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Abstract: Given growing clinical needs, in recent years Artificial Intelligence (AI) techniques have
increasingly been used to define the best approaches for survival assessment and prediction in
patients with brain tumors. Advances in computational resources, and the collection of (mainly)
public databases, have promoted this rapid development. This narrative review of the current state-
of-the-art aimed to survey current applications of AI in predicting survival in patients with brain
tumors, with a focus on Magnetic Resonance Imaging (MRI). An extensive search was performed on
PubMed and Google Scholar using a Boolean research query based on MeSH terms and restricting
the search to the period between 2012 and 2022. Fifty studies were selected, mainly based on Machine
Learning (ML), Deep Learning (DL), radiomics-based methods, and methods that exploit traditional
imaging techniques for survival assessment. In addition, we focused on two distinct tasks related to
survival assessment: the first on the classification of subjects into survival classes (short and long-term
or eventually short, mid and long-term) to stratify patients in distinct groups . The second focused on
quantification, in days or months, of the individual survival interval. Our survey showed excellent
state-of-the-art methods for the first, with accuracy up to ∼98%. The latter task appears to be the
most challenging, but state-of-the-art techniques showed promising results, albeit with limitations,
with C-Index up to ∼0.91. In conclusion, according to the specific task, the available computational
methods perform differently, and the choice of the best one to use is non-univocal and dependent
on many aspects. Unequivocally, the use of features derived from quantitative imaging has been
shown to be advantageous for AI applications, including survival prediction. This evidence from the
literature motivates further research in the field of AI-powered methods for survival prediction in
patients with brain tumors, in particular, using the wealth of information provided by quantitative
MRI techniques.

Keywords: brain tumors; artificial intelligence; machine learning; survival prediction; magnetic
resonance imaging
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1. Introduction

Artificial intelligence (AI) is a branch of computer science that has been successfully
applied to the analysis and extraction of meaningful features from medical images, with var-
ious clinical applications [1]. In particular, the use of AI in brain imaging has been fruitful,
showing promising results and generating new perspectives for diagnosis, prognosis and
treatment planning [2–5].

Brain tumors are among the top ten causes of death from cancer [6,7] and can be
metastatic or primary. Gliomas account for about 80% of primary malignant brain tu-
mors; they include different sub-types of which the most common are glioblastoma (GBM),
astrocytoma, oligodendroglioma, and ependymoma [8,9]. Some subtype-specific charac-
teristics, such as cell invasion and proliferation, angiogenesis, apoptosis , and the high
degree of heterogeneity contribute to both increased morbidity and mortality [10]. Among
gliomas, GBM is the most aggressive and heterogeneous (at tissue, cellular and molecular
level), with the highest short-term mortality rate [11,12]. Currently, the average 5-year
survival rate for GBM is 5.6–7%, while the median survival is about 12–15 months [13–16].
Despite aggressive management with surgery, radiotherapy, and chemotherapy, overall
patient survival (OS) remains dismal [15,17–19]. Magnetic Resonance Imaging (MRI) is the
modality of choice in neuro-oncology for diagnosis, treatment response evaluation and
prognosis prediction; since it is non-invasive and can convey a considerable amount of in-
formation about both the tumor and the surrounding areas [20,21]. Several MR techniques
are routinely used to image brain tumors, aiding management from diagnosis to therapy
assessment [22–24], and many novel techniques are in active development [20,25], however
current imaging is insufficient.

Partially prompted by this unmet need, recent years have seen an increasing inter-
est in applying AI techniques to MRI. Great emphasis has been placed on radiomics,
a technique which aims to extract quantitative and reproducible features from images,
including complex patterns that are often not visible to the human eye [26,27]. Specifically,
radiomics refers to high-throughput extraction of quantitative features, that result in the
conversion of images into mineable data, and the subsequent analysis of these data for
decision support [28]. This technique has been applied to several imaging modalities
including Ultrasound (US) [29], Computed Tomography (CT) [30] and MRI [31]. These
approaches have been primarily applied to oncology, although there has been a growing
interest also in cardiovascular applications [30,32–34]. Through the study of quantitative
features extracted from MR images, by computing local macro- and micro-scale mor-
phological changes in texture patterns, radiomics can accurately reflect the underlying
pathophysiology of the disease by capturing statistical inter-relationships between voxels
under examination [6,11,35–39].

A growing body of evidence suggests that radiomic analysis of MR images, can
aid OS prediction, while also influencing patient management [40,41]. Therefore, those
“surrogate” predictors of patient survival are of fundamental clinical interest: in particular,
prediction of OS and survival classification (SC) in groups (long-term and short-term
survival—survival stratification), as they would be of utmost importance in treatment
evaluation, and follow-up management [40–43]. Different methods based on Machine
Learning (ML) and Deep Learning (DL), and related algorithms, have been proposed to
address this need for assessing survival. Traditional ML-based methods, such as support
vector machines (SVMs), k-nearest neighbors algorithm (k-NN), and random forests (RFs)
are generally utilized for brain tumor survival analysis. However, these ML-based methods
have the common limitation of hand-crafted feature extraction [44]. DL-based methods
overcome the drawback of hand-crafted feature extraction [45,46], having the ability to
learn and self-determine the best features to use in a prediction model [47]. These DL
methods, based on completely different approaches, have shown different performance
in SC and prediction of OS. Despite the advantages and disadvantages of both ML and
DL methods, establishing which of one is better is not possible, since performance of
the various algorithms may vary depending on the specific task (OS or SC) and on the
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composition and quality of the dataset. The focus of this narrative review is to explore
currently-published AI techniques applied to MRI for OS prediction and long/short term
SC in patients with brain tumors. Several methods that have been proposed over the last 10
years, have been investigated. In the results section, ML and DL algorithms are presented
in order of their performance.

This manuscript is organized as follows. Section 2 describes the methodology adopted
in the literature review. The selected papers are briefly described in Section 3. Discussions
and final remarks are presented in Section 4.

2. Methods
2.1. Literature Review

A literature review was performed according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Figure 1). PubMed and
Google Scholar databases were searched to identify all potentially relevant studies back to 1
January 2012. The search query was built using medical subject headings (MeSH) related to
AI and brain. The following search query was used on both databases, restricted to original
articles published between 2012–2022:

(“Machine Learning” OR “artificial intelligence” OR “Deep Learning”) AND brain
AND (tumor OR tumour) AND (survival OR “life expectancy”) AND (pediatric OR
paediatric OR adults) AND (MRI OR “magnetic resonance”)

All studies evaluating AI and ML models for survival prediction in patients with
brain tumors were included in this study. The initial search returned 1889 results (59 from
PubMed, 1830 from Google Scholar), with a significant imbalance of results from Google
Scholar. Following manual elimination of duplicates, titles were carefully screened to
identify relevant papers. Any work that matched at least one of the following exclusion
criteria was excluded:

• no full-text available;
• no AI application or non-pertinent application;
• conference proceedings;
• books or book chapters;
• non-English manuscripts.

Review of the titles narrowed the results to 144 articles, 59 papers from PubMed and
85 from Google Scholar. Subsequently, review of the abstracts further narrowed the results
to 88 articles, 35 papers from PubMed and 53 from Google Scholar. Despite review of titles
and abstracts, not all the articles found on Google Scholar were relevant, moreover, some
were not indexed in PubMed, and, considering the target audience and the push towards
translational applications, we decided to include in this survey only indexed papers. Hence,
after final revision, 50 papers (24 from PubMed, 26 from Google Scholar) were deemed
eligible and included in this review.

2.2. Metrics

Several metrics can be used to evaluate a model, the most popular and well known
are accuracy, sensitivity, specificity, and the area under the receiver operating characteristic
curve (AUC), illustrating the diagnostic ability of a binary classifier system as its cut-off
value varies. When estimating the goodness of a model that predicts survival, using the
concordance index (C-Index) as an assessment metric may be useful. To account for the
heterogeneity of the methods among the selected papers, C-Index and accuracy were used
as comparison metrics for the SC and OS tasks respectively.
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Figure 1. PRISMA diagram: flowchart showing screening and selection of relevant papers. For a
description of the selection process, please refer to Section 2.1.

3. Results

Recent years have seen an increasing interest in using AI applications for survival pre-
diction and risk stratification. Figure 2 shows the number of papers included in this review
according to their publishing year. A variety of methods have been proposed over the past
decade with progressive developments leading to current state-of-the-art methods. Older
methods were based on clinical [48,49], pathological [50,51] and imaging [30,52] biomarkers,
those were gradually refined with the deployment of ML and DL techniques. In this review,
ML and DL algorithms are chronologically presented. Subsequently, the performance of
the best performing algorithms is briefly discussed.

Figure 2. Graphical representation of the number of articles included in this review: This bar plot
depicts the papers included in this review according to their publishing year.

3.1. Years: 2012–2016

A series of studies focused on defining paradigms that show the potential combination
of clinical and computer-aided methods. These pioneering studies laid the theoretical
foundation for subsequent research based on ML and DL methods. Most of these studies
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focused on glioma and, in particular, GBM. However, some results can be generalised
across the wide spectrum of brain tumors.

