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Abstract: Body fluids are constantly replenished with a population of genetically diverse cell-free
DNA (cfDNA) fragments, representing a vast reservoir of information reflecting real-time changes
in the host and metagenome. As many body fluids can be collected non-invasively in a one-off
and serial fashion, this reservoir can be tapped to develop assays for the diagnosis, prognosis, and
monitoring of wide-ranging pathologies, such as solid tumors, fetal genetic abnormalities, rejected
organ transplants, infections, and potentially many others. The translation of cfDNA research into
useful clinical tests is gaining momentum, with recent progress being driven by rapidly evolving
preanalytical and analytical procedures, integrated bioinformatics, and machine learning algorithms.
Yet, despite these spectacular advances, cfDNA remains a very challenging analyte due to its immense
heterogeneity and fluctuation in vivo. It is increasingly recognized that high-fidelity reconstruction
of the information stored in cfDNA, and in turn the development of tests that are fit for clinical
roll-out, requires a much deeper understanding of both the physico-chemical features of cfDNA and
the biological, physiological, lifestyle, and environmental factors that modulate it. This is a daunting
task, but with significant upsides. In this review we showed how expanded knowledge on cfDNA
biology and faithful reverse-engineering of cfDNA samples promises to (i) augment the sensitivity
and specificity of existing cfDNA assays; (ii) expand the repertoire of disease-specific cfDNA markers,
thereby leading to the development of increasingly powerful assays; (iii) reshape personal molecular
medicine; and (iv) have an unprecedented impact on genetics research.

Keywords: cell-free DNA; circulating tumor DNA; liquid biopsy; cfDNA; ctDNA

1. Introduction

Most human body fluids are, through a complex network of release and clearance
mechanisms [1], constantly replenished with a population of genetically diverse cell-free
DNA (cfDNA) fragments (Figure 1). Since cfDNA samples can be obtained in a one-off and
serial fashion through minimally-invasive procedures, e.g., through a blood draw; cfDNA
profiling represents an unprecedented treasure trove of real-time genetic data minable
for wide-ranging diagnostic, prognostic, and theranostic purposes. Remarkable progress
has already been made on this front with the development of cfDNA assays that trump
many of the inherent limitations of traditional methods and are slowly transforming the
way in which solid tumors, fetal genetic abnormalities, organ transplant rejections, and
infections are diagnosed, monitored, and treated. Furthermore, profiling of cfDNA from
serial biospecimen collections holds the potential to revolutionize the characterization
of temporal genome dynamics in a variety of contexts. The vast dimension of temporal
genomic information accessible through cfDNA analysis has, for example, already been
tapped towards the development of methods for the longitudinal assessment of various
aspects of tumor biology, including residual disease, metastases, intratumor genetic hetero-
geneity, shifting mutational landscapes, genetic responses to chemo- and radiotherapy, and
mechanisms that underlie the emergence of therapy resistance. All of the abovementioned
information, which is virtually impossible to procure through tissue biopsies, has been
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invaluable in guiding therapeutic regimes and has already had an overwhelmingly positive
effect on the management and survival of cancer patients (reviewed in [2]). These successes
indicate the intriguing possibility of developing serial cfDNA tests for monitoring many
other pathologies. First, serial cfDNA analyses may provide new insight into many slowly
progressive or chronic illnesses which have been correlated with aberrant cfDNA profiles,
such as cardiovascular disease, diabetes, autoimmunity, and neurodegenerative disease.
Second, serial cfDNA analyses may be especially useful for monitoring progressive diseases
or clinical scenarios that are characterized by rather tight temporal thresholds around rapid
malignant transformation or the sudden onset of detrimental effects, such as Parkinson’s
disease, Alzheimer’s disease, sepsis, stroke, traumatic injuries, and adverse effects of gene
therapy. Moreover, serial analysis of cfDNA may be useful for studying the role of the
gut microbiome in human health and disease, the biological footprint and effects of as-
similated environmental DNA, and may even have applications in forensic casework and
biobank management.

Figure 1. The diverse possible origins of cfDNA in humans. Through various pathways of cell death,
clearance, and regulated release, whole or partial genomes of diverse origins are constantly shed into
human body fluids in the form of fragmented cfDNA.

Beyond their use as clinical biomarkers, cfDNA molecules demonstrate underappreci-
ated biological functionality. On one hand, numerous studies have implicated cfDNA in the
development, progression, and treatment-resistance of various pathologies, such as cancer,
autoimmunity, and COVID-19. Therefore, an improved understanding of the molecular
mechanisms that underlie the detrimental effects of cfDNA will grant deeper insight into
the pathogenesis of specific diseases and likely reveal currently unknown links between
cfDNA and other diseases. At the same time, targeted elimination of cfDNA molecules may
represent a new therapeutic modality. On the other hand, empirical evidence and elegant
theoretical deliberations indicate that cfDNA may be a hugely underestimated factor in sev-
eral important biological processes, such as immunity [3], intercellular communication [4],
and even evolution [5].

Taken together, cfDNA not only shows significant potential as a surrogate marker for
numerous disease indications but is also delicately poised as both a pathological factor and
important molecule in several biological processes (Figure 2).
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Figure 2. Clinical applications and potential roles of cfDNA in human biology. Human body fluids
are constantly replenished by cfDNA fragments of various origins. CfDNA profiling thus offers the
unique opportunity to reconstruct major portions of the host- and metagenome, and this information
can be harnessed to develop tests for the diagnosis, prognosis, and monitoring of wide-ranging
pathologies, such as (A) various cancer indications, (B) fetal genetic abnormalities and pregnancy
complications, (C) organ transplant complications, (D) infections, (E) chronic illnesses, and (F)
acute illnesses. CfDNA profiling may also be used to characterize (G) the gut microbiome and (H)
assimilated environmental DNA. (I) Beyond its use as a clinical biomarker, cfDNA may have many
other potential uses and roles in human biology and pathology.

Despite the obvious significance of cfDNA in human biology and pathology, the trans-
lation of cfDNA research into useful clinical tests has been advancing at a sub-optimal rate,
while the biological functionality of cfDNA is poorly understood and understudied [1,3,6].
As reviewed elsewhere [2,7,8], the development and implementation of clinically meaning-
ful tests is hampered by an array of persistent obstacles that have yet to be overcome, such
as a lack of universal preanalytical standards, limited best practice guidelines, analytical lim-
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itations, no standard reference materials, insufficient analytical validation, and inadequate
clinical trials. Another major factor that negatively impacts both translational and basic
cfDNA research relates to the difficulties in achieving high-fidelity reverse engineering of
both the quantitative and qualitative characteristics of cfDNA molecules in a biospecimen.
Much progress has been made in this regard through rapidly evolving technology, molecu-
lar methods, integrated bioinformatics, and machine learning (ML) algorithms, coupled
with major efforts in optimizing and standardizing preanalytical procedures. However,
accurate measurements of cfDNA are still challenged by numerous obstacles that relate to
the biological characteristics of cfDNA. The most prominent challenges in this regard are:
(i) the immense heterogeneity in the characteristics of cfDNA in vivo, and the difficulties
in differentiating analytically between different cfDNA types (ii) the complex network of
biological, physiological, pathological, lifestyle, and environmental factors that modulate
the characteristics of cfDNA, (iii) the existence of numerous possible preanalytical steps
that are biased toward the preservation, degradation, elimination, or capture of specific
cfDNA subtypes, and (iv) a poor understanding of all of the former. Therefore, in this
review we explored the biological features of cfDNA and show how a deep and structured
enquiry into cfDNA biology may (a) augment the sensitivity and specificity of currently
existing cfDNA assays, especially clinical tests based on the detection of hotspot muta-
tions, (b) expand the repertoire of disease-specific cfDNA markers, thereby leading to the
development of new and more powerful assays and thus significantly expand the liquid
biopsy toolbox and clinical scope of cfDNA assays, (c) open an unprecedented window of
access for studying temporal genomic changes as it relates to a wide range of processes,
and (d) ultimately shed new light on poorly understood processes as well as reveal hidden
biological processes, likely catalyzing a surge of new discoveries about genome function.

2. Measurement of Total cfDNA Levels in Different Contexts
2.1. Serious Medical Conditions

Elevated total cfDNA has been detected in a wide range of disorders, such as can-
cer [2,9], autoimmune diseases [10] (e.g., systemic lupus erythematosus [11,12], rheumatoid
arthritis [13], and systemic sclerosis [14]), trauma patients [15] (e.g., brain injuries [16,17]
and burn patients [18]), cardiovascular diseases (e.g., acute myocardial infarction [19] and
acute coronary syndrome (ACS) [20]), viral infections (e.g., acute Puumala Hantavirus
Infection [21] and Crimean–Congo hemorrhagic fever (CCHF) [22]), benign gastrointesti-
nal tract disorders [23–25], kidney disease [26,27], lung disease (e.g., chronic obstructive
pulmonary disease exacerbations [28] and pulmonary embolism [29]), thyroid disease [30],
pregnancy disorders (e.g., abnormal placentation, such as preeclampsia [31] and intrahep-
atic cholestasis [32]), skin conditions (e.g., psoriasis [33,34]), and stroke [35,36].

2.2. Other Clinical Scenarios

In addition to the more common medical conditions listed above, which are clearly
associated with cell or tissue injury and damage, total cfDNA levels have also been corre-
lated with a variety of other more obscure clinical scenarios. Elevated total cfDNA levels
have been found in psychiatric disorders, e.g., schizophrenia [37]. Conversely, cfDNA
levels were found to be lower in patients with extra temporal lobe epilepsy vs. healthy sub-
jects [38]. CfDNA levels were also found to be correlated with indications during in vitro
fertilization (IVF) procedures, while also reflecting male and female fertility status. For
example, cfDNA levels in the fluid of the blastocoel cavity of embryos correlated positively
with embryo morphology, indicating promise as a candidate marker of embryo quality and
implantation potential [39]. Similarly, increased cfDNA levels have been demonstrated in
low pregnancy rates among women undergoing IVF–embryo transfer [40]. In line with
this, the performance of various stress reduction techniques among women undergoing
infertility treatment resulted in a decrease in total cfDNA levels [41]. Interestingly, cfDNA
levels in the seminal plasma of azoospermic (no sperm in ejaculate) men has been shown
to be higher than in normozoospermic men [42,43].
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2.3. Medical Treatments and Therapy

Various kinds of medical treatments have been shown to result in elevated cfDNA
levels in comparison with untreated subjects, including various surgeries [44], radio-
therapy [44], high doses of corticosteroids, particularly in patients with lymphoid hy-
perplasia or sustained immunologic stress (which may be ascribed to the lympholytic
effect of steroids) [45], patients with end-stage renal disease (ESRD) receiving haemodialy-
sis [27,46,47], and intensive treatment unit patients receiving ventilation [48,49].

2.4. Different Physiological States

Studies have demonstrated higher cfDNA levels in older individuals (over 60 years)
vs. younger individuals, a phenomenon linked with various age-associated processes,
including increased cellular senescence, inflammation-induced cell death, and reduced
clearance and phagocytosis capacity [50,51]. Increased mass of adipose tissue in overweight
and obese pregnant women has been shown to result in increased cfDNA levels, often
complicating non-invasive prenatal screening tests (NIPTs) [52,53].

Some reports suggest that measured cfDNA levels depend on the time of day when
samples are collected and show significant intra- and interindividual variation [54,55]. One
study, for example, reported that the majority of subjects presented with maximum cfDNA
levels at midday [56], while fasting subjects in a different study showed the highest cfDNA
levels in the morning, which decreased up to three-fold after breakfast and lunch [57,58].
While it is speculated that circadian rhythms, postprandial effects, or the effects of fluctuating
blood lipid content (in response to food intake) on DNA isolation methods may play a role
in intra-day fluctuating cfDNA levels, the true cause is not yet clear.

