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Abstract: The increasing usage of smart wearable devices has made an impact not only on the
lifestyle of the users, but also on biological research and personalized healthcare services. These
devices, which carry different types of sensors, have emerged as personalized digital diagnostic
tools. Data from such devices have enabled the prediction and detection of various physiological
as well as psychological conditions and diseases. In this review, we have focused on the diagnostic
applications of wrist-worn wearables to detect multiple diseases such as cardiovascular diseases,
neurological disorders, fatty liver diseases, and metabolic disorders, including diabetes, sleep quality,
and psychological illnesses. The fruitful usage of wearables requires fast and insightful data analysis,
which is feasible through machine learning. In this review, we have also discussed various machine-
learning applications and outcomes for wearable data analyses. Finally, we have discussed the
current challenges with wearable usage and data, and the future perspectives of wearable devices as
diagnostic tools for research and personalized healthcare domains.
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1. Introduction

Wearables, which refer to smart consumer devices that record digital health data, are
becoming an integral part of our daily lives. This reflects the growing health conscious-
ness among people. Wearable biosensors are low-price, non-invasive, and non-irritating
devices that function by continuously measuring a person’s physiological parameters in
real time [1,2], which can be used for the early as well as in-depth diagnosis of several
conditions. They also facilitate personalized patient health monitoring outside the clinical
setting, which is an advantage considering the restricted movements during the COVID-
19 pandemic [3,4]. More than 500 health-related sensors are available in the market [1–5],
and the sale of such devices has experienced more than a 20% annual growth rate, with an
estimated market size of more than EUR 150 billion by 2028 [6]. Wearable devices are avail-
able in different forms that are in contact with different body parts, and are also available as
devices attached with fabrics. Based on their point of contact, they can be categorized into
head, limb (which includes arms), leg, eye, and torso wearable devices [7]. Based on their
probing method, they can also be categorized as skin-based or biofluid-based [8]. Apart
from consumer devices, wearable devices are available for specialized monitoring, such
as wearable smart insoles for diabetic foot monitoring, devices for real-time heart attack
detection, and smart-digital stethoscope systems [9], the use of which is often suggested
by clinicians. In this review, we have primarily focused on skin-based wrist-wearable
consumer devices that provide continuous data, which are used for the diagnosis of several
disease conditions.

Wearable devices contain different types of sensors that collect data on step counts,
heart rate, sleep duration, calories burnt, stress, and oxygen levels [10]. The parameters

Diagnostics 2022, 12, 2110. https://doi.org/10.3390/diagnostics12092110 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12092110
https://doi.org/10.3390/diagnostics12092110
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-8003-4539
https://orcid.org/0000-0002-8468-5208
https://doi.org/10.3390/diagnostics12092110
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12092110?type=check_update&version=1


Diagnostics 2022, 12, 2110 2 of 19

measured, collected, and stored by the device could be helpful in the identification of
health conditions by detecting deviations from the corresponding baseline values. This
technology can also be used to track and connect the user’s daily activities, such as cycling,
running, biking, and walking, in combination with GPS, thus providing the location of
the activity as well. These data can be affected by other external or environmental factors,
such as temperature, altitude, and humidity, imposing additional dimensions on the data.
These data are transferred to a cloud-based storage and are accessible by users’ mobile
devices as well as to researchers and clinicians for precision diagnostics. To analyze this
massive amount of multivariate time-series data, the conventional statistical approach is
often inadequate, specifically in the context of making a diagnosis from the unseen data. In
this case, machine-learning (ML) algorithms are beneficial and are being used to predict
health events, intervention, and prevention [11,12]. In this review, we discuss the use of
various ML algorithms for the analysis of data provided by wearable devices.

Recent research highlights that wearable devices can work as digital diagnostic tools
due to their usefulness in detecting several diseases. The remotely accessed, real-time-
monitored, continuous data recording in a personalized manner has made wearables an
effective tool for the diagnosis of physiological conditions. It has been found that the
physiological parameters obtained from these biosensors can be used in the detection of
Lyme disease [1], respiratory infections, cardiovascular disorders [13,14], neurological dis-
orders [15], coronavirus diseases [16–18], Parkinson’s disease [19], diabetes, liver diseases,
and others. Not only can they detect physiological diseases, but wearables can also be
employed to diagnose psychological states. This review discusses both the physiological
and psychological disorders diagnosed by consumer wearables. For reporting a generalized
review, we searched the PubMed database in the month of July 2022 using different combi-
nations of the following keywords: ‘wearables’, ‘consumer wearables’, ‘diagnostics’, ‘smart
watch’, and ‘digital health’. The search results showed different types of articles, among
which we focused on research articles addressing cardiovascular diseases, neurological
diseases, fatty liver diseases, metabolic disorders, sleep disorders, corona virus diseases,
and psychological illnesses. Among these, we centered our attention on smart wrist-worn
consumer devices. The detailed search method is provided as supplementary information.