Zacharaki et al. [53] showed how predictive models, based on data mining algo-
rithms of imaging features, provide more accurate prognostic predictions than traditional
histopathological classification alone. Macyszyn et al. [54] showed how imaging patterns,
analysed with with ML techniques, could provide useful information for survival predic-
tion. Oermann et al. [55] developed an Artificial Neural Network for OS prediction that
outperformed traditional statistical tools and scoring indices for individual patient progno-
sis prediction. Kickingereder et al. [56], in a pioneering study of radiomic profiling of GBM,
identified survival-related imaging predictors that performed better than clinical and risk
models. Radiomic signatures based on MRI images provided a benefit in OS prediction
and risk stratification. The authors designed a Cox proportional hazard (CPH) model using
radiomic features previously selected using a dimensional reduction technique. Comparing
the use of radiomic features either alone or in conjunction with clinical information, they
found a C-index of 0.696.

Emblem et al. [57] showed the usefulness of a SVM for SC. This model, developed
particularly to perform early survival prediction in patients with glioma, showed that
relative cerebral blood volume (rCBV) was the most significant imaging parameter for
survival prediction. Gutman et al. [21] showed that image features, such as lesion size
and enhancement after gadolinium-based contrast agent (GBCA), correlate with OS. In a
pioneering work, Jain et al. [58] demonstrated a correlation between morphological fea-
tures and haemodynamic parameters. This study focused on the non-enhancing tumor
component and showed a significant correlation between the rCBV in the non-enhancing
tumor region (NER) and the lack of epidermal growth factor receptor (EGFR) mutation.

Some studies [59,60] proposed the use of shape features extracted from the presumed-
necrotic area or algorithmically assessed shape features to improve survival prediction.
Liu et al. [61] proposed the use of a functional and structural brain network, by integrating
information from Diffusion Tensor Imaging (DTI) and functional MRI (fMRI). Survival
estimation and the subsequent subdivision into risk classes was improved by using those
quantities which provided complementary information. This led to a classification accuracy
of 75.0%, significantly higher than the accuracy provided by clinical information alone
(accuracy = 63.2%).

These papers served as a prompt for the scientific community, and also demon-
strated the potential utility of using additional information (such as radiomic, genomic,
and histopathologic data [62,63]) in the predictive models rather than clinical informa-
tion alone.

3.2. Years: 2016–2018

Research gained momentum and, while still focusing on ML and radiomics, as DL
became more accessible, an increasing number of studies explored its applications in
medical imaging. Several clinical, functional, radiomic and morphological biomarkers
were increasingly being included in the portfolio of information used to predict survival,
and found to provide added value.

Kim et al. [42] emphasized the importance of the Apparent Diffusion Coefficient
(ADC) as a survival predictor biomarker, demonstrating that its significant correlation with
survival. Sanghani et al. [64] showed how OS prediction is improved by using different
types of radiomic features (volumetric, shape and texture) from multi-parametric MRI.
They used an SVM classifier set up for stratification into 2 and 3 survival classes (short-,
long-survival groups and short-, mid-, long-survival groups). The stratified 5-fold cross-
validation accuracy obtained for the 2-class classifier was 97.5%, while that for the 3-class
classifier was 87.1%.

Several studies highlighted that integrating multi-modal imaging and radiomic phe-
notyping was beneficial for OS prediction [31,56,65,66]. Bae et al. [31] trained a Random
Survival Forest (RSF) model with 18 radiomic features selected by variable hunting along



Diagnostics 2022, 12, 2125 6 of 16

with clinical and genetic profiles (presence of O6-methylguanine-DNA-methyltransferase
[MGMT] promoter methylation and isocitrate dehydrogenase 1 [IDH 1] mutation) to pre-
dict OS. The RSF model integrated with radiomic, clinical and genetic features showed the
best performance (AUC = 0.74), when compared to models that only considered one type of
feature. Peeken et al. [65] showed that the combination of multi-modal images was decisive
for improving OS prediction; moreover, among all the considered features, those derived
from MRI were the most predictive and, therefore, relevant. Particularly, for OS prediction,
this model showed a C-Index of 0.61. A C-index of 0.71 was obtained by including the
remaining features set and clinical information in the model. Kickingereder et al. [67]
obtained a C-Index of 0.77 using a radiomic signature composed of 8 features and a Cox
regression model of the least absolute shrinkage and selection operator (LASSO) penalized
type. A subsequent study performed by Prasanna et al. [35] showed that the use of features
from peritumoral brain parenchyma could also aid in predicting long versus short term
survival. In this case, 10 features from peritumoral regions were found to be predictive,
when compared with features from enhancing tumors, necrotic regions and clinical charac-
teristics. The combination of clinical and radiomic features generated a model with C-index
of 0.734, improving GBM survival prediction. Another study conducted by Kim et al. [68]
showed preliminary evidence that in peritumoral NER, fractional anisotropy (FA) and
normalized rCBV (nCBV) features could have improved OS prediction. OS was estimated
analysing radiomic features extracted in the NER. The model, combining nCBV and FA
performed better than single image/methods radiomic models and obtained a C-Index of
0.87. However, given the nature of these retrospective studies and the small sample size,
the generalizability and statistical power of this data may be limited.

A few studies [36,37] explored the effect of heterogeneity on survival stratification
highlighting that the distribution of heterogeneity within the tumor was a determining
parameter for correct classification (the classification accuracy was in the range 78.2–80.7%
[min-max]). A pioneering study [11] identified spatial image features from tumor habitats and
subregions that were associated with survival time. In particular, spatial features extracted
from tumor habitats were effective in predicting survival [11,69]. Two databases of GBM
images were used. The model with habitat-based features for survival prediction showed
promising accuracy in both databases (86.7–87.5%). Suter et al. [70] emphasise that the use
of robust radiomic features could benefit the generalizability of the model, specific to OS,
especially for single centre based models applied to unseen multi-centre datasets. A separate
study [38] evaluated the impact of brain functional networks on OS achieving an accuracy
of 86.8% using resting state fMRI (rs-fMRI) derived information. This study was based on
the hypothesis that connectomics-based features could capture tumor-induced network level
alterations that can influence prognosis, underlining the importance of including rs-fMRI in
the pre-surgical workout of patients with glioma. Nematollahi et al. [71] showed the impact
of a decision tree trained using both clinical and radiomic features. They obtained an accuracy
of 90.9% for OS classification, using the C5.0 decision tree algorithm.

Preliminary results of DL applications were also beginning to emerge. Nie et al. [43]
developed a DL framework for automatic extraction of features from multimodal MR images
(T1-weighted [T1w] imaging, fMRI, DTI), combining elements of both DL (deeply learned
features) and traditional ML (handcrafted features), using a tri-dimensional convolutional
neural network (3D-CNN) and generating a new network architecture for using multichan-
nel data and learning supervised features. In the long versus short time classification task
(SC), i.e., dichotomous classification, the model achieved an accuracy of 89.9%. The authors
particularly stressed how relevant were the features learned from DTI and fMRI.

3.3. Years: 2019–2020

Between 2019 and 2020, the focus shifted away from ML to pivot on DL, hybrid techniques
(e.g., mixed DL + ML techniques) and CNNs, which have become one of the reference paradigms.
Several studies suggested that DL-based survival prediction can outperform ML-based ones.
In particular, non-linear DL methods may be useful in survival studies [72].
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Way et al. [73] identified a correlation between volumetric DL features and OS.
Zadeh et al. [74] developed a CNN for SC based on histopathology (DeepSurvNet) able to
classify patients into 4 distinct survival classes. DeepSurvNet achieved an accuracy of 80%
on blind data. Furthermore, through the analysis of mutation frequencies, DeepSurvNet
was able to capture the genetic differences between the various survival classes. The use of
histopathological images was therefore beneficial for SC. Nie et al. [75] used a multichannel
3D-CNN with multimodal images. Following feature extraction by DL methods, features
were entered into an SVM for SC (long versus short survival). The model reported an
accuracy of 90.7%.

A variety of authors have also employed hybrid techniques [44,45,76–81], often based
on ML and DL. Some authors [81] have shown that by adding genomic information,
the predictive accuracy would significantly increase (in this study the mean root mean
square error (RMSE) was found to be reduced by 84 days compared to the use of a CNN
based only on single mode MR images). Others experimented a model based on a neural
network [79] to categorise survival into two classes and provide OS in days, showing
inferior performance (accuracy = 0.59), therefore, indirectly justifying the use of a deep
neural network, such as CNNs.

Recent studies [77] have also highlighted the usefulness of radiogenomics for OS
prediction in days. A hypercolumn-based CNN was employed for segmentation, fea-
tures extraction and combination of imaging-derived biomarkers with gene expression.
The radiogenomic model performed best when compared to the performance of individual
models with genomic and radiomic information. Of particular relevance, Zhang et al. [76]
used a mixed technique to identify high-risk sub-regions within a lesion that may influence
survival. In brief, K-means clustering was used for initial identification of sub-regions of
interest (294 total); subsequently, a multiple-instance learning (MIL) model was used for
risk stratification. The performance of high-risk regions in survival stratification showed
an accuracy of 87.9%, higher than a model built using radiomic features extracted from the
gross tumor region (70.19%). Different authors [44,45] focused on the impact of radiomic
features on the DL model. Feng et al. [45] developed a 3D-U-Net designed to perform seg-
mentation (since the features were designed for a segmentation task and then repurposed
for a different one, accuracy in classification was not high). They used a multivariate linear
regression model to minimize over fitting, although at the cost of its expressiveness. Never-
theless, the authors won the OS subtask competition at the Medical Image Computing and
Computer Assisted Intervention Society Brain Tumor Segmentation (MICCAI BraTS) 2018
challenge. This paper proved the feasibility of using features not linked to a specific task.
Han et al. [44], developed a mixed technique (ML + DL) able to classify patients into long-
and short-term survivors with a log-rank test P value < 0.001.