An evaluation of 25 studies that reported on the relationship between cfDNA and
biological sex revealed a greater likelihood of increased cfDNA levels in males vs. females.
However, these differences are considered to be minor and may reflect lifestyle differences
between males and females, and as such requires further investigation [59]. Other variables
such as haematocrit or cannula placement pain [60], height [61,62], and the menstrual
cycle [63,64] were not found to affect total cfDNA levels.

2.5. Lifestyle Factors and Occupational Exposure Hazards

Studies have shown that high-intensity or acute exercise markedly increases plasma
cfDNA levels. While the cause of this phenomenon is not yet known, it is possible that
these cfDNA molecules originate from strenuous physical exertion-induced muscle damage,
oxidative stress-induced DNA damage, or leukocyte inflammatory responses [54,62,65–67],
but this explanation is challenged by observations that cfDNA levels increase dramatically
almost immediately after beginning exercise [54,68]. Conversely, cfDNA measurements
in subjects engaging in chronic exercise showed less pronounced spikes and inconsistent
levels [69]. To-date, only two studies have investigated the effects of alcohol intake on total
cfDNA levels, but no correlation was found [70,71]. However, more research is needed, as
these studies had incomplete methodological reporting, used a non-specialized method
for cfDNA isolation, failed to specify alcohol intake for subjects in the ‘moderate-severe’
category [71], have not in their cohort categorization accounted for possible differences
between social drinkers and non-drinkers [70], and were performed in the context of a
study on cancer [59].

Despite the DNA-damaging effects of cigarette smoking, surprisingly few studies have
assessed the correlation between smoking and cfDNA levels. Of the ten studies that have
been conducted so far, highly conflicting results were obtained, together showing virtually
no correlation between smoking and cfDNA levels [59]. It is possible that a correlation may
be found in clinical studies that have enrolled appropriately powered, equally balanced,
and sex- and age-matched subjects into their cohorts, for example.

Significantly elevated total cfDNA levels have been demonstrated in greenhouse
workers exposed to pesticides for 5–15 years vs. controls [72], while increased cfDNA levels
coupled with increased DNA damage were demonstrated in workers exposed to toxic
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paints in automobile paint shops [73]. Conversely, another study demonstrated a much
lower level of cfDNA in nuclear-site workers exposed either to gamma-neutron or chronic
tritium β-radiation [74]. To our knowledge, no other studies have evaluated the effect of
occupation-related exposure to toxic substances on total cfDNA levels. Yet, it seems likely
that cfDNA measurements could potentially be used to monitor worker health in various
occupations that are at increased risk of chronic exposure to harmful substances. These
include, for example, miners that inhale silica, construction workers that are exposed to
asbestos and regularly use products that release toxic fumes (e.g., insulation, glues, paint,
polyurethane, blown foam, and solvents), welders that work with metals that become toxic
when heated, and textile workers exposed to chemicals such as formaldehyde, arsenic,
and cadmium.

As mentioned earlier, total cfDNA levels are influenced by some therapies, and may
be affected by food intake. Apart from these studies, and those on alcohol use, cigarette
smoking, and one study that found no correlation between cfDNA levels and a history of
betel nut chewing (seeds with stimulatory effects akin to amphetamines and cocaine) [70],
there are no further data on the correlation between nutritional, medicinal, or drug abuse
status and changes in total cfDNA levels. Detecting changes in the baseline values of
cfDNA in response to the consumption of certain foods, dietary supplements, medicine,
or drugs of abuse may be complicated by the short half-life of cfDNA, which is currently
estimated between 16 min and 2.5 h [75–77]. However, it may, for example, be interesting
to investigate changes in total cfDNA levels during the chronic use of medications that
may cause muscle atrophy, such as cholesterol medication, or in individuals with a long-
term diet of inflammatory foods, or in individuals that abuse drugs that cause chronic
inflammation, for example inflammation of the immune system [78] or pancreas [79]. Other
lifestyle factors such as frequent blood donation were not found to correlate with cfDNA
levels [80].

2.6. Limitations of Quantitative cfDNA Measurements

At first glance, the reports discussed in the sections above suggest that total cfDNA
levels could potentially serve as a stand-alone biomarker for detecting and monitoring
several disorders and other clinical scenarios. However, the use of total cfDNA levels
for this purpose is highly unlikely due to the convergence of several factors that result in
greatly overlapping data between different disease types and healthy individuals both in
individual studies and in interstudy comparisons, thereby precluding the establishment of
cut-off values or normal reference ranges for any specific condition (Figure 3). These factors
include: (i) elevated cfDNA levels is not a phenomenon unique to specific pathological
states but is instead a common consequence of many diseases; (ii) cfDNA levels increase in
response to a wide range of ordinary non-pathological conditions and also correlates with
numerous lifestyle factors; (iii) as will be described in greater detail in Section 9, accurate
measurements of total cfDNA are also significantly affected by a plethora of biological
factors as well as factors relating to its physico-chemical properties, the nature of various
preanalytical steps, and analytical decisions. It is also likely that the co-presence of so many
overlapping variables has resulted in the reporting of erroneous correlations between total
cfDNA levels and a specific factor, while interesting correlations between a specific factor
and total cfDNA levels have been obscured to date.

Although total cfDNA levels have limited clinical utility, the surge of early stud-
ies on the correlation between total cfDNA levels and clinicopathological data sparked
widespread interest in the genetic and epigenetic characterization of cfDNA. This primed
the ground for rapid advancements in molecular methods and technologies which acceler-
ated the discovery of unknown correlations between qualitative characteristics of cfDNA
and various disease indications, particularly in the medical fields of oncology, prenatal
testing, and organ transplant monitoring. This, in turn, enabled the development of sev-
eral cfDNA tests that have been approved for use in routine clinical practice. In the next
sections we discuss new advances, approved and potential clinical applications, as well
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as challenges related to qualitative cfDNA assays. In outlining these new advances in
the research field, it is interesting to note how it may reignite interest in the conditions
discussed in Sections 2.1–2.5 or inspire enquiry into unexplored domains of biology and
medicine in relation to cfDNA, and how quantitative measurements of total cfDNA may be
resurrected as a potential auxiliary marker to qualitative characterization of cfDNA.

Figure 3. Factors that can potentially affect total cfDNA levels. Here we summarize the wide-ranging
factors that have been experimentally shown to modulate total cfDNA levels. We also show several
other factors that possibly affect total cfDNA levels, but which have not yet been conclusively
demonstrated or have not yet been investigated. This makes it very difficult to correlate total cfDNA
levels with a specific factor and limits the clinical use of total cfDNA measurements.

3. Sequence Analysis of cfDNA

Hundreds of studies have investigated cfDNA in various biospecimen types for the
detection of mutations or sequences unique to individuals, organisms, and diseases. This
led to many exciting discoveries, while the use of increasingly sophisticated molecular
analysis methods for cfDNA analysis has enabled the development of diagnostic assays
in various clinical fields, some of which are already clinically available. Below we give an
overview of the potential applications of cfDNA sequence analysis.

3.1. Cancer

The tremendous value of cfDNA as a surrogate molecular marker throughout cancer
management is now well understood (reviewed in refs. [2,81–83]). In-depth profiling of
cancer-specific mutations in cfDNA may enable the development of pan-cancer screening
tests for at-risk groups or unsuspected healthy populations, thereby allowing early detec-
tion and prompt treatment (reviewed in [8,84,85]). As the level of cancer-specific mutations
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shows a high correlation with tumor size, quantitative measurements could be used as
an indicator of disease stage and may even predict the clinical outcome of patients. As
will be discussed in a later section, various cell and tissue-specific information is encoded
into both classical and newly discovered epigenetic features of cfDNA, which may not
only act as auxiliary markers for tumor detection but may enable clinicians to pinpoint
the location of tumors, especially those of unknown primary. Furthermore, cfDNA can
be used to guide the selection of new targeted therapies which only work when specific
mutations are present. Tissue biopsies collect only a fraction of tumor tissue, and therefore
do not capture the spatial genetic heterogeneity of the complete tumor. On the other hand,
tumor-derived cfDNA, which is released into body fluids from many parts of the tumor,
provides a much more holistic representation of the genetic landscape of the whole tumor.
Thus, given the minimally-invasive nature of venipuncture, longitudinal cfDNA sampling
enables the assessment of dynamic changes in cfDNA levels, the identification of acquired
resistance-conferring mutations, and the tracking of clonal evolution. These temporal data
can be harnessed not only to monitor the response of cancer to surgical removal, which
makes possible the detection and prediction of minimal residual disease or recurrence, but
also monitor the response to other therapies, which makes it possible to detect and study
the emergence of acquired resistance. The information provided by cfDNA analysis will
facilitate the development of better therapies and inform the selection of more effective
therapy regimes.

3.2. Fetal Genetic Abnormalities

Since the discovery of the presence of cell-free fetal DNA in maternal plasma, non-
invasive prenatal tests have been developed for fetal sexing [86], screening of various fetal
genetic abnormalities [87,88], and monitoring pregnancy complications [31], many of which
are now routinely screened for (reviewed in ref. [89]).

3.3. Organ Transplant Monitoring

Characterization of unique single-nucleotide polymorphisms in cfDNA has allowed
the differentiation between host- and recipient-derived cfDNA in organ transplant patients
and is emerging as a potentially useful clinical tool for monitoring post-transplant organ
rejection, dysfunction, and injury [90–96].

3.4. Detecting Pathogenic DNA

Pathogenic DNA or RNA from bacteria (e.g., Mycobacterium tuberculosis-derived
DNA [97] and Pneumonia pathogens [98]), viruses (e.g., Crimean–Congo hemorrhagic
fever (CCHF) [22]), and parasites (e.g., Leishmania, Plasmodium, Schistosoma, Trypanosoma,
and Wuchereria spp.) have been detected in body fluids [99]. Characterization of pathogenic
DNA in body fluids may facilitate the early detection of a wide range of infections. For
example, a 24-marker quantitative real-time PCR (qPCR) assay has recently been devel-
oped for the detection of sepsis well before the onset of clinical symptoms [100]. Similarly,
detection of parasitic cfDNA using nucleic acid amplification tests (NAATs) showed im-
proved accuracy over traditional microscopic and serological diagnostic tests, while the
possibility of convenient, cost-effective, non-invasive, and painless collection of parasitic
DNA from specimens such as urine and saliva is highly practical for implementation in
large-scale epidemiological screening programmes [99]. Furthermore, routine screening
of cancer-causing viruses such as the Epstein-Barr virus (EBV), which is associated with
nasopharyngeal carcinoma [101,102], or Human papillomavirus (HPV), which is associ-
ated with oropharyngeal squamous cell carcinoma [103,104] and cervical cancer [105] may
enable early detection and prompt treatment.

3.5. Studying the Gut Microbiome

The major role that the gut microbiome plays in human health and disease is becoming
increasingly appreciated. The detection of high levels of cfDNA fragments in human plasma
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that originates from both known and unknown resident microorganisms [106–108] suggest
that the metagenome encoded into the total cfDNA population may not only be harnessed
to study and gain further insights into the gut microbiome, such as the mechanisms by
which it contributes to human health or disease or the effects of antibiotics, but also gain
deeper insights into the microbial diversity within humans, which appear to be much more
diverse that initially thought [108].

3.6. Studying Environmental DNA in Humans

Environmental nucleic acids ingested through fluids and meals, such as bacterial or
plant DNA, has been found in human body fluids. The fate of these nucleic acids is uncer-
tain, but it is suggested that they may remain in body fluids for extended periods before it
is degraded, excreted, or assimilated by cells [109,110]. While the relative contribution of
environmental DNA to the total cfDNA population has not yet been determined, it is gen-
erally considered to be low. However, foreign cfDNA molecules may have underestimated
detrimental effects, as studies have shown that they are able to enter the host cell nuclei
and incorporate into the genome [111–114]. For example, a recent study suggested that
cfDNA may facilitate the horizontal transfer of antibiotic resistance genes [110]. While no
research has been carried out on the topic, we could speculate here that cfDNA may serve
as a potential surrogate marker to study the presence and potential effects of genetically
modified crops or animals on human health.

