratory diagnostics itself, there are a large number of other fields of appli-
cation for Big Data in laboratory medicine. For example, the field of quality management.
Mark Cervinski notes that “modelling of Big Data allowed us to develop protocols to
rapidly detect analytical shifts”—additionally, administrative and process-oriented aspects,
such as optimizing turnaround time (TAT), can also benefit from Big Data [13]. Especially,
since under a big workload, the main factor affecting TATs is not the verification step of
test results but rather the efficiency of the laboratory equipment [82]. With the help of
predictive modelling, TATs could be highlighted that are likely to exceed their allocated
time. Furthermore, these highlighted TATs could potentially be relayed to the ordering
clinician, allowing new levels of laboratory-reporting transparency.
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Clinical-decision support systems are more oriented towards clinical needs and are
essentially based on laboratory data. This can be in the context of integrated devices [83] or
more- or less-complex algorithms that enable the integration of multimodal information
and allow clinicians to quickly and reliably make statements about the diagnostic value of
the constellations of findings. An example of this is the prediction of the growth of bacteria
in urine culture based on urine-flow cytometric data [84].

Perhaps the most exciting field of application for Big Data in laboratory medicine,
however, is predictive and preemptive diagnostics. With the help of laboratory data,
probabilities for a variety of patient-related events can be calculated and, in the best case,
therapeutic countermeasures can be initiated, so that the events do not occur in the first
place. This can range from the prediction of in-house mortality, in the sense of an alarm
triage [85,86], to the prediction of derailments in the blood glucose levels of diabetic
patients [87]—the possible applications are almost unlimited.

4. Conclusions and Outlook

Laboratory medicine has always been a data-driven discipline—more so than ever
with the advent of multi-parametric and “-omics” technologies. On the other hand, the
discipline has been largely fossilized by a way of working that has remained almost un-
changed for decades and by the specific requirements of clinicians and regulatory bodies
for reporting findings [88]. This is especially true for routine clinical diagnostics, so open-
ing up to “Big Data” represents a challenge that should not be underestimated. Yet, this
openness represents the basis for modern technologies, in particular deep learning or
artificial intelligence, which can bring diverse advantages not only for diagnostics but also
for laboratory medicine as an academic and research-based medical discipline. Many steps
that are required in the transformation of laboratory medicine data into “Big Data” [22]
can be used for research make sense anyway for lean, efficient, sustainable, and complete
data management and can lead to a cleansing and “aggiornamento” (modernization) of
laboratory data. If laboratory medicine shies away from these developments, it will be
degraded to a pure number generator in the foreseeable future or disappear completely as
an academic subject in integrated diagnostic devices. On the other hand, the importance of
comprehensive, quality-assured laboratory medical data and metadata for clinical research
can hardly be underestimated. It is important to set standards for the openness, willing-
ness to collaborate, and FAIRification of medical data. After all, health data is the new
blood [89]—which can also revitalize laboratory medicine not only in a figurative sense.
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