Numerous studies [42,58,81,82] agreed on the importance of using features derived
from Perfusion-Weighted Imaging (PWI) and Diffusion-Weighted Imaging (DWI).
Petrova et al. [82] identified features related to ADC and rCBV parameters as possible
OS predictors. In this study features were also ranked according to their importance;
between ADC and rCBV features, the most important were: 95th percentile values for ADC
(ADC_95), standard deviation of rCBV (rCBV_std), standard deviation of ADC (ADC_std),
and median of rCBV (rCBV_median). Sun et al. [83] presented a DL-based framework
for brain tumor segmentation and survival prediction in glioma, using multimodal MRI
scans. Ensembles of three different 3D CNN architectures for robust performance through
a majority rule were used for tumor segmentation. For survival prediction, 4524 radiomic
features were extracted from segmented tumor regions, then, a decision tree and cross
validation were used to select relevant features. Finally, a random forest model was trained
to predict OS. This method ranked 5th at the MICCAI BraTS 2018, with 61.0% accuracy for
classification in short-, mid- or long-survivors.

Several studies [59,73,78,84–88] have shown a potential correlation of radiomic features
extracted from MRI with OS, which is emerging to be helpful in predicting GBM OS.
Lu et al. [87] developed a ML model for predicting OS in GBM, based on the use of radiomic,



Diagnostics 2022, 12, 2125 8 of 16

clinical and semantic features, the latter based on the Visually AccesSAble Rembrandt
Images (VASARI) feature scoring system. This study, based on contrast-enhanced T1-
weighted (CE-T1w) imaging, showed excellent performance for OS prediction. 333 radiomic
features and 16 semantic features (VASARI) were extracted; following the selection and
ranking of radiomic features, together with semantic and clinical features, the authors built
a ML model aimed primarily at predicting MGMT promoter methylation status. MGMT
methylation was used with the previously determined set of features (radiomic, clinical
and semantic) to build a second model to predict OS. Both a CPH regression model and a
RSF model were tested. The RSF model had the best performance, with C-Index of 0.91.

3.4. Years: 2021–2022

More recently, we observed a consolidation in DL applications such as CNN and,
often, hybrid methods consisting of ML and radiomics.

Chen et al. [89] hypothesised that combining dose-volume histogram (DVH) and clini-
cal features into a single model could lead to better performance than using clinical features
alone. Thus, they developed an ML-based model integrating clinical and dose volume
histograms parameters demonstrating that this integration can improve risk modelling.
They also compared the performance of RSF and CPH to individuate the best classifier. RSF
performed better on the testing set, with a C-Index of 0.85. The RSF-based model obtained
AUC values of 0.91, 0.88 and 0.84 in predicting survival at 1, 2, and 3 years respectively,
therefore showing good predictive accuracy. Gross tumor volume (GTV) and D99 (also
called the near- minimum absorbed dose, represents the dose that covers 99% of the target
volume) features were also identified as potential new diagnostic biomarkers, in addition
to presence of IDH 1 mutation, Karnofsky performance status (KPS) and smoking status.
Rathore et al. [90] showed that combining in a classifier both MRI, radiomic and histopatho-
logical imaging features can be beneficial for OS prediction, compared to the performance
of classifiers based on a single feature type (MRI, radiomic or histopathological) only.
The accuracy in predicting survival in groups was 0.86, while the C-Index was 0.79.

Huang et al. [40] developed a method that allows prediction of survival with random
forest regressors. A V-Net was used for feature extraction, mainly focused on segmentation
tasks. This project presented an integrated framework between segmentation and survival
prediction. It also achieved an average RMSE of 311.5 for survival prediction, outperforming
other methods proposed by other participants during the BraTS competition. Wang et al. [91]
developed a radiomic signature as pre-treatment predictor of OS. A radiomic signature
derived from CE-T1w and FLAIR sequences, showed better prognostic performance than
signature derived from either individual imaging techniques, and obtained a C-Index of
0.798, out-performing the use of clinical and pathological information only, which obtained
a C-Index of 0.675. According to those results, the radiomic signature may help to identify
patients who would benefit from chemotherapy. The study identified patients with low
grade glioma (LGG) who may have worse survival, and, thanks to the radiomic signature,
they selected patients who may benefit the most from temozolomide (TMZ).

Although slightly inferior in performance, the approach published by Preetha et al. [39],
may have a potentially significant clinical impact by reducing the necessity of contrast
administration for serial scans. The authors generated post-contrast T1w synthetic MR
images from pre-contrast T1w MR images using a deep CNN (dCNN). The quantification
of the contrast-enhancing area from post-contrast synthetic T1w MRI allowed assessment
of the patient’s response to treatment without any significant difference from the true
post-contrast T1w sequences obtained after GBCA administration. These promising re-
sults could promote the application of dCNN in radiology to potentially reduce the need
for GBCA administration. The authors did not observe any significant difference in OS
estimated using the original or the synthetically obtained images. The synthetic images
showed a C-Index of 0.667, while the original images show a C-Index of 0.673.

Various authors focused on the combined use of ML and radiomic techniques for OS
prediction in brain tumors [92,93]. Chato et al. [92] focused on GBM, while Grist et al. [93]
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focused on paediatric brain tumors. The latter combined multi-site MRI with ML methods
to predict survival in paediatric brain tumors, with the aim of stratifying patients to low
and high risk cohorts. In Grist et al. [93], patients underwent PWI and DWI at the time
of diagnosis. After conventional post-processing, a semi-supervised Bayesian survival
analysis was performed. Unsupervised and supervised ML were then performed to
determine sub-groups with different survival, and assess subsequent classification accuracy.
A combination of DWI and PWI was able to determine two sub-groups of brain tumors with
different survival characteristics. Kaplan–Meier analysis of high-grade tumors in the high
and low risk clusters revealed a significant difference in survival characteristics (p < 0.05),
which were subsequently classified with high accuracy (98%) by a single layer Neural
Network, after stratified ten-fold cross validation. The same task with a logistic regressor
generated an accuracy of 90%, indicating that the neural network was more suitable for
this type of task. The model-relevant features, were: uncorrected Cerebral Blood Volume
(uCBV), Region of Interest (ROI) mean, a vascular leakage parameter (K2) ROI mean, uCBV
whole brain mean, tumor volume, and ADC ROI kurtosis. Tumor perfusion measures
were found to be of high importance in determining survival. The authors also state
that perfusion was so relevant for classification purposes that it should be included in
clinical imaging protocols. A particular strength of this work was that it was performed on
multi-site, multi-scanner data.

3.5. Overall Considerations

The main limitations we identified in the reviewed papers are related to the improper
use of techniques and algorithms (often not state-of-the-art), the use of limited or sub-
optimal datasets (e.g., different image acquisition parameters, lack of standardization
protocols or incomplete information) and the use of retrospective cohorts . The combination
of these factors had a major impact on the performance of the different methods.

3.6. Performance

Table 1 summarises characteristics and performance of the best four methods for OS
prediction. Among those, the C-Index fluctuates from 0.79 [90] to 0.91 [87], with the best
performance obtained by an RSF. A graphical representation of the C-Index of the best four
methods is displayed in Figure 3.

For the SC task, Single Layer Neural Network [93], SVM [64], Decision Trees [71], and
3D-CNN plus a SVM [75] achieved the highest accuracy (>90.7%). Characteristics and
performance of those four methods are summarised in Table 2, a graphical representation
of the accuracy of the best four methods is displayed in Figure 4.

Table 1. Characteristics and performance (C-Index) of the four methods with the highest C-Index for
Overall Survival (OS).

Overall Survival (OS)

Reference AI Method Evaluation Procedure Number
of Cases Analysed Features Performance on

Test Set (C-Index)

Lu et al. [87] (2020) Random Survival
Forest (RSF) 70–30% + 10-fold CV 181 Radiomic, Clinical,

Semantic (VASARI) features 0.91

Kim et al. [68] (2019) Generalised Linear
Model

70–30% + 10-fold CV +
LASSO 83 Radiomic, Clinical, PWI,

DTI features 0.87

Chen et al. [89]
(2021)

Random Survival
Forest (RSF) 60–40% 95 Clinical, DVH features 0.85

Rathore et al. [90]
(2021)

Cox Proportional
Hazard Regression

(CPH)
60–40% 171

Radiomic, histopathological
features + Multimodal

imaging
0.79
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0.6
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1.0

Lu 2020 Kim 2019 Chen 2021 Rathore 2021

OS (C-Index)

Figure 3. Performance of OS task: Graphical representation of the performance of the four best
methods for the Overall Survival (OS) task, as evaluated by C-Index [68,87,89,90].