The technology that enables the provision of real-time and accurate physiological
data with the help of these wearable biosensors is having and will have a broader impact
on our daily lives in the future. The use of wearables as diagnostic tools is associated
with several difficulties, including achieving and maintaining precision, power consump-
tion, and connectivity. Difficulties are associated with their fabrication, as they require
miniaturization and the integration of various sensors [20]. Compared to the conventional
lab-based diagnostic methods, these remotely monitored personalized diagnostic methods
raise concerns over data security, sharing, and storage [21]. Regulatory bodies play an
important role in this landscape. Here in this review, we focused entirely on consumer
wrist-wearable devices that provide continuous data; we discuss their usefulness as digital
biomarkers for the diagnosis of several diseases, we examine various ML algorithms used
for wearable data analysis, and we further elaborate on the challenges associated with
wearable technology and their future perspectives.

2. Wearables as Digital Diagnostics

Wearable devices are revolutionizing the healthcare system by monitoring health
even outside the clinics. This has enabled medical practitioners to adapt to wearables for
monitoring as well as diagnosing their patients. Here, we discuss the major outcomes
obtained from wearable data that are used for digital diagnostics only. Table 1 summarizes
different wearable devices and their applications as digital diagnostic tools, as reported in
different studies.
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Table 1. List of consumer-grade wearable devices used as digital diagnostic tools.

Smartwatch
Brand

Acquisition
Points Data Collected Usage Benefits References

Apple Watch

Wrist Step count and
heart rate

Monitors frailty in
cardiovascular patients

when 6MWTs are
conducted in both clinical

settings and at home.

Assesses frailty with 90%
sensitivity in a clinical
setting and with 83%
sensitivity at home.

[22]

Detects AF by training
using a deep-learning

network.

Assesses heart beat
rhythm by using a trained
deep-learning algorithm
with a sensitivity of 98%.

[23]

Wrist, finger,
chest, and
abdomen

Heart rate

Could be useful in the
detection of several

cardiovascular diseases
such as myocardial
ischemia or cardiac

arrhythmias.

Recording from this
smartwatch shows

feasibility, with a good
signal quality of ECG (QT
interval) and a correlation

of 0.994.

[24,25]

Kick LL Wrist Respiration and
heart rate

Measures respiration and
heart rate using a PPG

sensor.

Allows real-time and
remote measurements. [26]

Honor Band
4 and Huawei

Watch GT
Wrist Heart rate

Early AF screening and
management with a CI of

91.5–91.8%.

Early detection of AF can
prevent strokes or other

complications.
[27]

Simband
(Samsung) Wrist Heart rate

Detects AF using a PPG
signal with an accuracy of

98.18%.

Enables easy and
non-invasive monitoring

of arrythmia.
[28]

Fitbit Charge HR Wrist

Sleep

Acts as cardiovascular
disease and leukocyte

telomere
length-shortening

markers.

Monitors sleep patterns
and quality to understand

the cardiovascular risk
and premature telomere

shortening of an
individual.

[29]

Step count and
sleep

Tracks physical activity in
diabetic patients.

The physical activity
record could have an

impact on glucose control.
[30,31]

E4 Empatica
Wristband Wrist EDA and

temperature

Uses EDA recordings to
monitor the activity of the

sympathetic nervous
system during epileptic

seizures.

Allows continuous and
long-term measurements

of EDA.
[32]

Huawei Watch 2 Wrist

Sleep
Detects PD at an early
state using the sleep

patterns of an individual.

Smartwatch-based
detection shows a

significant correlation of
0.46 to the clinical setting.

[33]

The 3D
acceleration and

orientation of
velocity signals

Measures movement with
inertial sensors in PD

patients.

Assesses the eating
difficulties in PD patients. [34]
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Table 1. Cont.

Smartwatch
Brand

Acquisition
Points Data Collected Usage Benefits References

StepWatch Wrist Step count

Step activity monitor
(SAM) to count strides;
shows a correlation of

0.99 and 1.0 with the gold
standard (GaitMait) in PD

and MS patients,
respectively.

Reliable, easy-to-use, and
valid step monitoring tool
for PD and MS patients.

[35]

EchoWear Wrist Audio

Speech and voice exercise
monitoring system for the

detection of voice and
speech disorders in PD

patients.

Remotely monitors the
improvements in speech
and voice in PD patients.

[36]

Dytran 302M3 Wrist
Tremor

constancy and
amplitude

Detects tremors in PD
patients; shows a strong
correlation of 0.969 with

the clinical setting.

Provides relevant
information about tremors
during the early stages of

PD and results in
improvements in the
clinical evaluation.

[37]

Axivity AX3 Wrist
Heart rate, step

count, and
calories

Tracks physical activities
to detect the risk of liver

diseases.

Provides a framework for
the personalized

prevention of liver
disease.

[38]

Neofit (Partron
Co) Wrist

Calories burnt,
step count,

exercise duration,
and heart rate

Monitors physical
activities in hepatocellular

carcinoma patients.

Tracks the activities of
patients using the
wristband, which
correlates with a

significant improvement
in their health.

[39]

Fitbit, Apple
Watch, Garmin,

and others
Wrist

Heart rate,
calories burnt,

step count, and
sleep duration

Detects COVID-19 illness
Detects COVID-19 illness

in a pre-symptomatic
condition.

[16]

Diafit Wrist, finger,
and ear Glucose Monitors glucose for

diabetic patients.

Consists of various
modular accessories

required for the
assembling of

customizable glucose
monitors.