3.7. Other Potential Uses

While thorough investigation is lacking, some reports have indicated that cfDNA may
have potential use in (i) biobanking; analysis of cfDNA in cord blood plasma has been useful
for sample identification [115], (ii) forensic casework; cfDNA has been genetically profiled in
samples recovered from externally found body fluids, such as blood, sweat, and feces [116–119],
and (iii) quality control assurance of blood donations [120] or transfusions [121].

4. Limitations of cfDNA Hotspot Mutation Analysis

An ever-increasing range of disease-specific signatures can be detected through the
characterization of cfDNA sequence information. This constitutes a major breakthrough
in the use of molecular tests towards minimally invasive personal medicine. The clinical
significance of cfDNA sequence analysis is underscored by several recent breakthrough
advancements in the field (Table 1).

Table 1. Developments that demonstrate the potential clinical utility of sequence-specific cfDNA assays.

Development Use/Implementation

Food and Drug Administration (FDA)-approved
cfDNA assays for use in routine diagnostic settings

BRCA1 and BRCA2 mutations in metastatic
castration-resistant prostate cancer

EGFR mutations in non-small cell lung cancer

KRAS G12C mutations in non-small cell lung cancer

PIK3CA mutations in breast cancer

CfDNA Assays performed in Clinical
Laboratory Improvement Amendments
(CLIA)-certified laboratories

CtDNA assays that have been validated in
CLIA-approved clinical laboratories are increasingly
offered to cancer patients worldwide

CfDNA assays performed in non-invasive prenatal
testing (NIPT) facilities

NIPT facilities worldwide offer cfDNA-based tests
for the screening and early characterization of
various fetal characteristics, such as sex and
chromosome conditions, i.e., aneuploidy, trisomies,
and microdeletions

Despite these exciting achievements and despite the spectacular progress made in
the cfDNA research field in the last two decades, the development and implementation of
ctDNA assays into routine diagnostic settings has been slow and challenging. The main
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reason for this is that the timeline for the development of ctDNA assays that bear the
required diagnostic sensitivity and specificity for testing in large-scale clinical trials, and
thus the development of kits that are fit for clinical roll-out, is extended by numerous, often
non-mutually exclusive factors that challenge the robust analytical detection of ctDNA. The
most challenging factor is low absolute amounts of ctDNA molecules in the blood, especially
in early disease when small tumors shed miniscule amounts of DNA into extracellular
space. While the analytical sensitivity of ctDNA assays have surged tremendously in recent
years, the detection of scarce ctDNA molecules in a biospecimen is still challenged by the
vast background of non-target molecules originating from diverse origins. The analytical
challenges involved in detecting low amounts of ctDNA is further exacerbated by the
selection of counter-productive preanalytical steps, such as (a) blood-drawing techniques,
processing procedures and storage conditions that result in the degradation of target
molecules or dilution by the release of germline DNA, (b) extraction procedures that fail
to capture a large portion of ctDNA molecules, either due to general recovery inefficiency
(e.g., automated methods extract much less DNA than some manual spin-column methods)
or size bias (e.g., ctDNA mutations occur in both long and short fragments, but most kits
are biased toward the extraction of short fragments).

Moreover, in the rapidly advancing cfDNA research field, which is currently experienc-
ing an influx of new ideas, discoveries, potential applications, and companies, there is not
only an ever-expanding menu of products for each preanalytical step, but also a growing
repertoire of analytical techniques and technologies open to selection. Although many
of these products and technologies have different degrees of efficiency and bias towards
specific sample processing procedures, applications, and different cfDNA subpopulations,
they are somewhat arbitrarily used by both basic and translational researchers. This sig-
nificantly complicates the harmonization of cfDNA preanalytics and analytics among
researchers, institutions, and clinics. These issues are increasingly addressed [7,58,122–129],
yet preanalytical optimization and standardization remains a major, evolving issue that
requires ongoing surveillance and active problem solving. As reviewed elsewhere [130],
ctDNA profiling is also challenged by clonal hematopoiesis (CH)-derived cfDNA that
bear cancer-specific mutations. This is especially problematic as this is a common phe-
nomenon in both cancer patients [131] and healthy subjects [132–135]. It is currently not
clear how the misdiagnosis of CH-derived mutations in cfDNA as malignancy may be
prevented, but some suggest that ctDNA and CH-derived cfDNA may be differentiated on
the basis of fragment size, as tumor-derived cfDNA is generally shorter than DNA from
other origins [136]. However, as discussed in Section 9, it is also noteworthy that there
is a wide range of cfDNA size populations in human body fluids, many of which share
overlapping origins.

5. Beyond cfDNA Hotspot Mutation Analysis

Significant research efforts in the last decade uncovered a rich landscape of cfDNA
physico-chemical features (reviewed in [130,137–140]). Beyond hotspot mutations, nu-
merous cfDNA features are candidate biomarkers, including (i) various genetic features,
such as DNA sequence features (Figure 4A), chromosomal abnormalities (Figure 4B), and
topological forms (Figure 4C); (ii) primary epigenetic markers such as DNA methylation
(Figure 4D) and histone modifications (Figure 4E); and (iii) various secondary epigenetic
features that cfDNA molecules attain intracellularly or extracellularly following disruption
of the primary structure of DNA, such as binding to proteins, extracellular vesicles, or cell
membranes (Figure 4F), and fragmentomic features (Figure 4G).

One major advantage that most of the abovementioned features have over hotspot
mutation profiling is that they occur across a large portion of the genome, which markedly
increases their probability of detection. Indeed, the characterization of many of these
markers are now considered as auxiliary tests to hotspot mutational profiling, while some
epigenetic assays may even outperform mutational profiling and be used as stand-alone
tests. Two breakthroughs are noteworthy here. First, the FDA-approved Epi proColon
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2.0 CE test is routinely used to screen high-risk groups (patients over the age of fifty) for
aberrant methylation of SEPT9, an indicator of colorectal cancer [141]. Second, a recent
study used cfMeDIP-Seq to ID breast-cancer specific methylation signatures in the cfDNA
of asymptomatic subjects, which allowed the detection of breast cancer several years before
clinical presentation and diagnosis [142]. While they have not yet achieved the diagnostic
sensitivity and specificity required for clinical implementation, numerous other studies
have also demonstrated strong correlations between epigenetic features of cfDNA and wide-
ranging disease activities, including various indications in different cancer types [143–161],
CVD [162], liver damage [163,164], diabetes [165,166], multiple sclerosis [167], aging [51],
and even psychological distress [168,169].

Figure 4. Features of cfDNA that could serve as clinical biomarkers. In addition to DNA hotspot
mutations, various disease- and tissue-specific genetic, epigenetic, and structural features are encoded
into cfDNA. Much of this information can be leveraged for the detection and monitoring of a wide
range of diseases, physiological states, and other clinical scenarios.

Another major advantage of epigenetic cfDNA features is that it may enable the
parallel characterization of several cancer types. This is especially important in the context
of cancer screening, where the identification of the tissue-of-origin of underlying cancers is
crucial. This is a challenging task, but in the next section we explore how this is becoming
increasingly possible through rapid progress in mapping various tissue-of-origin classifiers
in the genome and in cfDNA [170,171].

5.1. Various Cell and Tissue-Specific Epigenetic Signatures in cfDNA

Cell-specific epigenetic features are conserved by cfDNA molecules and have been
used for a variety of tissue-of-origin analyses in recent years. In particular, distinct ap-
proaches employing methylation patterns, nucleosome positioning, transcription factor
binding site occupancies, and fragmentomic features were successfully developed to de-
termine the tissue-of-origin of individual cfDNA molecules (Figure 5). Tissue-of-origin
analysis enables estimation of the contributions of various tissues from the human body to
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the plasma DNA pool and thereby identify tissues where increased cell death occurs, poten-
tially yielding sensitive screening tests for early diagnosis of a wide range of pathologies,
therapy response monitoring, and detection of minimal residual disease.

Figure 5. Determining the tissue-of-origin of cfDNA molecules. The cfDNA population in a typical
biospecimen is highly complex and derives from numerous different cell and tissue types. However,
cfDNA molecules contain multiple layers of cell-type specific epigenetic signatures, such as differ-
entially methylated DNA regions, post-translational histone modifications, nucleosome occupancy,
as well as various fragmentation features. Through the use of increasingly sophisticated molecular
analysis methods coupled with machine learning algorithms, the epigenetic information carried by
cfDNA molecules can be decoded to determine the contribution of different tissue types.

5.1.1. DNA Methylation

For methylation-based tissue-of-origin analyses, genome-wide methylation profiles
of reference tissues (mostly based on whole genome bisulfite sequencing) were used to
deconvolute cfDNA sequencing data. In 2015, a reference-based methylation deconvolution
approach was developed to determine relative contributions of DNA from multiple tissue
types to the plasma DNA pool [172]. This approach allowed the identification of differ-
entially methylated regions unique to specific cell types, which enabled the researchers
to identify the tissue-of-origin of cfDNA molecules in pregnancy, transplantation, and
cancer. They also estimated that ≥70% of the plasma cfDNA was derived from white
blood cells (i.e., neutrophils and lymphocytes) [172]. Considering the methylation state of
a number of adjacent CpGs instead of a single CpG site significantly reduced background
and enhanced the specificity of methylation-based tissue-of-origin analysis and was uti-
lized to detect cell-type specific cell death from plasma samples with pathologies lacking
genetic aberrations such as diabetes, multiple sclerosis, and head trauma [173]. Highly
coordinated methylation sites, so-called methylation haplotype blocks, were the basis
for another methylation-based tissue-of-origin method [174]. This approach investigated
tightly coupled CpG sites and observed a reduction in completely coupled CpG pairs in
cancer patients, which enabled quantitative estimation of tumor load and tissue-of-origin
mapping in cfDNA of patients with lung or colorectal cancer [174]. Immunoprecipitation
of methylated DNA followed by sequencing (cfMeDIP-seq) was developed specifically for
low-input and already fragmented plasma DNA samples and enabled the classification
of cancer in plasma samples from numerous tumor types [148]. Establishing reference
methylation atlases of cell types (and not tissues) is very important to further advance
methylation deconvolution approaches. One reference atlas of 25 human tissues and cell
types covering major organs and cells involved in common diseases [92] and another re-
cently published methylation atlas of 39 cell types sorted from healthy tissue samples [175]
are available to further improve tissue-of-origin analyses via methylation patterns. The first
commercially available blood-based multi-cancer early detection test was recently intro-
duced by GRAIL [176–178], which utilizes targeted cfDNA bisulfite sequencing followed
by ML and is able to detect cancer signals of multiple cancer types and predict cancer origin
with high accuracy.
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5.1.2. Nucleosome Spacing and Occupancy

Many approaches have been developed to infer nucleosome positioning maps from
cfDNA sequencing data. For this purpose, sequenced cfDNA fragments are aligned to the
genome and genomic regions with higher number of fragments ending in those regions
point to regions not occupied by a nucleosome, whereas regions that are spanned by the
majority of sequenced cfDNA fragments are indicative of a genomic region protected by
a nucleosome. One metric to quantify this is the windowed protection score (WPS) [179],
which was used to determine the nucleosome spacing pattern that, in turn, informed
on cfDNA tissues-of-origin. In healthy subjects, these nucleosome occupancy patterns
matched hematopoietic lineages and additional contributions were detected in cancer [179].
Another approach employed whole genome sequencing of cfDNA in combination with
nucleosome promoter analysis [180]. The read depth coverage at two discrete regions at
transcription start sites was determined and enabled distinction of expressed and silent
genes. The prediction of the expression status of individual genes can be employed for
classification of expressed cancer driver genes [180]. The abovementioned WPS is also
informative about the occupancy of transcription factor binding sites when determined
for short fragments (35–80 bp) [179]. An alternative approach to assess transcription factor
activity is based on cfDNA sequencing data and nucleosome footprint analysis [181]. A
bioinformatics pipeline that infers accessibility of transcription factor binding sites from
cfDNA fragmentation patterns has also been developed. By determining the activity of
lineage-specific transcription factors, patient- and tumor-specific patterns were observed
and allowed accurate prediction of tumor subtypes in prostate cancer [181].