Table 2. Characteristics and performance (accuracy) of the four methods with the highest accuracy
for Survival Classification (SC).

Survival Classification (SC)

Reference AI Method Evaluation Procedure Number
of Cases Analysed Features Performance on

Test Set (Accuracy)

Grist et al. [93] (2021) Single Layer Neural
Network Stratified 10-fold CV 69 Clinical, Bayesian, PWI,

DWI features 98.0%

Sanghani et al. [64]
(2018)

Support Vector
Machine (SVM) Stratified 5-fold CV 163

Radiomic,
Volumetric features +
Multimodal imaging

97.5%

Nematollahi et al. [71]
(2018) Decision Trees 10-fold CV 55

Clinical, Imaging (MRI)
features + Multimodal

imaging
90.9%

Nie et al. [75] (2019)
3D − Convolutional

Neural Network
(CNN) + SVM

75–25% + 3-fold CV 68
Deeply learned (DTI, fMRI)

features +
Multimodal imaging

90.7%

0%

20%

40%

60%

80%

100%

Grist 2021 Sanghani 2018 Nematollahi 2018 Nie 2019

SC (accuracy)

Figure 4. Performance of SC task: Graphical representation of the performance of the four best
methods for the Survival Classification (SC) task, as evaluated by accuracy [64,71,75,93].
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4. Discussion

We presented a general overview of the current literature on AI applications in predict-
ing survival in patients with brain tumors, based on MRI. The use of AI-based techniques,
such as ML and DL, appears beneficial to predict survival. After evaluating several applica-
tions, we ranked the best applications based on the performance of the different algorithms
for the two tasks of interest (OS and SC). Different approaches showed high performance,
and the choice of the best one to use is non-univocal and subject to different variables.
Unequivocally, the use of features derived from PWI and DWI/DTI were of significant
relevance for both tasks. Indeed, the use of quantitative imaging is undoubtedly advanta-
geous for AI applications. This is of particular relevance in an era when fully-quantitative
MR imaging methods are becoming increasingly available and proven to be reproducible
across different vendors [94].

The use of semantic features in addition to clinical and radiomic features proved of
significant relevance for the OS task, similarly to the use of features from clinicopathological
information. The use of multiparametric MR images, compared to unimodal ones, also
leads to significant improvements. ML methods appeared to perform better for this task.
The best four algorithms have C-Index values in the range 0.79–0.91. The best algorithms
were ML methods employing: radiomic, clinical and semantic features [87], PWI and DTI
features [68], clinical features and DVH features [89], multimodal imaging and histopatho-
logical information [90]. For SC, the best performance was shown by: a Single Layer
Neural network used in conjunction with PWI and DWI features, and a SVM classifier
trained with volumetric, texture and shape features extracted from multimodal MR images.
Both achieved accuracy in the order of 98%. The methods using CNN and decision trees
performed slightly worse. Overall, the best four algorithms have accuracy values in the
range 90.7–98.0%. More in details, the best performance was shown by a Single Layer
Neural Network using PWI and DWI features [93], followed by SVM with volumetric,
texture, shape features and multimodal imaging [64], a decision tree-based method [71],
and a DL method, based on a 3D-CNN [75].

It is also worth noting that state-of-the-art methods and algorithms may not be those
used in international competitions (e.g., MICCAI BraTS) which may have intrinsic limita-
tions. For instance, BraTS is an international challenge focused on tumor segmentation
and not OS classification (which was only a subchallenge); therefore the selected features
were not necessarily optimised for OS. Most of the methods presented in this context, either
based on a typical ML or DL architecture, extract and use significant features to achieve
the best possible segmentation (the primary task) and often employ these features also for
the secondary task (OS prediction). Hence, OS prediction is performed on the features that
were chosen to obtain the best possible segmentation, without building a model focused on
OS prediction itself. Therefore, those non-optimised models may obtain worse performance
than state-of-the-art methods exclusively focused on survival prediction.

5. Conclusions

In conclusion, depending on the specific task, different algorithms perform differently.
In particular, ML methods, integrated with additional information, including clinical,
radiomic, semantic and DWI/PWI information showed the best performances for OS
prediction. Without the use of this additional information, DL methods would have
performed better.

Future studies should focus on developing ML/DL models by combining different
data sources (i.e., clinical, radiomic, semantic and PWI/DWI), which are correlated and
may provide complementary information [95] for improving the clinical decision-making
tasks [96]. Moreover, given the proven importance of quantitative techniques such as PWI
and DWI, future ML/DL models should leverage the wealth of data provided by novel
and more refined diffusion and perfusion techniques [97–101], potentially also including
information upon cerebral metabolism [99,102]. By integrating all these data into a single
multimodal model, further improvements in performance could be achieved. Lastly, the
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research community should also plan to evaluate the impact of these integrative DL-based
models, and compare their performance against analogous ML-based models.

Author Contributions: Conceptualization, all authors; Methodology, C.d.N., L.R. and F.Z.; writing—
original draft preparation, C.d.N., L.R. and F.Z.; writing—review and editing, all authors; supervision,
L.R. and F.Z. All authors have read and agreed to the published version of the manuscript.

Funding: Christian di Noia was funded by FSE REACT-EU—PON “Research and innovation” Pro-
gramme 2014–2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Castiglioni, I.; Rundo, L.; Codari, M.; Di Leo, G.; Salvatore, C.; Interlenghi, M.; Gallivanone, F.; Cozzi, A.; D’Amico, N.C.;

Sardanelli, F. AI applications to medical images: From machine learning to deep learning. Phys. Med. 2021, 83, 9–24. [CrossRef]
[PubMed]

2. Segato, A.; Marzullo, A.; Calimeri, F.; De Momi, E. Artificial intelligence for brain diseases: A systematic review. APL Bioeng.
2020, 4, 041503. [CrossRef] [PubMed]

3. Senders, J.T.; Arnaout, O.; Karhade, A.V.; Dasenbrock, H.H.; Gormley, W.B.; Broekman, M.L.; Smith, T.R. Natural and artificial
intelligence in neurosurgery: A systematic review. Neurosurgery 2018, 83, 181–192. [CrossRef] [PubMed]

4. Senders, J.T.; Staples, P.C.; Karhade, A.V.; Zaki, M.M.; Gormley, W.B.; Broekman, M.L.; Smith, T.R.; Arnaout, O. Machine learning
and neurosurgical outcome prediction: A systematic review. World Neurosurg. 2018, 109, 476–486. [CrossRef]

5. Alhasan, A.S. Clinical Applications of Artificial Intelligence, Machine Learning, and Deep Learning in the Imaging of Gliomas: A
Systematic Review. Cureus 2021, 13, e19580. [CrossRef]

6. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [CrossRef]
7. Yi, Z.; Long, L.; Zeng, Y.; Liu, Z. Current Advances and Challenges in Radiomics of Brain Tumors. Front. Oncol. 2021, 11, 4161.

[CrossRef]
8. Ostrom, Q.T.; Gittleman, H.; Fulop, J.; Liu, M.; Blanda, R.; Kromer, C.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS

statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro-Oncology
2015, 17, iv1–iv62. [CrossRef]

9. Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.; Pfister, S.M.; Reifenberger,
G.; et al. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro-Oncology 2021, 23, 1231–1251.
[CrossRef]

10. Belden, C.J.; Valdes, P.A.; Ran, C.; Pastel, D.A.; Harris, B.T.; Fadul, C.E.; Israel, M.A.; Paulsen, K.; Roberts, D.W. Genetics of
glioblastoma: A window into its imaging and histopathologic variability. Radiographics 2011, 31, 1717–1740. [CrossRef]

11. Zhou, M.; Chaudhury, B.; Hall, L.O.; Goldgof, D.B.; Gillies, R.J.; Gatenby, R.A. Identifying spatial imaging biomarkers of
glioblastoma multiforme for survival group prediction. J. Magn. Reson. Imaging 2017, 46, 115–123. [CrossRef] [PubMed]

12. Ostrom, Q.T. Epidemiology of Gliomas. In Current Understanding and Treatment of Gliomas; Springer: Cham, Switzerland, 2015;
Volume 163.

13. Miller, K.D.; Ostrom, Q.T.; Kruchko, C.; Patil, N.; Tihan, T.; Cioffi, G.; Fuchs, H.E.; Waite, K.A.; Jemal, A.; Siegel, R.L.; et al. Brain
and other central nervous system tumor statistics, 2021. CA Cancer J. Clin. 2021, 71, 381–406. [CrossRef]

14. Tykocki, T.; Eltayeb, M. Ten-year survival in glioblastoma. A systematic review. J. Clin. Neurosci. 2018, 54, 7–13. [CrossRef]
15. Delgado-López, P.; Corrales-García, E. Survival in glioblastoma: A review on the impact of treatment modalities.