[40]

Galaxy Watch
Active 1 Wrist

Calories burnt,
step count,

exercise duration,
and heart rate

Manages metabolic
syndrome risks by
tracking physical

activities.

The tracking of physical
activities using the

smartwatch results in a
reduction in waist

circumference, blood
pressure, and blood sugar

by 40%.

[41]

Samsung Gear
Sport Watch Wrist Sleep

Assesses sleep quality by
evaluating sleep

parameters; shows a
significant correlation of
0.59 with an actigraphy

report.

Enables long-term
home-based sleep

monitoring.
[42]
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Table 1. Cont.

Smartwatch
Brand

Acquisition
Points Data Collected Usage Benefits References

GT2 (Huawei) Wrist Sleep Used in the screening of
obstructive sleep apnea.

Compared to other sleep
apnea tests, the

smartwatch-based test
outperformed the others

with an accuracy of 87.9%.

[43]

WHOOP, Inc. Wrist Sleep

Tracks sleep with a low
bias of 13.8 min and
precision errors of

17.8 min.

Accurately measures both
dream and slow-wave

sleep.
[44]

FitBit Charge 2 Wrist

Steps, heart rate,
energy

expenditure, and
sleep

Tracks physical activity
and sleep to understand

the behavior and
physiology to detect

mental disorders such as
depression.

A supervised
machine-learning

algorithm with these data
was able to detect the risk

of depression with an
accuracy of 80%.

[45]

2.1. Cardiovascular Diseases

As the primary data generated by wearable devices include the heartbeat rate, step
count, and energy consumed, researchers have concentrated on associating cardiovascular
disorders with these data. Cardiovascular diseases cause millions of deaths globally every
year [46]. Continuous monitoring and the diagnosis of abnormalities are important for
reducing fatalities. Wearable technology has made this more feasible [47]. A clinical trial
with over 60 adults showed that wearing smartwatches with blood-pressure-monitoring
features lowered the patients’ blood pressure and resting heart rate, elucidating the effect
of self-monitoring [48]. Self-monitoring can also lead to early diagnosis [49]. In a study by
Rens et al., cardiovascular disease patients were made to take a 6-minute walk test (6MWT)
and their activity data were collected with an iPhone and an Apple Watch using the Vasc-
Trac app. The home-based 6MWT assessed frailty with 83% sensitivity and 60% specificity.
Hence, functional capacity and frailty could be monitored in cardiovascular patients safely
and with a higher resolution by using wearable devices [22]. Another study by Teo et al.
tracked sleep and collected multi-modal phenotypic data and questionnaire responses
from normal volunteers. The sleep data derived from the wearables and by self-reporting
were compared on the basis of total sleep time (TST) and sleep efficiency (SE). From a
data analysis of a multi-modal phenotype, it was found that the TST and SE derived from
wearables showed an association with the markers of cardiovascular disease, such as waist
circumference and body mass index. However, the self-reported data did not show such
associations. A lack of sleep could lead to telomere shortening, which is a tumor suppres-
sor mechanism (premature telomere attrition) (confidence interval [CI] = 74.573–636.538,
p = 0.016); hence, the sleep data from wearables were useful for providing insights into
the cardiovascular disease risk (β = 1.275, CI = 0.187–2.363, p = 0.023) [29]. The usage of
wearables has allowed people to track their own heart rhythms for a very long period [50].
By using heart rate and step count data from wearable smartwatches, machine-learning
algorithms have been developed by different research groups for detecting atrial fibrillation
(AF), which is a leading cause of stroke worldwide. A study by Tison et al. presented a
deep-learning algorithm for the detection of AF. The neural network showed a 95% CI of
0.94–1.00 (p < 0.001) for the detection of AF compared to the AF diagnosis based on ECG
results, which was used as reference. The sensitivity was observed to be 98%, with 90.2%
specificity [23]. Similarly, another study by Inui et al. used wearables such as an Apple
Watch and a FitBit and compared them with ECG data for the detection of paroxysmal
AF. The correlation between the Apple Watch pulse rate data and the ECG heart rate data
was found to be better than that between the FitBit data and the ECG data. The coefficient
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of determination for the Apple Watch was R2 = 0.685, whereas that for the FitBit was
R2 = 0.057. Hence, the Apple Watch was proven to have better AF detection precision
than the FitBit [51]. When the PPG screening app was used for AF detection, a positive
predictive value of 91.6% was observed in patients who were confirmed to have AF (CI:
91.5–91.8%) [27]. Bashar et al. also proposed a method of AF detection that detects noise
artifacts and motion by performing a time-frequency PPG signal analysis. Further, their
algorithm to detect premature atrial contraction was used for AF detection with a higher
accuracy. The proposed method showed a specificity, sensitivity, and accuracy of 97.43%,
98.18%, and 97.54%, respectively [28]. In a study by Koshy et al., the researchers moni-
tored sinus rhythm using two different wearables (FitBit and Apple Watch) that collected
heart rate data. For the detection of atrial arrhythmias, both the devices showed good
results. However, the Apple Watch (r = 0.83) showed a better correlation than the FitBit
(r = 0.56) [52]. Photoplethysmogram (PPG) signals derived from wearables or smartphones
could be useful for monitoring cardiac health after signal corruptions and noise are re-
moved. It was found that these denoised PPG signals could effectively predict coronary
artery disease (CAD) [53]. Apart from the commercial smartwatches, smartwatches such as
Kick LL are being developed for the purpose of monitoring respiration and heart rate [26].