5.1.3. Histone Modifications

In one study, post-translational histone modifications have been successfully used
for tissue-of-origin analysis. Chromatin immunoprecipitation and sequencing of cell-free
nucleosomes directly from human plasma yielded information on DNA-related activities
within the cells of origins [182]. Pathology-related changes in transcriptional programs in
specific cell types could be identified with this method. In another proof-of-principle study,
immunoprecipitation of H3 lysine 36 trimethylation (H3K36me3)-modified nucleosomes, a
histone modification associated with active gene transcription, was used as a liquid biopsy
marker to identify tumor-specific transcriptional activity of mutated alleles in non-small
cell lung cancer [171,183].

5.1.4. CfDNA Fragmentation Profiles

Fragmentomic features of cfDNA molecules can be used in various ways to determine
tissue-of-origin and identify cell type contributors to the plasma DNA pool. First, cfDNA
fragment size distribution can be employed for tissue-of-origin analysis. Selection for
specific cfDNA fragments (90–150 bp) before sequencing enhanced the detection of ctDNA
and identified differences in the size distribution of ctDNA and noncancer DNA fragments
(i.e., ctDNA fragments are shorter than cfDNA from healthy samples) [184]. This ML-based
method was able to detect multiple cancer types in plasma. A large-scale fragmentation
pattern analysis approach evaluated cfDNA fragmentation profiles at megabase level across
distinct cancer types [185]. This ML model incorporated genome-wide fragmentation fea-
tures and could be used to identify the tissue-of-origin of multiple cancer types. Combining
this fragmentation-based approach with mutation-based cfDNA analysis significantly en-
hanced detection [185]. Measuring the fragment length diversity at promoter regions of
genes of interest via a targeted approach (EPIC-seq) and determining the promoter fragmen-
tation entropy (PFE) allowed the inference of gene expression profiles and tissue-of-origin
determination. The PFE approach was used to classify subtypes of lung carcinoma and
diffuse large B cell lymphoma [186]. Second, the orientations of cfDNA fragments in open
chromatin regions are informative of tissue-of-origin [187]. Determining the orientation
in tissue-specific open chromatin regions where the respective tissues contributed DNA
into the plasma allowed measurement of relative contributions of various tissues to the
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plasma DNA pool in pregnancy, organ transplantation, and cancer [187]. Third, the frag-
ment end sequence motif (commonly the four bases at both ends of a cfDNA fragment)
hold information about the cellular origins of cfDNA fragments. Analyzing the plasma
DNA end motif via the motif diversity score (MDS, adopted from the normalized Shannon
entropy) revealed distinct characteristic sets of plasma DNA end motifs for plasma DNA
molecules derived from liver, hepatocellular carcinoma and other cancers, and placenta
and hematopoietic cells [188]. A significant increase in the diversity of plasma DNA end
motifs in patients with hepatocellular carcinoma was observed, aberrant end motifs were
also found in patients with other cancer types [188]. A genome-wide catalogue of cfDNA
fragment end sequence patterns of patients with 18 different cancer types demonstrated
enhanced cancer detection, monitoring and prognosis [189]. Here, the authors calculated
the normalized Shannon index and a Gini index of the 5′trinucleotide and the 5′ and
3′mononucleotide, respectively, to quantify the extent of cfDNA fragment end diversity
and demonstrated that the so-called Fragment End Integrated Analysis (FrEIA) score could
be employed to quantitatively evaluate the tumor fraction in plasma samples.

While the clinical utility of most of the abovementioned cfDNA features still need to
be evaluated and confirmed, sufficient evidence indicates that their analysis may expedite
the development of increasingly powerful, clinically meaningful cfDNA-based assays.
However, similar to the problems encountered in the development of hotspot mutation-
based cfDNA tests, epigenetic profiling of cfDNA is challenged by numerous biological,
preanalytical, technical, and analytical issues and limitations. Among many, some of
the most significant challenges are (i) similar or identical modifications that arise in both
ordinary biological processes and pathologies, (ii) stochastic fluctuations in epigenetics
or specific epigenetic biomarkers can induce significant biological noise, and (iii) various
biases of different methods can alter the observed epigenetic profile and complicate accurate
analysis (reviewed in ref. [140]). To develop clinically meaningful assays, these challenges
need to be overcome.

6. Other Sources of Cell-Free DNA

The bulk of cfDNA research to-date is centered on the characterization of DNA origi-
nating form the nucleus through cell death. However, increasing evidence indicates that
various other sources such as mitochondrial DNA, neutrophil extracellular traps, and
extracellular vesicles, which may also originate from non-apoptotic processes, may have
significant clinical utility.

6.1. Mitochondrial DNA (mtDNA)

Mitochondria are intracellular organelles that perform a variety of essential functions.
They are the primary generators of cellular energy, produce several biosynthetic interme-
diates (e.g., haem, lipids, and amino acids), and are involved in cellular stress responses,
including apoptosis, innate immunity, and hypoxia. Apart from its cell autonomous roles,
mitochondria can also influence an organism’s physiology by regulating intercellular and
interorgan communication [190–192]. Thus, considering its central role in human phys-
iology, it is not surprising that mitochondrial dysfunction is associated with numerous
disorders, and that cell-free mitochondrial DNA (cf-mtDNA) is attracting increasing at-
tention as a potentially versatile biomarker for a wide range of diseases and other clinical
scenarios. The presence of cf-mtDNA in the human circulatory system was first reported in
a study in which a known mtDNA mutation was identified in the DNA isolated from the
plasma and serum of type 2 diabetes mellitus patients [193]. Since then, numerous studies
have confirmed the presence of cf-mtDNA in the circulation of both healthy and diseased
individuals [194].

For example, aberrant cf-mtDNA has been correlated with various cancers [195–197], in-
cluding breast cancer [198], lung adenocarcinoma [199], squamous cell carcinoma [200,201],
Ewing’s sarcoma [202], urological malignancies [203], and oral cancer [204]; neurodegenera-
tive diseases [205] such as Friedrich’s ataxia [206], multiple sclerosis [207], and Parkinson’s
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disease [208]; diabetes [193,209]; aging [210]; surgery and trauma [211,212]; sepsis [213,214];
HIV [215–217] and type-2 diabetes [218]-associated cognitive decline and chronic inflamma-
tion; exposure to carcinogenic pesticides [219]; adverse effects of spaceflight on the health of
astronauts [220,221]; poor outcomes of patients with adult community-acquired bacterial
meningitis [222]; psychological issues such as major depressive disorders [223], suicidal
behavior [224], and acute psychological stress [225], as well as psychosocial and physical
stress [168]. Reports have also shown that cf-mtDNA characteristics can be influenced by
exercise [226,227], suggesting a possible use in sports medicine. Another potential use of
cf-mtDNA may be minimally invasive haplogroup matching [228].

Cf-mtDNA may also have underappreciated potential as a biomarker for cardiovas-
cular disease (CVD), which is one of the leading causes of death worldwide [229–231].
MtDNA aberrations on the level of mutations, copy number shifts, and methylation changes
are associated with a wide range of CVDs [232–235]. Prolonged reduction of blood flow
to the heart, as a result of atherosclerosis, for example, decreases the amount of oxygen
available for the mitochondria of cardiomyocytes in the territory of the blocked artery. This
results in the rapid depletion of cellular ATP, triggering an ischemic cascade, and eventually
the induction of cell death through apoptosis or necrosis. If tissue death is severe enough,
this can lead to a myocardial infarction (MI) [236,237]. Since mtDNA is released into the
bloodstream during this process, cf-mtDNA levels may serve as a potential biomarker for
estimating the course and outcome of injury in patients following MI. A number of studies
have demonstrated significantly elevated levels of cf-mtDNA in patients with MI compared
with healthy subjects [238–241], and cf-mtDNA levels appear to correlate with the degree of
myocardial damage and are also higher in transmural MI than in non-transmural MI [238].
Whether cf-mtDNA levels correlate with MRI infarct size is not yet known. Furthermore,
cf-mtDNA levels in MI patients decline significantly following percutaneous coronary
intervention treatment [239,242]. Apart from MI, elevated levels of cf-mtDNA have also
been demonstrated in patients with chronic systolic heart failure [243] and sudden cardiac
arrest compared with healthy control subjects and survivors [231]. Furthermore, while
there is a paucity of publications on this subject, no study has yet demonstrated a clear
correlation between cf-mtDNA levels and most vascular risk factors, such as hypertension,
dyslipidemia, and smoking status. However, studies have indicated that cf-mtDNA is
significantly increased in patients with diabetes mellitus (DM) [244], and is higher in CVD
patients with DM than in CVD patients without DM [245].

MtDNA can be released into body fluids through various modes of cell death [1,246],
or by regulated processes, where certain mechanisms actively secrete cf-mtDNA via
mitochondria-derived vesicles and neutrophil extracellular traps (NETs). Many cell types
such as leukocytes, endothelial cells and platelets, seem to be able to release mtDNA [247],
while it was recently also shown that intact respiratory-competent mitochondria circulate
in blood plasma, which may also serve as a source of cf-mtDNA [248]. The structure of
cf-mtDNA remains poorly characterized; however, it seems that it can be present either
in naked form or associated with internal and external mitochondrial membrane frag-
ments [249]. Furthermore, the absence of nucleosome-associated histone proteins and,
therefore, the absence of higher-order packaging of mtDNA render “naked” cf-mtDNA
exposed to enzymatic cleavage. This suggests that cf-mtDNA molecules should be more
fragmented than autosomal cfDNA. Indeed, unlike autosomal cfDNA, which is typi-
cally characterized by a three-mode size signature representing apoptotically generated
mono-, di-, and tri-nucleosomes, cf-mtDNA generally exhibits a wider range of sizes.
Some studies have shown that cf-mtDNA is highly enriched in fragments ranging between
40–80 bp [106,246], while others have observed a broader size distribution of
50–300 bp [250–252]. An important point to bear in mind is that the aforementioned studies
have used different methods of cf-mtDNA purification (e.g., QIAamp DSP DNA Blood Mini
Kit vs. DNeasy Blood and Tissue Kit) and fragment sizing (e.g., paired-end sequencing vs.
qPCR using specific amplicons). Plasma cfDNA obtained with non-hybridization-based
extraction methods, which do not filter and capture DNA fragments of a specific size, have
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revealed very different size profiles [61]. Moreover, since a fraction of cf-mtDNA fragments
can be associated with particles [249], the characteristics of extracted cf-mtDNA can be
influenced by other preanalytical processing steps, such as centrifugation. It is therefore
possible that these differences in reported cf-mtDNA sizes are merely an artefact of variable
methodology and may not be a true reflection of their in vivo counterpart. It is thus clear
that there is insufficient data to reach a consensus on the size and exact structure of cf-
mtDNA. In order to gain a better understanding, it is necessary to establish a standardized
blood processing method and to perform a systematic characterization of both cf-mtDNA
and cf-nDNA, perhaps making use of in vitro cell cultures, well established animal models,
or samples collected from large clinical cohorts [225,253].

6.2. Neutrophil Extracellular Traps (NETs)

Neutrophils are the most abundant innate immune effector cells, accounting for
over 50–60% of white blood cells. Since NETs are composed of a DNA scaffold, they
are considered to be important sources of circulating cfDNA [254]. Extracellular traps
(ETs) produced by neutrophils were first observed in 2004 [255] and to date it has been
shown that other immune cells including macrophages, mast cells, eosinophils, basophils,
plasmacytoid dendritic cells, and lymphocytes are all able to produce ETs [256–259].
As neutrophils are present in significant amounts in blood, we will focus on NETs in
this review.