Clin. Transl. Oncol. 2016, 18, 1062–1071. [CrossRef] [PubMed]
16. Ostrom, Q.T.; Gittleman, H.; Truitt, G.; Boscia, A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS statistical report: Primary brain and

other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro-Oncology 2018, 20, iv1–iv86. [CrossRef]
[PubMed]

17. Tan, A.C.; Ashley, D.M.; López, G.Y.; Malinzak, M.; Friedman, H.S.; Khasraw, M. Management of glioblastoma: State of the art
and future directions. CA Cancer J. Clin. 2020, 70, 299–312. [CrossRef] [PubMed]

18. Omuro, A.; DeAngelis, L.M. Glioblastoma and other malignant gliomas: A clinical review. JAMA 2013, 310, 1842–1850. [CrossRef]
[PubMed]

19. Krex, D.; Klink, B.; Hartmann, C.; Von Deimling, A.; Pietsch, T.; Simon, M.; Sabel, M.; Steinbach, J.P.; Heese, O.; Reifenberger, G.;
et al. Long-term survival with glioblastoma multiforme. Brain 2007, 130, 2596–2606. [CrossRef] [PubMed]

http://doi.org/10.1016/j.ejmp.2021.02.006
http://www.ncbi.nlm.nih.gov/pubmed/33662856
http://dx.doi.org/10.1063/5.0011697
http://www.ncbi.nlm.nih.gov/pubmed/33094213
http://dx.doi.org/10.1093/neuros/nyx384
http://www.ncbi.nlm.nih.gov/pubmed/28945910
http://dx.doi.org/10.1016/j.wneu.2017.09.149
http://dx.doi.org/10.7759/cureus.19580
http://dx.doi.org/10.3322/caac.21654
http://dx.doi.org/10.3389/fonc.2021.732196
http://dx.doi.org/10.1093/neuonc/nov189
http://dx.doi.org/10.1093/neuonc/noab106
http://dx.doi.org/10.1148/rg.316115512
http://dx.doi.org/10.1002/jmri.25497
http://www.ncbi.nlm.nih.gov/pubmed/27678245
http://dx.doi.org/10.3322/caac.21693
http://dx.doi.org/10.1016/j.jocn.2018.05.002
http://dx.doi.org/10.1007/s12094-016-1497-x
http://www.ncbi.nlm.nih.gov/pubmed/26960561
http://dx.doi.org/10.1093/neuonc/noy131
http://www.ncbi.nlm.nih.gov/pubmed/30445539
http://dx.doi.org/10.3322/caac.21613
http://www.ncbi.nlm.nih.gov/pubmed/32478924
http://dx.doi.org/10.1001/jama.2013.280319
http://www.ncbi.nlm.nih.gov/pubmed/24193082
http://dx.doi.org/10.1093/brain/awm204
http://www.ncbi.nlm.nih.gov/pubmed/17785346


Diagnostics 2022, 12, 2125 13 of 16

20. Zaccagna, F.; Grist, J.T.; Quartuccio, N.; Riemer, F.; Fraioli, F.; Caracò, C.; Halsey, R.; Aldalilah, Y.; Cunningham, C.H.; Massoud,
T.F.; et al. Imaging and treatment of brain tumors through molecular targeting: Recent clinical advances. Eur. J. Radiol. 2021,
142, 109842. [CrossRef]

21. Gutman, D.A.; Cooper, L.A.; Hwang, S.N.; Holder, C.A.; Gao, J.; Aurora, T.D.; Dunn Jr, W.D.; Scarpace, L.; Mikkelsen, T.; Jain, R.;
et al. MR imaging predictors of molecular profile and survival: Multi-institutional study of the TCGA glioblastoma data set.
Radiology 2013, 267, 560–569. [CrossRef]

22. Villanueva-Meyer, J.E.; Mabray, M.C.; Cha, S. Current clinical brain tumor imaging. Neurosurgery 2017, 81, 397–415. [CrossRef]
[PubMed]

23. Langen, K.J.; Galldiks, N.; Hattingen, E.; Shah, N.J. Advances in neuro-oncology imaging. Nat. Rev. Neurol. 2017, 13, 279–289.
[CrossRef] [PubMed]

24. Kim, M.M.; Parolia, A.; Dunphy, M.P.; Venneti, S. Non-invasive metabolic imaging of brain tumours in the era of precision
medicine. Nat. Rev. Clin. Oncol. 2016, 13, 725–739. [CrossRef] [PubMed]

25. Zaccagna, F.; Grist, J.T.; Deen, S.S.; Woitek, R.; Lechermann, L.M.; McLean, M.A.; Basu, B.; Gallagher, F.A. Hyperpolarized
carbon-13 magnetic resonance spectroscopic imaging: A clinical tool for studying tumour metabolism. Br. J. Radiol. 2018,
91, 20170688. [CrossRef] [PubMed]

26. Aerts, H.J.; Velazquez, E.R.; Leijenaar, R.T.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.;
Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun.
2014, 5, 4006. [CrossRef]

27. Yip, S.S.; Aerts, H.J. Applications and limitations of radiomics. Phys. Med. Biol. 2016, 61, R150. [CrossRef]
28. Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images are more than pictures, they are data. Radiology 2016, 278, 563–577.

[CrossRef]
29. Theek, B.; Opacic, T.; Magnuska, Z.; Lammers, T.; Kiessling, F. Radiomic analysis of contrast-enhanced ultrasound data. Sci. Rep.

2018, 8, 11359.
30. Zaccagna, F.; Ganeshan, B.; Arca, M.; Rengo, M.; Napoli, A.; Rundo, L.; Groves, A.M.; Laghi, A.; Carbone, I.; Menezes, L.J. CT

texture-based radiomics analysis of carotid arteries identifies vulnerable patients: A preliminary outcome study. Neuroradiology
2021, 63, 1043–1052. [CrossRef]

31. Bae, S.; Choi, Y.S.; Ahn, S.S.; Chang, J.H.; Kang, S.G.; Kim, E.H.; Kim, S.H.; Lee, S.K. Radiomic MRI phenotyping of glioblastoma:
Improving survival prediction. Radiology 2018, 289, 797–806. [CrossRef]

32. Hassani, C.; Saremi, F.; Varghese, B.A.; Duddalwar, V. Myocardial radiomics in cardiac MRI. Am. J. Roentgenol. 2020, 214, 536–545.
[CrossRef] [PubMed]

33. Jang, J.; El-Rewaidy, H.; Ngo, L.H.; Mancio, J.; Csecs, I.; Rodriguez, J.; Pierce, P.; Goddu, B.; Neisius, U.; Manning, W.; et al.
Sensitivity of myocardial radiomic features to imaging parameters in cardiac MR imaging. J. Magn. Reson. Imaging 2021,
54, 787–794. [CrossRef] [PubMed]

34. Wang, J.; Bravo, L.; Wan, K.; Sun, J.; Zhu, Y.; Han, Y.; Gkoutos, G.V.; CHEN, Y. Radiomics analysis derived from LGE-MRI
predict sudden cardiac death in participants with hypertrophic cardiomyopathy. Front. Cardiovasc. Med. 2021, 8, 1806. [CrossRef]
[PubMed]

35. Prasanna, P.; Patel, J.; Partovi, S.; Madabhushi, A.; Tiwari, P. Radiomic features from the peritumoral brain parenchyma on
treatment-naive multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: Preliminary
findings. Eur. Radiol. 2017, 27, 4188–4197. [CrossRef]

36. Liu, Y.; Xu, X.; Yin, L.; Zhang, X.; Li, L.; Lu, H. Relationship between glioblastoma heterogeneity and survival time: An MR
imaging texture analysis. Am. J. Neuroradiol. 2017, 38, 1695–1701. [CrossRef]

37. Liu, Y.; Zhang, X.; Feng, N.; Yin, L.; He, Y.; Xu, X.; Lu, H. The effect of glioblastoma heterogeneity on survival stratification: A
multimodal MR imaging texture analysis. Acta Radiol. 2018, 59, 1239–1246. [CrossRef]

38. Liu, L.; Zhang, H.; Wu, J.; Yu, Z.; Chen, X.; Rekik, I.; Wang, Q.; Lu, J.; Shen, D. Overall survival time prediction for high-grade
glioma patients based on large-scale brain functional networks. Brain Imaging Behav. 2019, 13, 1333–1351. [CrossRef]

39. Preetha, C.J.; Meredig, H.; Brugnara, G.; Mahmutoglu, M.A.; Foltyn, M.; Isensee, F.; Kessler, T.; Pflüger, I.; Schell, M.; Neuberger,
U.; et al. Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: A
multicentre, retrospective cohort study. Lancet Digit. Health 2021, 3, e784–e794. [CrossRef]

40. Huang, H.; Zhang, W.; Fang, Y.; Hong, J.; Su, S.; Lai, X. Overall Survival Prediction for Gliomas Using a Novel Compound
Approach. Front. Oncol. 2021, 11, 3150. [CrossRef]

41. Bakas, S.; Shukla, G.; Akbari, H.; Erus, G.; Sotiras, A.; Rathore, S.; Sako, C.; Ha, S.M.; Rozycki, M.; Shinohara, R.T.; et al. Overall
survival prediction in glioblastoma patients using structural magnetic resonance imaging (MRI): Advanced radiomic features
may compensate for lack of advanced MRI modalities. J. Med. Imaging 2020, 7, 031505. [CrossRef]