Smartwatches have emerged as a new-age diagnostic tool for recording multichannel
ECGs [24]. For this purpose, smartwatches can be attached to different body parts such as
the chest or abdomen. Samol et al. have shown the possibility of an early ECG differential
diagnosis of cardiac diseases [54]. The QT interval was also measured using a smartwatch,
and the result showed a correlation of up to 0.994 with standard ECG data [25].

2.2. Neurological Disorders and Stress

Wearable devices have allowed for the continuous monitoring of our physiology,
which has made the detection and treatment of chronic diseases, such as neurological
disorders and mental health problems, possible. Electrodermal activity (EDA) shows
the activity of the sympathetic nervous system, and thus is a potential tool for tracking
arousal and autonomic regulation. EDA data are usually collected from the fingertips,
wrists, or ankles. It is known that measuring EDA consumes less power than other
monitoring methods and is a simple process. There are EDA-measuring wristbands on
the market with embedded EDA sensors where the wristbands are made up of electrically
conductive fabric [55]. However, EDA values can be affected by various other factors,
including the environmental, skin, and room temperatures [56]. These limitations become
especially important when an EDA sensor is employed in a wearable device controlled by
temperatures [57]. The EDA sensor indicates the activity of eccrine sweat glands, which
varies with the psychological state [58]. There is a positive correlation between EDA values
and skin temperature (r = 0.13, p < 0.001). A study was performed to understand the
performance of a student in real-time during an exam [59]. It has also been found that
EDA measurements from wearable sensors are useful for detecting epileptic seizures. A
surge in EDA was detected during an epileptic seizure, which implies a great sympathetic
discharge [15,32,60]. Another study showed that wearable sensors could also be used to
detect social anxiety in people, and thereby improve the monitoring and treatment of social
anxiety. The data used for this purpose were heart rate, EDA, and skin temperature (ST).
This study also demonstrated that these sensors could distinguish among different levels
of anxiety in an individual [61].

Wearable devices appear to be a useful tool for characterizing different parameters in
different dementia-type diseases such as Parkinson’s disease (PD) and Alzheimer’s disease
(AD) [62]. Sensors carried by the wrist-worn device StepWatch are used for the quantita-
tive diagnosis of Parkinson’s disease and multiple sclerosis by counting the strides of the
users [35]. Researchers are also using inertial sensors in wearables for the continuous detec-
tion of rest tremors and dyskinesia in patients suffering from PD [63,64]. The accelerometers
in these watches can differentiate between postural tremors and essential tremors in PD
patients by calculating the peak harmonic power and frequency. They accurately provide
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diagnostic information in terms of postural tremors [65,66]. Sigcha et al. also showed a
high correlation (0.969) between measurements of resting tremors using smartwatch data
and clinical measurements [37]. Based on tremor measurements using wearable devices,
the classification between differential diagnoses and healthy patients reached 86.5% preci-
sion [67]. EchoWear, a smartwatch-based speech and voice exercise monitoring system, was
implemented to detect voice and speech disorders in PD patients [36]. A framework called
SPARK, employing wearable devices and smartphones, was developed for the detection of
multiple symptoms associated with PD [68]. The early diagnosis of PD is also possible from
activity data during sleep and sleep quality data [33]. Apart from the tremor detection,
smartwatches are used to measure ‘plate-to-mouth’ time during eating, which reflects the
intensity of the disease [34].

For AD patients, wearables are used as digital biomarkers [69]. They are used for
the inference-based diagnosis of behavioral events using inertial motion data [70]. The
early diagnosis of mild cognitive impairments (MCIs) is also possible by using wrist-
worn wearables [71]. Apart from the diagnosis, consumer-wearable devices have a great
usefulness for patient care and the monitoring of elderly AD patients [72]. By implementing
specific sensors into wearable devices, Al-Naami et al. developed a smart wearable device
for alerting AD patients to fall-down conditions [73].

2.3. Fatty Liver Diseases

Nonalcoholic fatty liver diseases (NAFLDs) are rapidly increasing in number and
becoming the primary cause of most liver-associated deaths globally. The major cause of all
liver diseases is physical inactivity. Wearable devices help individuals to track their physical
activity at a minute level. Hence, data from wearable devices act as a wellness indicator
for patients suffering with liver diseases. An improvement in physical activity leads to an
improvement in cardiorespiratory fitness, and this can be measured with cardiopulmonary
exercise testing (CPET). CPET is found to be useful in identifying risks in transplant
hepatology [74]. These wearables are not only useful for detecting and identifying liver
diseases, but are also useful for keeping track of physical activities that have shown to be
helpful for NAFLD and hepatocellular carcinoma (HCC) patients. In a study by Kim et al.,
patients were monitored using Neofit (Partron Co), which recorded the calories burnt, step
count, exercise duration, and heart rate. After 12 weeks of following the exercise program,
the body composition and physical fitness significantly improved in the HCC patients who
completed their therapy [39]. Similarly, a study by Schneider et al. recorded the physical
activity of participants using a wrist accelerometer and detected that an increase in physical
activity resulted in a dose-dependent reduction in liver disease, which appeared to be
independent of adiposity [38].