NETs consist of a meshwork of DNA fibers bound to histones and cytoplasmic and
granular proteins [260]. They are described as three-dimensional net-like [261] or cloud-
like [262,263] structures, with differences possibly resulting from varying DNA origins, for-
mation mechanisms, or experimental settings [261,263,264]. Both mitochondrial [265,266]
and nuclear DNA [262] have been found to form or at least make up parts of NETs. As
reviewed elsewhere [267–269], the details of the different pathways involved in NET forma-
tion is still rather controversial and highly debated. With this in mind, we briefly describe
what is known to date about the mechanisms of formation (Figure 6). Two principal
mechanisms of NET formation have been described, namely (i) suicidal NET formation, or
NETosis, which is a unique form of cell death that lasts several hours [270]. After neutrophil
activation, nuclear chromatin decondenses and expands, followed by disassembly of nu-
clear and granule membranes and release of chromatin into cytoplasm, where cytoplasmic
and granule proteins are bound [270]. Finally, the plasma membrane disrupts, and the
decorated DNA filaments are released. Additionally, mtDNA is released into cytoplasm
via a controlled pore forming mechanism during apoptosis. It is unclear whether this is
contributing to NET formation [271]; (ii) Vital NET formation or extrusion is a rapid process
occurring within 5–60 min. Here it is important to note that these cells fully maintain their
viability, and therefore this type of NET formation is described as NET extrusion rather
that NETosis, which implies the lysis of the NET-forming cells [272]. Both nuclear and
mtDNA have been described as components of these types of ETs [265,273]. Nuclear DNA
is released in vesicles by blebbing directly from the nucleus while the nuclear and plasma
membrane initially remain intact [273,274]. The nuclear membrane may subsequently
rupture, leading to an accumulation of chromatin fibers into the cytosol, while retaining
their viability. In 2009 Yousefi et al. demonstrated that NETs from viable neutrophils can
also be composed of mtDNA. Two modes of mitochondrial NET formation/extrusion have
been suggested so far: (a) mtDNA may be released into cytosol where it is further packed
into vesicles and released by fusion with the plasma membrane thereby forming traps [275];
(b) The direct release of mtDNA and granules in a catapult-like manner via fusion of the
mitochondrial and plasma membrane [269,271,275].
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Figure 6. Mechanisms of NET formation. (A) Suicidal NETosis occurs over several hours and involves
the decondensation of chromatin in activated neutrophils leading to the release of chromatin into
the cytoplasm. Subsequently, the cell membrane is ruptured and chromatin is released from the
lysed neutrophil into extracellular space. (B) Vital NET formation/extrusion is a rapid process
occurring within 60 min of cell stimulation where vesicles containing nuclear DNA are fused with
the plasma membrane and chromatin is released entirely, leaving anuclear neutrophils. These cells
maintain their viability; therefore, this type of NET formation is best categorized as NET extrusion
rather than NETosis, which implies that the NET-forming cells are lysed. (C) Mitochondrial vital
NET formation/extrusion is a secondary form of vital NET formation in which mitochondrial
DNA is released as NETs after the rupture of mitochondrial membranes, leaving viable neutrophils
lacking mitochondria.

Compared with NET formation, much less is known about their degradation, al-
though the imbalance between the formation and degradation of NETs is relevant to the
development of various diseases. It has been shown that DNase I can disrupt the NETs
scaffold in vitro [276], but with physiological concentrations of DNase I, it is not capable
of fully digesting it. There is evidence that DNase I preprocesses NETs extracellularly,
which are then cleared by macrophages [277]. Recently it was shown that proinflammatory
polarized macrophages have an increased uptake and boosted further macropinocytosis.
Additionally, macrophages secrete DNases, e.g., DNase I and DNase 1L3, which disrupt
NETs in preparation for intracellular uptake [278]. DNase 1L3, released by dendritic cells
was also found to take part in the extracellular degradation, whereas TREX1 (DNase III)
was found to degrade NETs intracellularly within macrophages [279]. In case of insufficient
uptake by macrophages, it is possible that partially digested DNA fragments are released.
Another factor which contributes to the degradation through macrophages is complement
component 1q (C1q), as it has been reported to facilitate the process by opsonizating
NETs [277]. There is an ongoing discussion as to whether the antimicrobial peptide LL-37
from neutrophils facilitates the uptake into cells and protects them against degradation
by bacterial and cellular nucleases [279]. Overall, additional studies are still needed to
identify other nucleases that are potentially involved in NET degradation and to further
characterize the mechanisms of extracellular DNA uptake into cells.

6.3. Extracellular Vesicles (EVs)

Extracellular vesicles (EVs) are lipid-bound vesicles that are naturally released by
almost all cell types into extracellular space and have been found in all biological fluids
tested thus far [280–285]. The different types of EVs are classified according to their
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biogenesis, content, function, and size (Table 2). Several in-depth reviews have described
the biological characteristics and functions of EVs [281,286–289]. Here our primary focus is
to review evidence of EVs as a source of cfDNA.

Table 2. Classifications of different types of extracellular vesicles.

Name EV Class Size (nm) Biogenesis DNA Content DNA Localization

Exosome small EV 40–100 Multivesicular endosome DNA, mtDNA, viral outer surface
Microvesicle large EV ~100–1000 Plasma membrane budding dsDNA lumen

Large oncosome large EV 1000–10,000 Plasma membrane budding ssDNA/dsDNA unknown
ARMM small EV ~40–100 Plasma membrane budding None found N/A

Apoptotic body large EV 500–2000 Apoptosis dsDNA/mtDNA lumen
Exomere non-EV ~35–50 Unknown DNA detected unknown

Micronucleus large non-EV 1000–9000 Mitotic catastrophe gDNA lumen
OMV small EV 20–250 Outer membrane budding dsDNA lumen and surface

The most extensively studied small EVs (sEVs) are exosomes. They range in size from
40 to 100 nm and are constitutively generated from late endosomes [290–293]. Numer-
ous studies have reported the presence of single- and double-stranded DNA as well as
mtDNA [294–296], transposable elements [297] and viral DNA [298,299] in association with
sEVs. The primary localization of exosomal DNA is not clear, as studies have shown DNA
to be located in the lumen and on the outer surface [300–302]. Interestingly, a recent study
reported that exercise triggered an increase of DNA levels only on the outer surface [301].
While there is ample evidence of exosome-associated DNA, it remains a controversial topic
as highly cited studies have reported evidence both for the association of DNA with exo-
somes [295,303,304] and no association of DNA with exosomes [305]. Apart from biological
diversity among different exosome types, which are yet to be fully explored, there may
be other reasons for the discrepant findings reported by studies, such as differences in
sample handling and exosome isolation protocols [306]. Furthermore, despite the efforts
by the International Society of Extracellular Vesicles to provide guidelines for conducting
sEV experiments (MISEV2018) [289], it is often the case that simple requirements such
as the reporting of the volume of starting material, volume of sEV isolated or number of
isolated EVs used for DNA isolation are not met by many publications. This makes it
very difficult to reproduce experimental findings or to theorize about possible structures
and mechanisms. Other methodological hurdles may include Western blots that lack a
size marker, whether reducing conditions were used [298,307,308], or whether fetal bovine
serum was included in cell culture experiments [309]. These factors are important because
in the context of biofluids the presence of CD81 and CD9 can overlap with human low chain
IgG cross-reactivity with the secondary antibody (see [307,310] for light and heavy chain
IgG bands) unless non-reducing conditions are used or highly cross-adsorbed secondary
antibodies. Despite controversial reports, conflicting data, and an array of preanalytical
and analytical hurdles, a growing body of evidence indicates that sEV-DNA may have
diagnostic uses and also play an important role in biological and pathological processes. For
example, sEV-DNA may serve as cancer biomarkers [309,311–313], act as intercellular mes-
sengers [297,314–316], and play a role as a mediator of proinflammatory effects [317,318]
and viral responses [298,299,319].

Gram-negative bacteria release outer membrane vesicles (OMVs), which are sEVs
(20–250 nm) released from the outer membrane that encapsulate periplasmic contents.
Their role and potential are extensively reviewed in ref. [320]. There is evidence that these
OMVs can cross the intestinal epithelial barrier and reach the bloodstream where their
DNA content have been detected in healthy individuals [320].

ARMMs are a type of sEV (40–100 nm) that bud directly from the plasma membrane
and have a size similar to that of exosomes [321]. To our knowledge, ARMMs are the
only class of EVs that have not yet been shown to be associated with DNA. However,
it is interesting to note that ARMMs are likely to be co-purified with exosomes through
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most sEV isolation methods due to their similar size and the fact that they also contain the
transmembrane tetraspanin CD9.

Microvesicles (MVs) are the most diverse EV population with regard to their size
(0.1–1 µm) and they are generated via direct outward budding of the plasma mem-
brane [322]. Tumor-derived MVs (TMVs) have been shown to contain dsDNA and they
could potentially play a role in inhibiting tumor progression [323]. An increase of MVs and
dsDNA in MVs is reported in relation to lupus nephritis [322].

Large oncosomes are large EVs (1–10 µm) secreted exclusively by cancer cells [324],
and are reported to contain more DNA than sEVs and their DNA cargo includes tumor-
specific alterations [308].

Apoptotic bodies (ApoBDs) are the largest of the EVs (0.5–2 µm) and are released
during apoptosis [325,326]. They contain a wide variety of cellular components including
micronuclei and DNA fragments. When not digested by DNASE1L3, ApoBD-associated
DNA can bind directly to antinuclear antibodies, a common feature of autoimmune condi-
tions such as systemic lupus erythematosus [327].

Exomeres are novel extracellular particles (35–50 nm) discovered with the use of
asymmetric flow field-flow fractionation (AF4) and although they are not vesicles, we
decided to include them as they have been shown to complex with DNA. They are found
to be associated with large fragment DNA but their biogenesis, function, and potential in
diagnostic, prognostic, and therapeutic applications remain to be elucidated [328].

In summary, all EVs apart from ARMMs have been reported to be associated with
DNA [300,308,322,323,327–329], which may have significant implications for the cfDNA
research field and currently represents not only an underappreciated source of cfDNA,
but also a potentially distinct and biologically active subpopulation of cfDNA. However,
there are still many unanswered questions, conflicting data, and obstacles related to the
phenomenon of EV-associated DNA that need to be resolved. One major unknown is that
it is still unclear what percentage of the total circulating cfDNA population is associated
with EVs. This number has, for example, been reported to be as little as 5% [330] and
as high as 90% [310]. In line with this, one major obstacle that needs to be addressed is
the lack of standardization of methods. A likely reason for the significant difference in
the values reported by the two aforementioned studies, for example, may be the use of
different sample handling procedures. In one study samples were processed immediately
after blood draw [330], whereas samples used in the other study were only processed
at a later time [310]. Given the short half-life of unbound cfDNA [75–77], such a delay
could significantly impact cfDNA yield and integrity [7]. Other important points that
remain to be clarified are (i) the relative contribution of different EV types toward the
total cfDNA population in general and specific cases, (ii) whether EV-associated DNA is
packaged mainly within the interior of these vesicles or if they are mainly adhered to the
exterior surfaces; (iii) the relative proportions of the total EV-associated cfDNA in both
these locations; (iv) the mechanisms involved in the binding of cfDNA fragments to the EV
surfaces of different types of vesicles; and (v) the effect of other physiological and biological
factors that control these mechanisms [254].

7. Multimodal Analysis, Data Integration, and Machine Learning (ML)

Evidence suggests that the sensitivity and specificity of cfDNA assays may not only
be augmented by the simultaneous interrogation of multiple cfDNA features, but also by
the parallel characterization of cfDNA and other biomarkers, such as proteins [331,332],
genomic DNA and RNA from circulating tumor cells (CTCs) [333–340], EVs [338,341],
miRNAs [342,343], metabolites [344], or mRNA transcripts [345].