42. Kim, B.S.; Kim, S.T.; Kim, J.H.; Seol, H.J.; Nam, D.H.; Shin, H.J.; Lee, J.I.; Kong, D.S. Apparent diffusion coefficient as a predictive
biomarker for survival in patients with treatment-naive glioblastoma using quantitative multiparametric magnetic resonance
profiling. World Neurosurg. 2019, 122, e812–e820. [CrossRef] [PubMed]

43. Nie, D.; Zhang, H.; Adeli, E.; Liu, L.; Shen, D. 3D deep learning for multi-modal imaging-guided survival time prediction of
brain tumor patients. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Athens, Greece, 17–21 October 2016; pp. 212–220.

http://dx.doi.org/10.1016/j.ejrad.2021.109842
http://dx.doi.org/10.1148/radiol.13120118
http://dx.doi.org/10.1093/neuros/nyx103
http://www.ncbi.nlm.nih.gov/pubmed/28486641
http://dx.doi.org/10.1038/nrneurol.2017.44
http://www.ncbi.nlm.nih.gov/pubmed/28387340
http://dx.doi.org/10.1038/nrclinonc.2016.108
http://www.ncbi.nlm.nih.gov/pubmed/27430748
http://dx.doi.org/10.1259/bjr.20170688
http://www.ncbi.nlm.nih.gov/pubmed/29293376
http://dx.doi.org/10.1038/ncomms5006
http://dx.doi.org/10.1088/0031-9155/61/13/R150
http://dx.doi.org/10.1148/radiol.2015151169
http://dx.doi.org/10.1007/s00234-020-02628-0
http://dx.doi.org/10.1148/radiol.2018180200
http://dx.doi.org/10.2214/AJR.19.21986
http://www.ncbi.nlm.nih.gov/pubmed/31799865
http://dx.doi.org/10.1002/jmri.27581
http://www.ncbi.nlm.nih.gov/pubmed/33650227
http://dx.doi.org/10.3389/fcvm.2021.766287
http://www.ncbi.nlm.nih.gov/pubmed/34957254
http://dx.doi.org/10.1007/s00330-016-4637-3
http://dx.doi.org/10.3174/ajnr.A5279
http://dx.doi.org/10.1177/0284185118756951
http://dx.doi.org/10.1007/s11682-018-9949-2
http://dx.doi.org/10.1016/S2589-7500(21)00205-3
http://dx.doi.org/10.3389/fonc.2021.724191
http://dx.doi.org/10.1117/1.JMI.7.3.031505
http://dx.doi.org/10.1016/j.wneu.2018.10.151
http://www.ncbi.nlm.nih.gov/pubmed/30391622


Diagnostics 2022, 12, 2125 14 of 16

44. Han, W.; Qin, L.; Bay, C.; Chen, X.; Yu, K.H.; Miskin, N.; Li, A.; Xu, X.; Young, G. Deep transfer learning and radiomics feature
prediction of survival of patients with high-grade gliomas. Am. J. Neuroradiol. 2020, 41, 40–48. [CrossRef] [PubMed]

45. Feng, X.; Tustison, N.J.; Patel, S.H.; Meyer, C.H. Brain tumor segmentation using an ensemble of 3d u-nets and overall survival
prediction using radiomic features. Front. Comput. Neurosci. 2020, 14, 25. [CrossRef] [PubMed]

46. Kamnitsas, K.; Ferrante, E.; Parisot, S.; Ledig, C.; Nori, A.V.; Criminisi, A.; Rueckert, D.; Glocker, B. DeepMedic for brain tumor
segmentation. In Proceedings of the International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic
Brain Injuries, Athens, Greece, 17 October 2016; pp. 138–149.

47. Chato, L.; Latifi, S. Machine learning and deep learning techniques to predict overall survival of brain tumor patients using MRI
images. In Proceedings of the 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE), Washington,
DC, USA, 23–25 October 2017; pp. 9–14.

48. Hamilton, W.; Kernick, D. Clinical features of primary brain tumours: A case–control study using electronic primary care records.
Br. J. Gen. Pract. 2007, 57, 695–699. [PubMed]

49. Kane, A.J.; Sughrue, M.E.; Rutkowski, M.J.; Shangari, G.; Fang, S.; McDermott, M.W.; Berger, M.S.; Parsa, A.T. Anatomic location
is a risk factor for atypical and malignant meningiomas. Cancer 2011, 117, 1272–1278. [CrossRef] [PubMed]

50. Ideguchi, M.; Kajiwara, K.; Goto, H.; Sugimoto, K.; Nomura, S.; Ikeda, E.; Suzuki, M. MRI findings and pathological features in
early-stage glioblastoma. J. Neuro-Oncol. 2015, 123, 289–297. [CrossRef] [PubMed]

51. Heynold, E.; Zimmermann, M.; Hore, N.; Buchfelder, M.; Doerfler, A.; Stadlbauer, A.; Kremenevski, N. Physiological MRI
Biomarkers in the Differentiation Between Glioblastomas and Solitary Brain Metastases. Mol. Imaging Biol. 2021, 23, 787–795.
[CrossRef] [PubMed]

52. Galanaud, D.; Nicoli, F.; Chinot, O.; Confort-Gouny, S.; Figarella-Branger, D.; Roche, P.; Fuentès, S.; Le Fur, Y.; Ranjeva, J.P.;
Cozzone, P.J. Noninvasive diagnostic assessment of brain tumors using combined in vivo MR imaging and spectroscopy.
Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 2006, 55, 1236–1245. [CrossRef]

53. Zacharaki, E.I.; Morita, N.; Bhatt, P.; O’rourke, D.; Melhem, E.; Davatzikos, C. Survival analysis of patients with high-grade
gliomas based on data mining of imaging variables. Am. J. Neuroradiol. 2012, 33, 1065–1071. [CrossRef]

54. Macyszyn, L.; Akbari, H.; Pisapia, J.M.; Da, X.; Attiah, M.; Pigrish, V.; Bi, Y.; Pal, S.; Davuluri, R.V.; Roccograndi, L.; et al. Imaging
patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro-Oncology 2015,
18, 417–425. [CrossRef]

55. Oermann, E.K.; Kress, M.A.S.; Collins, B.T.; Collins, S.P.; Morris, D.; Ahalt, S.C.; Ewend, M.G. Predicting survival in patients with
brain metastases treated with radiosurgery using artificial neural networks. Neurosurgery 2013, 72, 944–952. [CrossRef]

56. Kickingereder, P.; Burth, S.; Wick, A.; Götz, M.; Eidel, O.; Schlemmer, H.P.; Maier-Hein, K.H.; Wick, W.; Bendszus, M.; Radbruch,
A.; et al. Radiomic profiling of glioblastoma: Identifying an imaging predictor of patient survival with improved performance
over established clinical and radiologic risk models. Radiology 2016, 280, 880–889. [CrossRef] [PubMed]

57. Emblem, K.E.; Pinho, M.C.; Zöllner, F.G.; Due-Tonnessen, P.; Hald, J.K.; Schad, L.R.; Meling, T.R.; Rapalino, O.; Bjornerud, A. A
generic support vector machine model for preoperative glioma survival associations. Radiology 2015, 275, 228–234. [CrossRef]
[PubMed]

58. Jain, R.; Poisson, L.M.; Gutman, D.; Scarpace, L.; Hwang, S.N.; Holder, C.A.; Wintermark, M.; Rao, A.; Colen, R.R.; Kirby, J.;
et al. Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: Focus on the
nonenhancing component of the tumor. Radiology 2014, 272, 484–493. [CrossRef] [PubMed]

59. Chaddad, A.; Desrosiers, C.; Hassan, L.; Tanougast, C. A quantitative study of shape descriptors from glioblastoma multiforme
phenotypes for predicting survival outcome. Br. J. Radiol. 2016, 89, 20160575. [CrossRef] [PubMed]

60. Czarnek, N.; Clark, K.; Peters, K.B.; Mazurowski, M.A. Algorithmic three-dimensional analysis of tumor shape in MRI improves
prognosis of survival in glioblastoma: A multi-institutional study. J. Neuro-Oncol. 2017, 132, 55–62. [CrossRef] [PubMed]

61. Liu, L.; Zhang, H.; Rekik, I.; Chen, X.; Wang, Q.; Shen, D. Outcome prediction for patient with high-grade gliomas from
brain functional and structural networks. In Proceedings of the International Conference on Medical Image Computing and
Computer-Assisted Intervention, Athens, Greece, 17–21 October 2016; pp. 26–34.