2.4. Corona Virus Diseases

In the context of the pandemic caused by the 2019 coronavirus disease (COVID-19),
researchers used data on heart rate, step count, and calories burnt, recorded by wearable de-
vices, to detect COVID-19 infections in pre-symptomatic and asymptomatic conditions [75].
Lonini et al. have demonstrated how these consumer-grade wearables collecting data for a
very long period could be useful for detecting the symptoms of such viral infections in an
individual. A wearable designed to be worn on the suprasternal notch can track physical
activity, cough sounds, and cardio-respiratory function [76]. Snyder et al. used the resting
heart rate difference (RHR-diff) method and the heart-rate-over-steps anomaly detection
(HROS-AD) method for the early detection of anomalies in the recorded data of COVID-
19 patients, even 3 days (median value) before the onset of symptoms [16,17]. In another
study, a gradient-boosting algorithm was used to detect an infection and the important
symptoms [77]. Quer et al. provided a wearable device data model that complemented
conventional virus-testing methods to detect COVID-19 infections [78]. In another study,
Bogu and Snyder showed that using wearable data 7 days prior to COVID-19 detection
and 21 days after the detection could recognize COVID-19 infections using a deep-learning-
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based method of a long short-term memory network-based autoencoder (LAAD). LAAD
detects COVID-19 based on an abnormal resting heart rate during the period of infection.
It was able to detect COVID-19 in the pre-symptomatic period as well as the symptomatic
phase of the patients, with a precision score of 0.91 (CI: 0.854–0.967) [10]. Cho et al. pro-
posed a one-class SVM method that can detect COVID-19 23.5–40% earlier compared to the
method of Mishra et al. [16–79].

2.5. Metabolic Disorders

Metabolic diseases, such as diabetes, affect millions of people around the world every
year. They increase the chance of multiple organ failure and result in a decreased quality of
life [80]. Consumer wearables such as fitness trackers are also useful in diabetes patients. It
has been found that physical activity (PA) has a major effect on glucose concentration. The
effect of PA depends on the intensity, mode, and duration of the exercise [81]. Wearable
smart devices are useful tools for the self-monitoring of activity by the patient and for
remote monitoring by the caregivers. A clinical trial is ongoing to explore the efficacy of
integrated do-it-yourself smartwatch glucose monitoring compared to scanned continuous
glucose-monitoring systems [82]. In another study, Fitbit® data from diabetic patients
were used to correlate the association of physical activity with glycemic exposure. Further,
assessing PA quantitatively may show to be useful in making mealtime treatment decisions.
It was also observed that participating in PA every day demonstrated an immediate or later
impact on glucose control [30]. Akyol et al. reported a novel consumer-wearable device
called Diafit that works as a customizable glucose monitor for diabetes patients [40]. In a
study by Weatherall et al., the researchers demonstrated an association between sleep and
PA data from these wearable devices (Fitbit Charge HR) and the information reported by the
type 2 diabetes mellitus (T2DM) patients themselves. It was observed that the self-reported
data were positively associated with both the PA data (r = 0.35, p = 0.001) and the sleep
data (r = 0.24, p = 0.04) [31]. Hence, it is believed that monitoring patients extensively could
allow them to make decisions on disease treatments. In addition, data from these wearables
have the potential to improve patient-reported outcomes and their care. There is also a non-
invasive method of monitoring glucose that is performed by pressing the wrist or fingertip
on the thin glass behind any smart wristwatch, which consist of a chemochromic mixture
that has the same function as a PPG sensor. These chemochromic components facilitate
the measurement of various metabolites from sweat, which are further used to obtain the
glucose concentration using neural network algorithms built into the PPG sensor. The
values obtained from this showed a high correlation with invasive methods of monitoring
glucose. Hence, wearables provide a non-invasive, miniaturized, easy-to-operate, and
novel method for glucometry, which could be used as an alternative to invasive tools in
clinical settings [83]. In another study reported by Lee et al., smartwatch data along with
other digital data were used to enable the better prevention of metabolic syndromes by the
continuous detection of several health factors [41].