Due to the sheer amount of data points generated per sample by the characterization
of multiple cfDNA features or multiple different biomarkers, the trend in recent years has
been to extract a “signature” from multiple biomarkers instead of focusing on individual
data points. This necessitates a radical change to the traditional way of data analysis and
interpretation, and mainly involves the application of ML. Indeed, an increasing number
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of cfDNA studies are using ML with great success [154,158,175,180,184,185,332,346–357].
ML is usually accomplished through pre-processing, featurisation, feature selection, model
fitting, and evaluation. ML methods range from logistic regression, random forest, and
support vector machines to neural networks including their counterparts, deep neural
networks. ML methods can capture sophisticated signatures, but as model complexity
increases, it also becomes more difficult to interpret data. This is related to the “curse
of dimensionality”, which increases with the number of features in the ML model. This
can be particularly problematic when there are more features than samples in the data
set. To make interpretation easier, the number of samples in a data set can be increased.
For instance: Deep neural networks can detect signatures in samples with many features,
such as flow cytometry images [81], but there is a high probability of overfitting if the
number of available samples is less than the number of features used. This configuration
is frequent in cfDNA experiments and is one motivation for performing extensive feature
selection to incorporate only the most informative bits of each sample. For example, the
construction of a reference atlas of tissue samples is often based on selected regions that
distinguish a particular tissue from other tissues. One group used fewer than one hundred
features per tissue as a reference [175]. This procedure is also known as dimensionality
reduction and is performed, e.g., in neural networks or support vector machines. However,
even if these precautions are taken, larger cohorts and other mechanisms are still needed
to ensure interpretability and generalization of the model, where the latter refers to the
ability to find the relevant signals in new samples. Another method to avoid overfitting is
regularization, which penalizes overfitting and thus makes the model less specific. Finally,
data augmentation can help to artificially increase the sample size by creating new samples
from previous samples.

Along with the data processing problems comes the possibility of finding signatures
obscured by interacting markers that were not previously visible. In addition, this gives re-
searchers the opportunity to conduct research with shallower sequencing depths. Databases
that contain references help researchers to select regions of interest more specifically, and
also provide the opportunity to test their algorithms on other datasets and infer different
epigenetic features or omics [180]. Table 3 provides an overview of some recent cfDNA
papers describing ML methods used for their main objective.

Table 3. Cell-free DNA (cfDNA) studies that employed machine learning.

CfDNA Feature Characterized Machine Learning Algorithm Applied Reference

Aneuploidy, amplicons SVM, LR [356]
Concentration of cfDNA, fragmentation, methylation JADBio, SVM, LR, RF (bagged tree) [353]
Coverage LR [358]
CNVs and fragmentation patterns SVM, LR [346]
CNVs and fragmentation patterns SVM [180]

CtDNA mutations Hierarchical Bayesian noise model score,
spearman’s correlation [355]

CtDNA mutations (loci) RF [359]
CtDNA mutations and CNV Ensemble of 5nn, 3nn, Naive Bayes, LR, Decision Tree [357]
CtDNA mutations and proteomics LR [332]
Fragment ends RF [360]
Fragment sizes, coverage Gradient Tree Boosting [185]
Fragment sizes, t-MAD, fragment size distribution,
fragment profile amplitudes LR, RF [184]

Methylation Clustering UPGMA, dynamic programming [175]
Methylation RF [354]
Methylation RF [351]
Methylation RF, Gaussian model-based Mclust [154]
Methylation SVM [348]
Methylation and fragmentation SVM [350]
Methylation, miRNA RF [347]
Methylation, top 300 dmr windows of 300 bp RF [158]
Somatic point mutations, copy number alterations SVM. LR, RF [349]

Abbreviations: SVM: support vector machine; LR: Logistic Regression; RF: Random Forest.
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8. Potential Pathological Effects and Biological Functions of cfDNA

As discussed in Section 2, elevated total cfDNA levels have been correlated with a
wide range of clinico-pathological data, but an overflow of overlapping variables renders
the assessment of total cfDNA inadequate as a stand-alone biomarker. However, the
phenomenon of elevated cfDNA levels may be more biologically relevant than previously
thought. Many early studies and a growing body of new work indicate an underestimated
role of different cfDNA types (e.g., cf-nDNA, cf-mtDNA, NETs, and EV-DNA) in the
development and progression of various diseases. Moreover, apart from detrimental effects,
several studies and some elegant theoretical work suggests a possible role for cfDNA
molecules in immunomodulation, the maintenance of cellular homeostasis, as a mode of
intercellular communication, and underappreciated factor in evolutionary processes. In
the following section we explore the various detrimental effects and possible biological
functions of cfDNA molecules, and the pathways through which they may elicit its effects.

8.1. Oncogenesis, Cancer Progression, and Metastasis

There is some evidence implicating cfDNA in oncogenic transformation, tumor pro-
gression, and development of metastases [361–363]. While the molecular mechanisms and
cellular circuits by which cfDNA mediate these observed tumor-promoting effects remain
mostly unknown, several reports indicate that the lateral transfer of cfDNA between cancer
cells and neighboring or distal cells may be sufficient to propagate the genetic alterations
required for transformation, and at the same time activate signaling pathways that pro-
mote malignant growth. CfDNA or fragmented chromatin from cancer cells have been
shown to readily infiltrate surrounding cells and incorporate into host genomes, inducing
double-stranded DNA breaks (DSBs), genome instability, cell death, inflammation, and
destabilization of the homeostatic capacity of the tumor microenvironment, all of which
are potent stimuli for oncogenic transformation and tumor progression [114,364]. The
lateral transfer of overexpressed therapy-augmented cfDNA molecules, such as oxidized
DNA [365–368] or duplicated oncogenes [369,370], can cause accelerated DNA damage,
thereby conferring resistance against radio- and chemotherapy. In line with this, there is evi-
dence that cfDNA released by dead or dying tumor cells can activate TLR9 signaling, which
in turn inhibits apoptosis and enhances autophagy, thereby promoting tumor growth [371].
Furthermore, it is possible that cfDNA promotes metastasis in recipient cells by inducing
the overexpression of several pro-metastatic genes, which for example enhance cell inva-
sion and migration, through the TLR9/MYD88 independent pathway [365,372,373], while
cfDNA may also promote metastasis by altering the expression levels of the inflammatory
chemokine CXCL8 [374], or other genes such as MMP9 and CD44 and miRNAs [375].
Other reports suggest that the malignant phenotype of tumor cells may be transferred to
neighboring normal cells via the assimilation and transfection of cfDNA and other nucleic
acids complexed with EVs, such as apoptotic bodies [326] and exosomes [291,376]. It is
not yet clear how cfDNA fragments are integrated into host genomes, but some evidence
suggests that it may occur through the non-homologous end-joining (NHEJ) double-strand
DNA-repair pathway [113,364,377]. Alternatively, ctDNA enriched in specific retrotrans-
posons (e.g., a hot LINE-1 element) [139,378,379] could, by virtue of their inherent mobility,
penetrate recipient cells and initiate tumor formation upon “cut-and-paste” insertion into
host tumor suppressor genes [380,381]. While there is no direct evidence, it is interesting to
speculate here on the possibility of lateral transfer of therapy resistance mutations from
resistant cells to surrounding cells.

In contrast to pro-cancer effects, it has also been demonstrated that the lateral transfer
of cfDNA derived from healthy cells can halt the proliferation of cancer cells [382,383].
An early study showed that mouse-derived tumor cell lines cultured in growth medium
supplemented with cytosol from non-dividing lymphocytes or hepatocytes was mirrored by
a decreased rate of [3H]-thymidine incorporation and inhibition of tumor growth. Despite
the molecular complexity of cytosol, this inhibitory effect was ascribed to the DNA present
in the cytosol of the lymphocytes or hepatocytes [384]. More recently, in vitro [383] and
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in vivo [382] studies have shown that cfDNA from healthy cells can be used to disrupt DNA
synthesis in dividing tumors, thereby hampering or completely blocking tumor growth
and preventing metastasis. One study also showed that water-soluble nuclear crude extract
prepared from salmon soft roe could inhibit the growth of both cancer and non-cancer
cell lines through delaying cell cycle progression [385]. While the use of cfDNA as an
anti-cancer agent may be an intriguing approach, the research is currently scant, and more
evidence is needed. Alternatively, if sufficient evidence indicates the tumor-promoting
effects of cfDNA, direct targeting and elimination of cfDNA may constitute a potential
therapeutic approach. For example, non-specific degradation of cfDNA in pancreatic
cancer cell cultures via DNase I resulted in a reduction of matrix attachment, migration,
and invasion, thereby reducing metastatic potential [374]. Similarly, in an in vivo orthotopic
xenograft model, DNase I treatment alone suppressed tumor metastasis [374]. Given the
uncertainties related to the potential effects or consequences of untargeted or nonspecific
DNA digestion in cancer patients, it is interesting to note here that cationic nanoparticles
have been successfully used for scavenging cfDNA in a rheumatoid arthritis rat model,
which resulted in the inhibition of inflammation and relief of symptoms [386].

8.2. Functions and Effects of NETs

A wide range of bacteria, fungi, parasites, and viruses can induce the formation of
NETs (reviewed in refs. [267,387]). Thereby, pathogens can be immobilized, and their
elimination is facilitated by antimicrobial compounds and phagocytosis. Whether NETs
themselves are capable of killing microorganisms in vivo is not yet clear, but since many
of their components are toxic to microorganisms, it might be possible [388,389]. NETs and
their components are rapid danger signals, and thus activate necessary immune responses.
On the other hand, evidence is accumulating that they are able to amplify inflammation
and trigger the formation of additional NETs, which contribute to direct tissue damage,
particularly via histones and proteases [267,268,390]. Their possible associations with
various diseases are reviewed in detail elsewhere [275,390,391]. Among others, they are
described in relation to severe sepsis, cystic fibrosis, asthma, and CVDs, including throm-
bosis, systemic sclerosis, myocardial infarction, and stroke. In addition, DNA, histones and
neutrophil proteins can trigger the production of autoantibodies. This could contribute to
the clinical features of SLE, RA, and other autoimmune diseases. There are also indications
that NET-derived granule proteins might contribute to the migration of tumor cells [390].

The components of NETs are widely discussed as potential biomarkers and have re-
cently received additional attention due to their correlations with coronavirus disease 2019
(COVID-19). Levels of circulating myeloperoxidase (MPO)-DNA complexes, a marker of
NETs levels, were observed to be increased in symptomatic COVID-19 patients. Circulating
NETs are thought to be implicated in the pathology of COVID-19 by causing capillary
destruction and leakage, and by inducing endothelial cell death and thrombosis. These
circumstances can lead to lung epithelial destruction and death [392]. Thus, it has been
suggested that the MPO-DNA complex should be further investigated as a biomarker for
the early phase of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)
infection [393,394]. NETs could also potentially serve as biomarkers in other diseases,
such as cancer. In a recent study, researchers were able to distinguish between patients
with metastatic colorectal cancer and healthy individuals based on cfDNA, MPO, and
neutrophil elastase (NE) concentrations. It was further suggested that cfDNA levels, in
combination with MPO-DNA and NE, could serve as potential biomarkers for disease
severity, prognosis or treatment guidance of metastatic colorectal cancer and cancer in
general [395]. Furthermore, correlation of the markers mentioned above with levels of
autoantibodies, e.g., anti-dsDNA, may give insight into autoimmune activity [396].