62. Tan, Y.; Mu, W.; Wang, X.C.; Yang, G.Q.; Gillies, R.J.; Zhang, H. Improving survival prediction of high-grade glioma via machine
learning techniques based on MRI radiomic, genetic and clinical risk factors. Eur. J. Radiol. 2019, 120, 108609. [CrossRef]

63. Ammari, S.; Sallé de Chou, R.; Balleyguier, C.; Chouzenoux, E.; Touat, M.; Quillent, A.; Dumont, S.; Bockel, S.; Garcia, G.C.;
Elhaik, M.; et al. A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI. Diagnostics
2021, 11, 2043. [CrossRef]

64. Sanghani, P.; Ang, B.T.; King, N.K.K.; Ren, H. Overall survival prediction in glioblastoma multiforme patients from volumetric,
shape and texture features using machine learning. Surg. Oncol. 2018, 27, 709–714. [CrossRef]

65. Peeken, J.C.; Goldberg, T.; Pyka, T.; Bernhofer, M.; Wiestler, B.; Kessel, K.A.; Tafti, P.D.; Nüsslin, F.; Braun, A.E.; Zimmer, C.; et al.
Combining multimodal imaging and treatment features improves machine learning-based prognostic assessment in patients with
glioblastoma multiforme. Cancer Med. 2019, 8, 128–136. [CrossRef]

66. Choi, Y.S.; Ahn, S.S.; Chang, J.H.; Kang, S.G.; Kim, E.H.; Kim, S.H.; Jain, R.; Lee, S.K. Machine learning and radiomic phenotyping
of lower grade gliomas: Improving survival prediction. Eur. Radiol. 2020, 30, 3834–3842. [CrossRef] [PubMed]

http://dx.doi.org/10.3174/ajnr.A6365
http://www.ncbi.nlm.nih.gov/pubmed/31857325
http://dx.doi.org/10.3389/fncom.2020.00025
http://www.ncbi.nlm.nih.gov/pubmed/32322196
http://www.ncbi.nlm.nih.gov/pubmed/17761056
http://dx.doi.org/10.1002/cncr.25591
http://www.ncbi.nlm.nih.gov/pubmed/21381014
http://dx.doi.org/10.1007/s11060-015-1797-y
http://www.ncbi.nlm.nih.gov/pubmed/25939441
http://dx.doi.org/10.1007/s11307-021-01604-1
http://www.ncbi.nlm.nih.gov/pubmed/33891264
http://dx.doi.org/10.1002/mrm.20886
http://dx.doi.org/10.3174/ajnr.A2939
http://dx.doi.org/10.1093/neuonc/nov127
http://dx.doi.org/10.1227/NEU.0b013e31828ea04b
http://dx.doi.org/10.1148/radiol.2016160845
http://www.ncbi.nlm.nih.gov/pubmed/27326665
http://dx.doi.org/10.1148/radiol.14140770
http://www.ncbi.nlm.nih.gov/pubmed/25486589
http://dx.doi.org/10.1148/radiol.14131691
http://www.ncbi.nlm.nih.gov/pubmed/24646147
http://dx.doi.org/10.1259/bjr.20160575
http://www.ncbi.nlm.nih.gov/pubmed/27781499
http://dx.doi.org/10.1007/s11060-016-2359-7
http://www.ncbi.nlm.nih.gov/pubmed/28074320
http://dx.doi.org/10.1016/j.ejrad.2019.07.010
http://dx.doi.org/10.3390/diagnostics11112043
http://dx.doi.org/10.1016/j.suronc.2018.09.002
http://dx.doi.org/10.1002/cam4.1908
http://dx.doi.org/10.1007/s00330-020-06737-5
http://www.ncbi.nlm.nih.gov/pubmed/32162004


Diagnostics 2022, 12, 2125 15 of 16

67. Kickingereder, P.; Neuberger, U.; Bonekamp, D.; Piechotta, P.L.; Götz, M.; Wick, A.; Sill, M.; Kratz, A.; Shinohara, R.T.; Jones, D.T.;
et al. Radiomic subtyping improves disease stratification beyond key molecular, clinical, and standard imaging characteristics in
patients with glioblastoma. Neuro-Oncology 2018, 20, 848–857. [CrossRef] [PubMed]

68. Kim, J.Y.; Yoon, M.J.; Park, J.E.; Choi, E.J.; Lee, J.; Kim, H.S. Radiomics in peritumoral non-enhancing regions: Fractional
anisotropy and cerebral blood volume improve prediction of local progression and overall survival in patients with glioblastoma.
Neuroradiology 2019, 61, 1261–1272. [CrossRef] [PubMed]

69. Verma, R.; Correa, R.; Hill, V.B.; Statsevych, V.; Bera, K.; Beig, N.; Mahammedi, A.; Madabhushi, A.; Ahluwalia, M.; Tiwari, P.
Tumor habitat–derived radiomic features at pretreatment MRI that are prognostic for progression-free survival in glioblastoma
are associated with key morphologic attributes at histopathologic examination: A feasibility study. Radiol. Artif. Intell. 2020,
2, e190168. [CrossRef] [PubMed]

70. Suter, Y.; Knecht, U.; Alão, M.; Valenzuela, W.; Hewer, E.; Schucht, P.; Wiest, R.; Reyes, M. Radiomics for glioblastoma survival
analysis in pre-operative MRI: Exploring feature robustness, class boundaries, and machine learning techniques. Cancer Imaging
2020, 20, 1–13. [CrossRef]

71. Nematollahi, M.; Jajroudi, M.; Arbabi, F.; Azarhomayoun, A.; Azimifar, Z. The benefits of decision tree to predict survival in
patients with glioblastoma multiforme with the use of clinical and imaging features. Asian J. Neurosurg. 2018, 13, 697.

72. Bice, N.; Kirby, N.; Bahr, T.; Rasmussen, K.; Saenz, D.; Wagner, T.; Papanikolaou, N.; Fakhreddine, M. Deep learning-based
survival analysis for brain metastasis patients with the national cancer database. J. Appl. Clin. Med. Phys. 2020, 21, 187–192.
[CrossRef]

73. Wan, Y.; Rahmat, R.; Price, S.J. Deep learning for glioblastoma segmentation using preoperative magnetic resonance imaging
identifies volumetric features associated with survival. Acta Neurochir. 2020, 162, 3067–3080. [CrossRef]

74. Zadeh Shirazi, A.; Fornaciari, E.; Bagherian, N.S.; Ebert, L.M.; Koszyca, B.; Gomez, G.A. DeepSurvNet: Deep survival
convolutional network for brain cancer survival rate classification based on histopathological images. Med. Biol. Eng. Comput.
2020, 58, 1031–1045. [CrossRef]

75. Nie, D.; Lu, J.; Zhang, H.; Adeli, E.; Wang, J.; Yu, Z.; Liu, L.; Wang, Q.; Wu, J.; Shen, D. Multi-channel 3D deep feature learning for
survival time prediction of brain tumor patients using multi-modal neuroimages. Sci. Rep. 2019, 9, 1103.

76. Zhang, X.; Lu, D.; Gao, P.; Tian, Q.; Lu, H.; Xu, X.; He, X.; Liu, Y. Survival-relevant high-risk subregion identification for
glioblastoma patients: The MRI-based multiple instance learning approach. Eur. Radiol. 2020, 30, 5602–5610. [CrossRef] [PubMed]

77. Wijethilake, N.; Islam, M.; Ren, H. Radiogenomics model for overall survival prediction of glioblastoma. Med Biol. Eng. Comput.
2020, 58, 1767–1777. [CrossRef] [PubMed]

78. Luo, H.; Zhuang, Q.; Wang, Y.; Abudumijiti, A.; Shi, K.; Rominger, A.; Chen, H.; Yang, Z.; Tran, V.; Wu, G.; et al. A novel image
signature-based radiomics method to achieve precise diagnosis and prognostic stratification of gliomas. Lab. Investig. 2021,
101, 450–462. [CrossRef]

79. Baid, U.; Rane, S.U.; Talbar, S.; Gupta, S.; Thakur, M.H.; Moiyadi, A.; Mahajan, A. Overall survival prediction in glioblastoma
with radiomic features using machine learning. Front. Comput. Neurosci. 2020, 14, 61. [CrossRef] [PubMed]

80. Pei, L.; Vidyaratne, L.; Rahman, M.M.; Iftekharuddin, K.M. Context aware deep learning for brain tumor segmentation, subtype
classification, and survival prediction using radiology images. Sci. Rep. 2020, 10, 19726.

81. Tang, Z.; Xu, Y.; Jin, L.; Aibaidula, A.; Lu, J.; Jiao, Z.; Wu, J.; Zhang, H.; Shen, D. Deep learning of imaging phenotype and
genotype for predicting overall survival time of glioblastoma patients. IEEE Trans. Med Imaging 2020, 39, 2100–2109. [CrossRef]

82. Petrova, L.; Korfiatis, P.; Petr, O.; LaChance, D.H.; Parney, I.; Buckner, J.C.; Erickson, B.J. Cerebral blood volume and apparent
diffusion coefficient–Valuable predictors of non-response to bevacizumab treatment in patients with recurrent glioblastoma.
J. Neurol. Sci. 2019, 405, 116433. [CrossRef]

83. Sun, L.; Zhang, S.; Chen, H.; Luo, L. Brain tumor segmentation and survival prediction using multimodal MRI scans with deep
learning. Front. Neurosci. 2019, 13, 810. [CrossRef]

84. Xi, Y.B.; Guo, F.; Xu, Z.L.; Li, C.; Wei, W.; Tian, P.; Liu, T.T.; Liu, L.; Chen, G.; Ye, J.; et al. Radiomics signature: A potential
biomarker for the prediction of MGMT promoter methylation in glioblastoma. J. Magn. Reson. Imaging 2018, 47, 1380–1387.
[CrossRef]