2.6. Sleep Quality

Sleep is important for normal bodily functions and for good health. A lack of sleep
can have physical, emotional, and mental effects and can lead to serious health conditions,
especially among diseased individuals. Both PA and sleep are related to each other. Wear-
able technology is currently being used to track PA and sleep, which could help researchers
study sleep science in-depth, resulting in the better diagnosis of sleep-related disorders [84].
Sathyanarayana et al. demonstrated that deep learning can be used to predict sleep quality
(whether it was good or poor) by making use of an actigraph obtained from the waking
hours of an individual [85]. In another study by Berryhill et al., it was reported that a
wearable sleep tracker could improve sleep quality in healthy people and track the quality
as well as quantity of sleep. They also compared the sleep quality measured by wearables
and polysomnography. The wearables showed a low precision error (17.8 min) when
measuring sleep duration [44]. Currently, there are so many sleep trackers available on
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the market that it is difficult to discern which one is the best. Lees et al. performed a
comparison among various wearables that track sleep and time in bed by using a sleep
diary (SD). The Jawbone UP3 and Fitbit Charge Heart Rate devices showed the greatest
equivalence to the SD in terms of sleeping time. The SenseWear Armband, Garmin Vivos-
mart, and Jawbone UP3 devices showed the greatest equivalence to the SD in terms of time
in bed [86]. Meharabadi et al. used a wearable ring and watch to measure sleep quality,
and observed that for total sleep time, the correlation of the actigraphy data with the ring
data was 0.86 (p < 0.001); with the watch data, the correlation was much lower, at 0.59
(p < 0.001) [42]. Topalidis et al. also observed that wrist-worn device data and actigraph
reports that derived the wake-up time and sleep time had high correlations (0.96 and 0.84,
respectively; p < 0.001) with subjective reports [87]. In a study conducted by Chen at al., a
PPG smartwatch outperformed the polysomnography method for detecting obstructive
sleep apnea. An accuracy of 81.1% was achieved [43]. Papini et al. also observed that a
wrist-worn PPG-integrated smartwatch could complement the standard apnea diagnostic
techniques with a relatively lower correlation of 0.61 [88]. Ko et al. conducted a study on
sleep quantification in PD patients using smartwatches, and detected abnormal rapid eye
movements. They also observed that the percentage of the deep-sleep stage differs between
healthy (38.1) and PD (22.0) patients [89].

2.7. Psychological Illness

Apart from detecting physiological illnesses, wearable devices play an important
role in addressing psychological characteristics that are often neglected due to a lack of
symptomatic evidence. Wearable device data equipped with ML algorithms are helpful for
extracting the highly personalized nature of psychological conditions such as depression
and mood swings. A recent study on 14 young people using EEG data, neurocognitive
assessments, and lifestyle data from wearable devices revealed that each person had distinct
depression determinants [90]. Hence, highly personalized diagnoses and treatments are
required. In another interesting study, pictures were shown to the participants of the study.
A machine-learning analysis further identified important features, and classifiers were used
to predict the valence and arousal. Although the accuracy was not significantly high (69.9%),
it showed the possibility of identifying emotional states using wearable devices [91–93].
Apart from the emotional state, the supervised machine-learning and gradient-boosting
algorithm DART (dropouts meet multiple additive regression trees) [94] has been used for
the detection of depression in a group of working young people wearing a Fitbit wristband.
This was further evaluated by performing a k-fold cross-validation on the test sets. The
study showed that the severity of depression symptoms was associated with nighttime
heart rate variation [45]. Anxiety and depression have also been diagnosed in children
with the help of wearable data devices and a machine-learning method such as k-nearest
neighbor (kNN). A diagnosis accuracy of 75% was achieved by using the kNN method [95].
Stress is another mental health issue that has become very prevalent among adults. A
study by Nath and Thapliyal proposed a new prototype for detecting stress among people
using a wristband embedded with EDA, PPG, and ST sensors, which provided EDA, blood
volume pulse (BVP), IBI, and ST signals that could distinguish between the stressed and
non-stressed state of a person [96].

3. Role of Machine Learning in Diagnostics

Very often, the data from wearable devices are used as an additive to other medical
data. These wearable devices generate a huge amount of multivariate time-series data.
Extracting deeper insight from the first level of data requires data preprocessing and exten-
sive analyses, for which machine-learning (ML) algorithms have become an indispensable
tool for researchers [97]. Machine learning belongs to the field of artificial intelligence. In
ML, programs perform some tasks, learn from the performance, and perform new tasks
based on their prior learning. Figure 1 shows how machine-learning algorithms are used
for the analysis of data extracted from wearable devices.
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Figure 1. Schematic diagram showing how machine learning algorithms are used for the analysis of
data extracted from wearable devices.

In the context of big data, ML-based algorithms have outperformed conventional
algorithms. Moreover, wearable devices are particularly useful for revealing the underlying
personalized characteristics of several physiological and psychological diseases. Providing
personalized diagnoses and treatments has become feasible due to ML algorithms. In this
section, we discuss different ML algorithms used for the analysis of data from wearable
devices and their outcomes in the context of different diseases.

An analysis of wearable device data is primarily focused on identifying anomalous
behaviors in the recorded data, and also predicting future events [98]. This is achieved by
training the machine-learning model with the recorded data of known anomalous events
and testing the model’s performance with previously unseen data. Apart from statistical
methods based on the resting heart rate difference coupled with step counts [16,17], ML
algorithms such as the support vector machine (SVM) method [99], the random forest (RF)
method [100], gradient boosting decision trees [101], and the k-nearest neighbors (kNN)
method [102] have been used. Among them, SVM performs best [103]. These conventional
algorithms were used to build models for analyzing ECG data, and these models were used
for stress classification based on smartwatch data. Feature engineering played an important
role in improving the performance of the built models [104]. Feature engineering includes
converting time-series data to the frequency space and extracting seasonality, frequency
spectra, and power spectral density [105].