Not only may NETs and their components serve as biomarkers in the elucidation
of diseases, but, due to their involvement in pathogenesis, they also represent potential
therapeutic targets. For example: (i) In preclinical studies, targeting NADPH-dependent
chromatin decondensation by ROS scavengers, like N-acetyl cysteine, MPO inhibitors and



Diagnostics 2022, 12, 2147 23 of 51

PAD4 inhibitors, was shown to suppress NET release [268,397]; (ii) An additional target was
recently highlighted by Cao et al. They demonstrated an efficient inhibition of NET for-
mation in vitro by a DEK-targeting aptamer (DTA). DEK is a chromatin-associated protein
which may play a crucial role in the formation of NETs and serves as an autoantigen in many
autoimmune diseases. In addition, they modified DTA chemically and improved its appli-
cation and achieved an attenuated inflammation in collagen-induced arthritis mice [398];
(iii) another interesting therapeutic approach was proposed by Chiang et. al. [399]. They
investigated specialized pro-resolving mediators (SPMs) and encountered a new series that
appear to be potent agonists of pro-resolving phagocyte functions. The resolvins, termed
13-series (T-series) resolvins (RvTs), are produced by human cells and blood. Chiang et al.
prepared RvTs by total organic synthesis and found a reduction of NETs in PMA-stimulated
human whole blood. Furthermore, they found a potent structure of RvTs which activated
the cAMP-PKA-AMPK pathway in human macrophages, resulting in improved NET clear-
ance [399]; (iv) Treatment with DNases is an alternative way to accelerate the degradation
of NETs. Dornase alpha, a recombinant human DNase I, is already in use for treatment
of cystic fibrosis and was tested in a clinical trial for the treatment of acute respiratory
distress syndrome secondary to COVID-19. During drug administration, a reduction of
MPO-DNA complexes in bronchoalveolar lavage fluid and improved oxygenation and lung
compliance were observed. This again illustrates the potential role of NETs in the pathology
of COVID-19 [400]. There may be many more approaches to target NETs, such as direct
inhibition of granular proteins and enzymes. However, it is necessary to evaluate them not
only in vitro but also in vivo and to investigate the more specific pathways of formation in
both diseased and healthy conditions.

In summary, while much is still not known about the biology of NETs, it clearly
represents an important and biologically active class of cfDNA molecules that deserves
more research attention.

8.3. Other Potential Functions of cfDNA

Several studies have shown that cfDNA molecules can enter recipient cells and elicit
a variety of biological responses, either by integrating into the host genome or by other
intracellular activities [4,113,401]. This phenomenon has not only been implicated in the
detrimental processes described above, but has also been implicated in benign intercellular
messaging functions, such as the synchronization of cell differentiation [4], as well as
evolutionary processes, such as the lateral transfer of hereditary information from somatic
cells to germ cells or adaptive traits between different cells (reviewed in refs. [5,402,403]).
However, the possibility of cfDNA as an intercellular messenger or a factor in evolutionary
processes has not yet been taken seriously by the research community.

While it is true that there currently lacks a concrete body of evidence for these functions
of cfDNA, it is also true that the research field is significantly biased toward clinically
motivated studies, and that there is a general lack of interest in cfDNA as a biological
phenomenon in general. Yet there seems to be sufficient evidence to warrant further
enquiry into the possible biological functions of cfDNA. A more detailed and structured
enquiry into the biological functions of cfDNA may reveal currently unknown processes
involved in the mechanisms underlying various pathologies. In line with this, targeted
elimination of aberrant cfDNA molecules may represent a potential therapeutic strategy in
a variety of pathological scenarios.

9. Biological Factors That Affect cfDNA Measurements

Early studies have focused mainly on the characterization of circulating cfDNA
(i.e., blood plasma or serum), but cfDNA molecules have now been detected and are
increasingly investigated in all non-circulatory body fluids (e.g., urine, saliva, stool). The
composition and fluctuation of cfDNA are modulated by a variety of factors, many of
which are unique to or vary depending on the characteristics of specific body fluids. While
there are some overlapping factors among the different body fluids, we limit the focus here
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to an exploration of the most prominent biological factors that affect the quantitative and
qualitative characteristics of cfDNA in relation to its analysis in blood plasma (Figure 7).

Figure 7. Biological factors that modulate the characteristics of cfDNA. The composition and fluctua-
tion of the cfDNA population in the circulatory system is influenced by numerous, often mutually
non-exclusive determinants. The major factors include (A) the relative contribution that different
cell types make toward the total cfDNA pool; (B) the mechanisms by which cfDNA is released
from the various contributing cells; (C) factors that affect the movement of cfDNA from tissues
or cells into circulation; (D) modifications and rate of degradation by extracellular nucleases and
proteolytic enzymes; (E) the rate of uptake and digestion by the liver, spleen or kidneys; (F) binding
and detachment to circulating or epithelial cells, and (G) association with DNA-binding proteins,
other macromolecules, or extracellular vesicles. (H) All of the former factors are amendable by a
web of factors, many of which may interact in known and unknown ways, including (i) a variety of
diseases, physiological states, and other clinical scenarios, (ii) phenomena that cause cell death or
constitutive DNA release, such as mechanical stress, oxidative stress, hypoxia, inflammation, DNA
damage, genomic instability, lesions, and (iii) other factors such as, e.g., time of day, body mass index,
diet, medication, fitness, exercise, and metabolic rate, most of which are liable to significant intra-
and interindividual variation.

9.1. Relative Contribution of Different Genomes

While it shifts depending on the presence of disease and many other factors, the
relative percentage contribution that different origins of cfDNA (e.g., DNA derived from
different host-cell types, nuclei, mitochondria, endogenous microbes, pathogens, etc.) make
toward the total cfDNA pool has not yet been determined in healthy individuals or in
specific pathological or physiological states. However, in cancer patients it is, for example,
well understood that the respective contributions of wild-type vs. tumor-derived DNA
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depends on cancer stage but exhibits significant intra- and interindividual variation [9,404].
Moreover, regarding wild-type cfDNA of host-cell origin, there is no scientific consensus
on the relative percentage contributions of various tissue and cell types, but there are two
important observations. First, several studies indicate that the majority of cfDNA originates
from hematopoietic cells [173,405,406] and mature white blood cells [172,407–409]. Second,
despite a major contribution from blood cells, cfDNA has been found to originate from many
different cell types with significant heterogeneity in the relative contributions observed
among different studies [81]. A better understanding of this variation can only be gained
through increasingly accurate estimations of the cellular origin of cfDNA, facilitated by
(i) methods that allow total cfDNA extraction and (ii) studies that systematically map the
landscape of cell- and tissue specific features of cfDNA [92,174,179,347,348,354,410–413].

9.2. Mechanisms of Release and Intracellular Modifications

Apoptosis is normally referenced as the main and most relevant mechanism involved
in the release of DNA into extracellular space. However, this biased view is slowly being
replaced by the understanding that there are several different pathways for the generation
of cfDNA, many of which may contribute significantly towards the total pool of cfDNA.
The major contributors include: (i) regulated, rapid or gradual cell death mediated by
a variety of dedicated molecular mechanisms, such as necrosis, autophagy, and many
other cell death subroutines, including NETosis, which results in the release of NETs,
pyroptosis, necroptosis, ferroptosis, phagocytosis, mitotic catastrophe, anoikis, entosis, and
parthanatos; (ii) accidental, rapid cell death caused by destructive chemical, physical, or
mechanical perturbations; (iii) DNA-containing extracellular vesicles that can be released
by both dying cells and live cells; (iv) active release of DNA from live cells [4,414–422],
although evidence on the latter remains scant and is still under debate/investigation,
and (v) release of mtDNA from cell-free respiratory competent mitochondria present in
circulation [248].

As discussed earlier, the various cfDNA subtypes present in a typical biospecimen
is genetically, epigenetically, and structurally diverse. While the above-mentioned cell
death mechanisms are, for example, very well described in the literature, there are still
very few studies on the correlation between the respective mechanisms of release from
different contributing cells and their impact on the physico-chemical features of cfDNA.
However, the limited research done to date suggests a strong correlation. It is generally
reported that apoptosis generates mostly mono-nucleosomes with a smaller fraction of di-
and tri-nucleosomes in some cases [423,424], while necrosis is reported to generate HMW
cfDNA fragments (~10 Kbp) [425–428]. However, there is evidence that apoptosis can also
result in the release of HMW cfDNA [429], while necrosis can result in the release of DNA
populations that mirror apoptotic laddering and produce an abundant population of mono-
nucleosomes [430]. The relative contribution of different mechanisms toward the pool of
cf-mtDNA is not known; however, it is clear that cf-mtDNA fragments range in size between
40 and 300 bp [53–56]. This broad distribution is likely the result of enzymatic degradation
coupled with a lack of protection by histone proteins, but it is not clear how much of
this digestion takes place prior to release intracellularly or extracellularly after release.
Concerning regulated cfDNA release, some reports suggest that DNA may be released from
specific chromosomal regions during the division of genomically unstable cells. This DNA
is postulated to be released by at least two different modes: (i) 1000–3000 bp fragments
derived from micronuclei [378,379], and (ii) free-floating extrachromosomal circular DNA
ranging between 30 and 20,000 bp [431–434]. Furthermore, as discussed earlier, there is
also evidence of actively released EVs that are associated with DNA fragments ranging
between 150 and 6000 bp [303,310,401].

9.3. Movement of cfDNA

The characteristics of cfDNA can be influenced by several conditions surrounding its
movement from cells/tissues into body fluids. Taking cancer as an example, the level of
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cfDNA released by a tumor, as well as the rate at which cfDNA moves from the tumor into
the circulatory system may depend on the unique histology, cellular turnover, vascular-
ization, and perfusion of the tumor. These factors can also alter the pathway of cfDNA
release. For example, hypoxia due to poor vascularization can result in increased rates of
cell-death and the generation of more cfDNA [435]. Hypoxia may also shift the relative con-
tributions of different modes of cell death, thereby altering the physico-chemical features
of the cfDNA. Furthermore, the movement of cfDNA can also be influenced by biological
barriers. For example, the blood-brain barrier may restrict the movement of cfDNA from
brain tumors into the circulatory system. Indeed, higher levels of tumor-derived cfDNA
has been found in cerebrospinal fluid (CSF) vs. plasma [79,80,117]. Similarly, a higher ratio
of tumor-derived vs. background cfDNA may be found in body fluids that are in closer
proximity to specific tumors, such as stool in colorectal cancers [436], cervical smear [437],
or uterine lavage [438] in gynecological cancer, saliva in oral cancers [439], or urine in
bladder cancers [440–442].