85. Korfiatis, P.; Kline, T.L.; Coufalova, L.; Lachance, D.H.; Parney, I.F.; Carter, R.E.; Buckner, J.C.; Erickson, B.J. MRI texture features
as biomarkers to predict MGMT methylation status in glioblastomas. Med. Phys. 2016, 43, 2835–2844. [CrossRef]

86. Zhou, J.; Reddy, M.; Wilson, B.; Blair, D.; Taha, A.; Frampton, C.; Eiholzer, R.; Gan, P.; Ziad, F.; Thotathil, Z.; et al. MR imaging
characteristics associate with tumor-associated macrophages in glioblastoma and provide an improved signature for survival
prognostication. Am. J. Neuroradiol. 2018, 39, 252–259. [CrossRef] [PubMed]

87. Lu, Y.; Patel, M.; Natarajan, K.; Ughratdar, I.; Sanghera, P.; Jena, R.; Watts, C.; Sawlani, V. Machine learning-based radiomic,
clinical and semantic feature analysis for predicting overall survival and MGMT promoter methylation status in patients with
glioblastoma. Magn. Reson. Imaging 2020, 74, 161–170. [CrossRef] [PubMed]

88. Wu, G.; Shi, Z.; Chen, Y.; Wang, Y.; Yu, J.; Lv, X.; Chen, L.; Ju, X.; Chen, Z. A sparse representation-based radiomics for outcome
prediction of higher grade gliomas. Med. Phys. 2019, 46, 250–261. [CrossRef] [PubMed]

89. Chen, H.; Li, C.; Zheng, L.; Lu, W.; Li, Y.; Wei, Q. A machine learning-based survival prediction model of high grade glioma by
integration of clinical and dose-volume histogram parameters. Cancer Med. 2021, 10, 2774–2786. [CrossRef] [PubMed]

http://dx.doi.org/10.1093/neuonc/nox188
http://www.ncbi.nlm.nih.gov/pubmed/29036412
http://dx.doi.org/10.1007/s00234-019-02255-4
http://www.ncbi.nlm.nih.gov/pubmed/31289886
http://dx.doi.org/10.1148/ryai.2020190168
http://www.ncbi.nlm.nih.gov/pubmed/33330847
http://dx.doi.org/10.1186/s40644-020-00329-8
http://dx.doi.org/10.1002/acm2.12995
http://dx.doi.org/10.1007/s00701-020-04483-7
http://dx.doi.org/10.1007/s11517-020-02147-3
http://dx.doi.org/10.1007/s00330-020-06912-8
http://www.ncbi.nlm.nih.gov/pubmed/32417949
http://dx.doi.org/10.1007/s11517-020-02179-9
http://www.ncbi.nlm.nih.gov/pubmed/32488372
http://dx.doi.org/10.1038/s41374-020-0472-x
http://dx.doi.org/10.3389/fncom.2020.00061
http://www.ncbi.nlm.nih.gov/pubmed/32848682
http://dx.doi.org/10.1109/TMI.2020.2964310
http://dx.doi.org/10.1016/j.jns.2019.116433
http://dx.doi.org/10.3389/fnins.2019.00810
http://dx.doi.org/10.1002/jmri.25860
http://dx.doi.org/10.1118/1.4948668
http://dx.doi.org/10.3174/ajnr.A5441
http://www.ncbi.nlm.nih.gov/pubmed/29191871
http://dx.doi.org/10.1016/j.mri.2020.09.017
http://www.ncbi.nlm.nih.gov/pubmed/32980505
http://dx.doi.org/10.1002/mp.13288
http://www.ncbi.nlm.nih.gov/pubmed/30418680
http://dx.doi.org/10.1002/cam4.3838
http://www.ncbi.nlm.nih.gov/pubmed/33760360


Diagnostics 2022, 12, 2125 16 of 16

90. Rathore, S.; Chaddad, A.; Iftikhar, M.A.; Bilello, M.; Abdulkadir, A. Combining MRI and Histologic Imaging Features for
Predicting Overall Survival in Patients with Glioma. Radiol. Imaging Cancer 2021, 3, e200108. [CrossRef] [PubMed]

91. Wang, J.; Zheng, X.; Zhang, J.; Xue, H.; Wang, L.; Jing, R.; Chen, S.; Che, F.; Heng, X.; Li, G.; et al. An MRI-based radiomics
signature as a pretreatment noninvasive predictor of overall survival and chemotherapeutic benefits in lower-grade gliomas.
Eur. Radiol. 2021, 31, 1785–1794.

92. Chato, L.; Latifi, S. Machine Learning and Radiomic Features to Predict Overall Survival Time for Glioblastoma Patients.
J. Pers. Med. 2021, 11, 1336. [CrossRef]

93. Grist, J.T.; Withey, S.; Bennett, C.; Rose, H.E.; MacPherson, L.; Oates, A.; Powell, S.; Novak, J.; Abernethy, L.; Pizer, B.; et al.
Combining multi-site magnetic resonance imaging with machine learning predicts survival in pediatric brain tumors. Sci. Rep.
2021, 11, 18897.

94. Buonincontri, G.; Biagi, L.; Retico, A.; Cecchi, P.; Cosottini, M.; Gallagher, F.A.; Gómez, P.A.; Graves, M.J.; McLean, M.A.; Riemer,
F.; et al. Multi-site repeatability and reproducibility of MR fingerprinting of the healthy brain at 1.5 and 3.0 T. NeuroImage 2019,
195, 362–372. [CrossRef]

95. Rundo, L.; Militello, C.; Vitabile, S.; Russo, G.; Sala, E.; Gilardi, M.C. A survey on nature-inspired medical image analysis: A step
further in biomedical data integration. Fundam. Inform. 2020, 171, 345–365. [CrossRef]

96. Rundo, L.; Pirrone, R.; Vitabile, S.; Sala, E.; Gambino, O. Recent advances of HCI in decision-making tasks for optimized clinical
workflows and precision medicine. J. Biomed. Inform. 2020, 108, 103479. [CrossRef] [PubMed]

97. Starck, L.; Zaccagna, F.; Pasternak, O.; Gallagher, F.A.; Grüner, R.; Riemer, F. Effects of Multi-Shell Free Water Correction on
Glioma Characterization. Diagnostics 2021, 11, 2385. [PubMed]

98. Zaccagna, F.; Riemer, F.; Priest, A.N.; McLean, M.A.; Allinson, K.; Grist, J.T.; Dragos, C.; Matys, T.; Gillard, J.H.; Watts, C.;
et al. Non-invasive assessment of glioma microstructure using VERDICT MRI: Correlation with histology. Eur. Radiol. 2019,
29, 5559–5566. [PubMed]

99. Grist, J.T.; Miller, J.J.; Zaccagna, F.; McLean, M.A.; Riemer, F.; Matys, T.; Tyler, D.J.; Laustsen, C.; Coles, A.J.; Gallagher,
F.A. Hyperpolarized 13C MRI: A novel approach for probing cerebral metabolism in health and neurological disease.
J. Cereb. Blood Flow Metab. 2020, 40, 1137–1147. [PubMed]

100. Flies, C.M.; Snijders, T.J.; Van Seeters, T.; Smits, M.; De Vos, F.Y.; Hendrikse, J.; Dankbaar, J.W. Perfusion imaging with arterial spin
labeling (ASL)–MRI predicts malignant progression in low-grade (WHO grade II) gliomas. Neuroradiology 2021, 63, 2023–2033.
[PubMed]

101. Testud, B.; Brun, G.; Varoquaux, A.; Hak, J.; Appay, R.; Le Troter, A.; Girard, N.; Stellmann, J. Perfusion-weighted techniques in
MRI grading of pediatric cerebral tumors: Efficiency of dynamic susceptibility contrast and arterial spin labeling. Neuroradiology
2021, 63, 1353–1366. [PubMed]

102. Zaccagna, F.; McLean, M.; Grist, J.; Kaggie, J.; Mair, R.; Riemer, F.; Woitek, R.; Gill, A.; Deen, S.; Daniels, C.; et al. Imaging
Glioblastoma Metabolism by Using Hyperpolarized [1-13C]Pyruvate Demonstrates Heterogeneity in Lactate Labeling: A Proof of
Principle Study. Radiol. Imaging Cancer 2022, 4, e210076.

http://dx.doi.org/10.1148/rycan.2021200108
http://www.ncbi.nlm.nih.gov/pubmed/34296969
http://dx.doi.org/10.3390/jpm11121336
http://dx.doi.org/10.1016/j.neuroimage.2019.03.047
http://dx.doi.org/10.3233/FI-2020-1887
http://dx.doi.org/10.1016/j.jbi.2020.103479
http://www.ncbi.nlm.nih.gov/pubmed/32561444
http://www.ncbi.nlm.nih.gov/pubmed/34943621
http://www.ncbi.nlm.nih.gov/pubmed/30888488
http://www.ncbi.nlm.nih.gov/pubmed/32153235
http://www.ncbi.nlm.nih.gov/pubmed/34114065
http://www.ncbi.nlm.nih.gov/pubmed/33506349

	Introduction
	Methods
	Literature Review
	Metrics

	Results
	Years: 2012–2016
	Years: 2016–2018
	Years: 2019–2020
	Years: 2021–2022
	Overall Considerations
	Performance

	Discussion
	Conclusions
	References