Machine-learning algorithms have been applied to data from implanted electroen-
cephalography (EEG) electrodes and wearable devices for the detection of epileptic seizures,
as well as for the prediction of seizure events. The wearable devices have a reported sensi-
tivity of more than 90% for detecting seizures [106]. Weiting et al. used several algorithms,
including SVM, RF, and naive Bayes, to build an ML algorithm ensemble for the purpose of
predicting the cardiovascular risk from wearable healthcare data-collection devices [107]. In
a study involving 407 participants using smartwatches, a gradient-boosting algorithm iden-
tified and predicted SARS-CoV2 infections [108]. Researchers have used multiple-instance
learning via an embedded instance selection (MILES) method for feature transformation to
detect obstructive cardiomyopathy [109]. However, conventional algorithms such as kNN
perform better than deep-learning approaches at detecting out-of-distribution events for
human activity recognition [110]. Neural networks are the building blocks of deep-learning
methods. The autoregressive integrated moving average (ARIMA) model [111], which
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evolved from neural networks, is popularly used for time-series data analyses. It has also
been used to analyze data from wearables. The ARIMA model is a type of auto-regression
model. It predicts future observations based on past observations, while considering sea-
sonal effects. The current value of time-series data is considered as the linear combination
of past records. Applying random forest and ARIMA on blood pressure data has identified
a personalized dependence of blood pressure on other lifestyle factors [112]. DeepBeat, a
deep-learning method based on a convolution neural network (CNN), has been developed
to assess data quality as well as abnormal heart rhythms and atrial fibrillation [14]. In a
recurrent neural network (RNN), the features are connected by temporal sequences and the
past inputs are stored for a certain amount of time, which often leads to vanishing gradient
problems that can be overcome by long short-term memory (LSTM) algorithms [113,114].
LSTM algorithms are also used for predictive analyses. Matthew et al. used ARIMA and
LSTM along with other ML models to predict future heart rate irregularities, and they
observed that ARIMA performed better compared to the other algorithms [115]. The LSTM-
based method has successfully been used to detect COVID-19 using wearable data [10].
LSTM has also been used for detecting congestive heart failure [116]. Cho et al. claimed
that one-class SVM provided a 23.5–40% earlier detection of COVID-19 compared to the
LSTM method [79]. LSTM has also been applied for estimating sleep stages from wearable
data [117].

In addition, several ML-based algorithms and platforms have been developed for
analyzing wearable data. PRISM uses Fourier-transform-based engineered features coupled
with text data, analyzed by text mining, to provide a data-driven platform for monitoring
mental health [118]. A correlation-based emotion recognition algorithm (CorrNet) recog-
nizes emotions when a person watches videos. It also employs feature engineering based
on correlations [119]. Kong et al. developed an algorithm that can remove non-stationary
motion artefacts in heart rate data by converting the data into a frequency domain [120].
The ROAMM framework was developed to detect the real-time activity of a user. It is
coupled with a server for remote analysis [121]. The deep-learning-based android app
‘SmartFall’ uses smartwatch data to detect falls [122]. Kwon et al. implemented a neural-
network-based smartwatch interface for the recognition of gesture patterns [123]. The
Roche PD Mobile Application was developed for the remote quantification of motor sign
severity in early-stage PD patients [124]. Zylstra et al. developed a mobile health platform
for the daily collection of clinically relevant measurements for patients with neurological
disorders [125]. The iSenseSleep app works to detect sleep duration based on wearable
data and smartphone usage data [126].

4. Future Perspectives and Challenges

Advancements in technology have allowed for the generation of wearables that can
track data, such as heart rate, steps, and calories, in a humongous amount. Researchers
have now started to branch out from physical activity tracking to focusing more on major
healthcare challenges, including diabetes management and the remote monitoring of older
individuals. Hence, to achieve this goal, researchers have been working on the development
of biosensors that are incorporated with bioreceptors such as antibodies, enzymes, or cell
receptors [127].

The rapid progress in the development of wearables is very evident from the increase
in the reporting rate of proof-of-concept studies. However, there are many challenges
associated with wearables in healthcare. One of the major challenges of using wearables as
smart diagnostic tools is associated with their precision and accuracy. A recent study by
Filippo et al. highlighted the deviation in the results obtained by smartphone applications
and wearable devices [128]. In addition, the results from different devices vary. Gloria
et al. performed a comparative study involving different smartwatches [129]. Scarlet et al.
compared the diagnostic accuracy of smartwatches for detecting cardiac arrhythmia [130].
Hahnen et al. conducted a study with over 127 individuals and observed that the accuracy
and precision of heart rate data met the accuracy guidelines, but the blood pressure and
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oxygen saturation data failed the guidelines [131]. In a study conducted by Nelson et al.,
the data from an Apple Watch and a Fitbit device were compared with ambulatory echocar-
diogram (ECG) data collected from the same subject. The Apple Watch and Fitbit data
showed agreement with the ECG data up to 95% and 91%, respectively [132]. However, the
Fitbit data did not outperform the ECG data in the detection of epileptic seizures [133]. The
accuracy of wearable devices must at least be at a comparative level with the conventional
diagnostic methods.

Another challenge is the energy consumption, especially in MEMS-based inertial
measurement units and wearable sensors. There is a need to reduce the order of magnitude
of the energy in sensing and wireless communication by utilizing technologies that can
help with energy reduction and overcome this challenge. Most of these technologies are
under clinical evaluation and require regulatory approvals before commercialization [134].
To manage the energy consumption, the size of sensors has been reduced. Wearable devices
also require internet access. A limited internet connectivity limits the use of wearables in
the rural areas of under-developed countries. For poverty-stricken countries, the current
cost of wearables and internet service has made wearables out-of-reach for many people.
The wearability of these devices is also an issue. Users prefer them to be comfortable and
light enough to wear and carry around, without hindering their daily activities. Hence, the
tradeoff between the complexities associated with the computations and the weight and
size of the wearable is one of the major challenges. Another challenge is the safety of the
user, which could come into the picture when using wearable devices that use wireless
technology for transferring data and that involve radiation, which could have a negative
effect on the user’s health [135].

Data security and privacy are other major challenges when it comes to data from
wearables. Implementing security policies while maintaining the size and computational
complexities of the wearables is quite a challenge. Wearables have poor data encryption
and protection. Patients also have concerns over data security and may refuse to use
wearable devices [136]. The health literacy of patients is an associated issue.

The application of wearables comes with many regulations and legal frameworks, as
it involves individual data collection, processing, storing, sharing, and further analysis for
research purposes. Hence, the privacy and security of an individual’s sensitive information
comes into question [137]. Vast applications of wearable technology could be possible,
especially through the development of regulatory modifications in the data privacy aspect.
It has become important to make the data exchange among health app providers, wearable
manufacturers, and health insurers more transparent [138]. These aspects may also create a
barrier in the market. Every country has their own requirement or certification policy for
market access, and these need to be considered during the early stages of product develop-
ment. There are different acts that protect and secure the data of every individual. These
acts include the Health Insurance Portability and Accountability Act of 1996 (HIPAA) in the
USA and the General Data Protection Regulation ((EU) 2016/679, GDPR) in Europe [21].

There is an immense scope and necessity for advancements in wearable technology
and data processing. These can be achieved by incorporating the Internet of things (IoT),
which has numerous applications [135,139,140]. The successful application of wearables
as diagnostic tools also involves identifying and addressing the concerns of clinicians,
healthcare providers, researchers, industry, and users [141].

5. Conclusions

The advancements in wearable technology have expanded the horizon of medical
research in many directions. Wearable technology has manifested in divergent forms that
can be carried on the wrist, head, foot, and other body parts. Among them, wrist-worn
devices are most used and do not need any intervention from clinicians [142]. This drove
us to set an objective to investigate the current landscape of wrist-worn wearables. We
focused on wrist-worn devices working as digital diagnostic tools because of their potential
to leverage the healthcare system in different circumstances, such as caring for elderly
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people, providing remote healthcare, and providing healthcare in ailing socio-economic
conditions. Wearables have proven their usefulness in the diagnosis and monitoring of
diseases such as cardiovascular diseases, neurological diseases, liver diseases, and even
coronavirus diseases. It has also been shown that there are various machine-learning
models and algorithms that can be applied for the analysis of wearable data. The growth in
this field has led to the early detection of diseases, a faster response to drugs, and higher
health literacy, resulting in better patient outcomes. Further enhancements in wearable
technology are required to overcome the current challenges as discussed in this paper,
including data security and privacy through improved regulation mechanisms.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12092110/s1, Methods for selecting research articles.

Author Contributions: Conceptualization, S.C. and N.B.; writing—original draft preparation, S.C.
and N.B.; writing—review and editing, S.C., N.B., L.D.J., S.K. and S.A. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, X.; Dunn, J.; Salins, D.; Zhou, G.; Zhou, W.; Schüssler-Fiorenza Rose, S.M.; Perelman, D.; Colbert, E.; Runge, R.; Rego, S.; et al.

Digital Health: Tracking Physiomes and Activity Using Wearable Biosensors Reveals Useful Health-Related Information. PLoS
Biol. 2001, 15, e2001402. [CrossRef] [PubMed]

2. Ye, S.; Feng, S.; Huang, L.; Bian, S. Recent Progress in Wearable Biosensors: From Healthcare Monitoring to Sports Analytics.
Biosensors 2020, 10, 205. [CrossRef] [PubMed]

3. El-Rashidy, N.; El-Sappagh, S.; Riazul Islam, S.M.; El-Bakry, H.M.; Abdelrazek, S. Mobile Health in Remote Patient Monitoring for
Chronic Diseases: Principles, Trends, and Challenges. Diagnostics 2021, 11, 607. [CrossRef] [PubMed]

4. Cosoli, G.; Scalise, L.; Poli, A.; Spinsante, S. Wearable devices as a valid support for diagnostic excellence: Lessons from a
pandemic going forward. Health Technol. 2021, 11, 673–675. [CrossRef] [PubMed]

5. Henriksen, A.; Mikalsen, M.H.; Woldaregay, A.Z.; Muzny, M.; Hartvigsen, G.; Hopstock, L.A.; Grimsgaard, S. Using Fitness
Trackers and Smartwatches to Measure Physical Activity in Research: Analysis of Consumer Wrist-Worn Wearables. J. Med.
Internet Res. 2018, 20, e110. [CrossRef] [PubMed]
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