9.4. Extracellular Modifications, Stability, Clearance, and Half-Life

A variety of extracellular factors can affect the quantitative and qualitative proper-
ties of cfDNA. (i) While it is difficult to determine the physical properties of cfDNA at
the instance of cellular release, several lines of evidence indicate that cfDNA fragments
may be rapidly shortened by the action of different enzymes present in blood, such as
DNase I [443,444] and DNase1L3 [445]. The most studied cfDNA size population in blood
plasma is the mono-nucleosome with the most commonly reported size of 167–168 bp,
representing 145–147 bp of DNA wrapped around the nucleosome core particle (NCP) plus
linker DNA bound to histone H1 [415,417,446]. This size is likely due to Caspase activated
DNase (CAD) digesting linker DNA 10 bp up- and downstream form the NCP [447]. The
prevalence of the 167 bp mono-nucleosome in cfDNA studies suggests that the chromato-
some is a stabilizing structure that protects DNA against enzymatic cleavage. However,
CAD can also slide its digestion sites in increments of 5 bp in some cases [447], resulting
in mono-nucleosome sizes of approximately 158, 163, 173, 178, 183, and 188, which are
also observed in studies [430]. Among these, the 177–178 bp population is also often
observed in studies [430,446], which is a size-population that has a higher probability
of forming [448]. In addition to mono-nucleosomes, multiples of nucleosomal repeats
are also often observed, e.g., di-nucleosomes, tri-nucleosomes, tetra-nucleosomes, and
penta-nucleosomes. These cfDNA size populations also display modal sizes (i.e., 356 bp,
534 bp, 712 bp, and 890 bp, respectively), which seems to represent the size that is most
likely to form under stochastic digestion of linker DNA [448]. The presence of these size
populations is generally ascribed to apoptotic cleavage of chromatin. However, there is
a growing number of studies reporting on the presence of HMW cfDNA present in body
fluids [449–457] and cell cultures [305,414–417,430,458,459]. These HMW fragments may
originate from apoptosis but may also be derived from many other release mechanisms,
such as accidental cell lysis, necrosis, NETosis, regulated release through extracellular
vesicles, and so forth. There is increasing evidence suggesting that these HMW cfDNA
fragments may be digested into shorter fragments. While there may be some selectivity
involved in cleavage locations, a generally stochastic inter-nucleosomal DNA digestion
scheme seems likely. In such a scheme, the digestion of all longer fragments feeds all shorter
fragments, which ultimately results in the rapid accumulation of mono-nucleosomal frag-
ments. While more research is needed, this represents an alternative view to the view in
which the presence of mono-nucleosomes is ascribed mainly to apoptosis. In addition to
HMW cfDNA and mono-nucleosomes, a growing number of studies are demonstrating
the presence of sub-nucleosomal and ultrashort, single-stranded cfDNA fragments in body
fluids [106,184,252,460–464]. Whether these shortened cfDNA fragments represent short
fragments released from cells or extracellularly digested products of longer fragments is
not yet clear. However, given the presence of proteolytic enzymes in blood, it is likely
that a large proportion of these short fragments represent DNA derived from destructed
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nucleosomes. (ii) In addition to enzymatic or proteolytic degradation, cfDNA fragments
can either be captured and digested by the liver and spleen [465,466], or be absorbed by
the kidneys followed by urinary elimination [467–469]; (iii) CfDNA molecules can also
attach to the membranes of circulating cells (e.g., red and white blood cells) or endothelial
cells, where they may either (a) remain attached for prolonged periods or be digested by
enzymes, (b) be assimilated into the cells, or (c) attach and detach dynamically depend-
ing on pH, temperature, and the influence of various substances (reviewed in ref. [470]);
(iv) the enzymatic/proteolytic degradation, uptake by organs for digestion or excretion,
and cellular internalization of cfDNA may depend significantly on its physico-chemical
features, many of which may be altered by the binding of cfDNA molecules to EVs, circu-
lating DNA-binding proteins (e.g., high density lipoprotein, argonaute 2, albumin, fibrin,
fibrinogen, prothrombin, transferrin, globulins, C-reactive protein, and serum amyloid
A), and other macromolecules. It is important to note here that (1) most of the factors
discussed above have not yet been studied extensively, (2) the relative contribution of
each factor towards the stability and clearance of cfDNA is not known, (3) we still have a
poor understanding of the processes involved in the generation of cfDNA, and (4) many
of these factors are non-mutually exclusive. This makes it very difficult to establish the
dynamics and baseline characteristics of cfDNA. For example, while the half-life of cfDNA
is estimated between 16 min and 2.5 h [75–77], there is no actual consensus, as this half-life
refers to the stability of mono-nucleosomal cfDNA and not the total cfDNA population.

9.5. Summary

As discussed earlier, a wide range of disorders, physiological states and factors, and
clinical scenarios result in increased cfDNA levels. Among these, numerous factors (e.g.,
mechanical stress, oxidative stress, hypoxia, inflammation, DNA damage, genomic instabil-
ity, lesions, etc.) may trigger different types of cellular demise or alter constitutive DNA
release. Similarly, many cfDNA-modifying factors such as the extracellular concentration
of enzymes and DNA-binding proteins, or the rate of cfDNA uptake by the liver, spleen,
and kidneys are augmentable by various factors (e.g., time of day, body mass index, diet,
medication, fitness, exercise, metabolic rate, etc.) many of which are liable to significant
intra- and interindividual variation. As many of these factors may not only occur simul-
taneously but are also inextricably linked in a specific pathological or physiological state,
it has to-date been virtually impossible to make concrete correlations between a specific
factor and the dynamics or characteristics of one cfDNA subtype.

10. Characterization of cfDNA in Animals

Beyond the role of cfDNA in humans, cfDNA has been investigated in various animals
with an overrepresentation of studies on dogs. While cfDNA research on non-human an-
imals is not as developed as in humans, there is increasing interest in the role of cfDNA
as a biomarker as well as a tool to study pathophysiology in animals, especially compan-
ion animals. For example, several studies indicate the potential of implementing cfDNA
tests in veterinary clinics for the minimally-invasive diagnosis and monitoring of cancer
in dogs [471–477]. Furthermore, cfDNA may also serve as a potential marker of gastric
dilatation–volvulus (GDV) [478] and immune-mediated hemolytic anemia (IMHA) [479],
tissue injury [480], and sepsis [481–483] in dogs. Additionally, similar to humans, strenuous
exercise has been shown to correlate with elevated levels of cfDNA in dogs [484]. Besides
dogs, one study has measured cfDNA in cats with diffuse iris melanomas and concluded
that cfDNA levels and integrity are not sufficient markers for diagnosis and prognosis [485].
Interestingly, the characterization of cfDNA derived from the microbiome of non-human pri-
mates may allow the discovery and monitoring of taxa that cause zoonotic diseases [108,486].
Furthermore, various animal models have been used to study correlations between different
pathological factors and corresponding changes in cfDNA, which may have implications in
human biology and pathology, such as the study of traumatic brain injury in rats [487], car-
bon tetrachloride-induced acute liver injury in rats [488], perinatal asphyxia in piglets [489],
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tumor progression and metastases in rats [490,491], the onset of parturition in mice [492],
and gateways regulating the release of tumor-derived cfDNA in mice [493].

11. Perspectives on the Importance of an Improved Understanding of cfDNA Biology

In this review, we showed how the composition of cfDNA in blood is both highly
complex and changeable. Several overlapping phenomena contribute to this (Figure 8).

Figure 8. Factors that contribute to the complexity and fluctuation of cfDNA composition.

From the points outlined in Figure 8, a picture of immense complexity emerges. The
factors that modulate the observed properties of cfDNA are vast, inextricably linked,
and are riddled with overlapping characteristics and circular causation. Not only do
we currently have a weak grasp on the outlines of this problem, but also a very poor
understanding of most of the individual factors. Yet, it is increasingly recognized that a
holistic understanding of cfDNA biology is vital [1,3,6,59,130,137,253,494]. A deep and
structured enquiry into the origin, physico-chemical features, and functions of cfDNA as it
relates to the various biological, physiological, pathological, environmental, and lifestyle
factors as well as preanalytical factors will provide new insights that impact many aspects
of cfDNA research.

11.1. Increasing the Sensitivity and Specificity of Existing cfDNA Assays

In a highly heterogeneous cfDNA population, both the absolute amount and relative
proportions of most target molecules are often low. However, elucidation of the various
factors that respectively affect the concentration of target molecules and background cfDNA
molecules in a biospecimen will on the one hand inform the selection of optimal preanalyti-
cal procedures and patient conditions, and on the other hand facilitate the development of
methodologies that either maximizes the absolute number of target molecules or increases
the ratio of target-to-background cfDNA molecules, thereby significantly increasing the
chances of detection.

For example, the amount of target molecules in a sample may be increased by (a)
selecting the right biospecimen type (e.g., target molecules may be enriched in body fluids
that are in closer proximity to the source of the target molecules of interest, such as ctDNA
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in the CSF of patients with brain tumors); (b) selecting patient conditions that (i) favor the
release of target molecules, (ii) limit the release of background molecules, or more likely (iii)
enhance the release of total cfDNA. In line with this, it can be conjectured that an improved
understanding of the mechanisms involved in the release of cfDNA may permit the use
of compounds to enhance or limit cfDNA release. However, this approach may be offset
by the potential detrimental effects of dramatically shifting cfDNA levels (as discussed in
Section 8); (c) the use of tailored extraction procedures developed for the capture of specific
target molecules or elimination of non-target molecules, as informed by knowledge of the
exact structural features or chemical properties of specific cfDNA molecules. The efficacy
of cfDNA biology-informed methods is demonstrated by (1) a study that has achieved
greater cancer assay sensitivity and specificity through experimental capture or in silico
selection of mutant-enriched short cfDNA fragments [184]; (2) a study that demonstrated
the possibility of selectively capturing mutant molecules based on cancer-specific DNA
methylation aberrations with enhanced affinity for gold nanoparticles [495]; (3) studies
that have shown that exosomes often carry cargo enriched in tumor material. Besides the
aforementioned examples, cfDNA molecules come in a variety of shapes and sizes, many
of which are affected in different ways by various preanalytical steps. An exploration of
these differences is not only likely to reveal the ideal preanalytical workflows for specific
cfDNA molecules, but will also inform the development of new and more effective products
and methods.

11.2. Expanding the Repertoire of Disease-Specific cfDNA Markers

As outlined in Section 5, a growing body of clinical studies shows strong correlations
between epigenetic features of cfDNA and disease dynamics in various pathologies, es-
pecially cancer. By virtue of the increased proportionality of epigenetic modifications vs.
single-gene mutations, epigenetic cfDNA assays often show increased diagnostic sensitivity
and specificity, especially for the characterization of early-stage disease. While there is cur-
rently limited evidence of its clinical validity, and many preanalytical obstacles to overcome,
there is little doubt among researchers and clinicians that cfDNA testing will be integrated
into standard patient care in the near-future. While the majority of cfDNA applications in
oncology are still centered on the detection of single-gene mutations in cfDNA, the focus of
cfDNA research is slowly shifting towards epigenetic characterization. Indeed, the major
efforts that are currently being made to characterize tissue- and disease-specific epigenetic
markers of cfDNA will lead to the development of new and more powerful assays that
significantly expand the liquid biopsy toolbox. This represents an entirely new modality in
the application of cfDNA assays and will play a significant part in the transformation of
personal molecular medicine through cfDNA profiling.

11.3. Enable the Characterization and Study of Temporal Genome Dynamics

An expanded knowledge of cfDNA biology will enable increasingly high-fidelity
reconstruction of the physiological, pathological, and cell- and tissue-specific information
harbored by cfDNA molecules. Robust longitudinal profiling of cfDNA may allow mini-
mally invasive characterization of temporal genomic changes in specific regions of interest
in response to a wide variety of factors. In contrast to traditional methods of genome
analysis (e.g., cell cultures, in vivo models, and tissue biopsies), which have been valuable
but limited by the inherent restraints of reductive approaches (e.g., sampling bias, loss of
contextual logic, snapshot information) (reviewed in ref. [130]), data from serially profiled
cfDNA represent a richer, more dynamic and much more realistic source of actual genome
function, composition, and alterations.

Therefore, the genomic information accessible through serial cfDNA analysis can
be mined for (i) the discovery of new and increasingly powerful combinations of surro-
gate markers for various disease indications, and (ii) unprecedented analysis of genome
function and systematic mapping of both benign and malignant genetic and epigenetic
alterations caused by a variety of biological, physiological, pathological, and environmental
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factors. Research on temporal genomic characterization through cfDNA is still in its in-
fancy, with many challenges ahead. However, the successes achieved in temporal analyses
of tumor genomes have moved theoretical deliberations from the realm of fantasy and
speculation into concrete evidence and practical utility. For example, serial cfDNA assays
have been used to detect and monitor minimum residual disease, metastases, intratumor
genetic heterogeneity, shifting mutational landscapes, genetic responses to chemo- and
radiotherapy, and mechanisms that underlie the emergence of therapy resistance. There is
strong evidence that this broad information, which is virtually unattainable through tissue
biopsies, can be leveraged to improve diagnoses, prognoses, guide and improve therapeu-
tic regimes, limit overtreatment and risk of recurrence, and ultimately improve patient
quality-of-life and overall survival. Another example of the promising results achieved by
serial analyses of cfDNA is the monitoring of donor-derived cfDNA in organ transplant
patients to detect signs of rejection or injury of the transplanted organ. While much clinical
validation is needed before these cfDNA assays will be widely implemented, the progress
made in the field of oncology and organ transplant monitoring indicates the possibility of
developing cfDNA assays for monitoring a potentially wide range of pathologies and other
clinical scenarios.

Serial cfDNA analyses may have many other potential uses. (i) They may provide new
mechanistic insights into the pathological events underpinning many slowly progressive
or chronic illnesses, especially those that have been correlated with cell death and aberrant
cfDNA profiles, such as CVDs, diabetes, autoimmunity, and neurodegenerative disease;
(ii) they may be especially useful for monitoring progressive diseases or clinical scenarios
that cause rapid genomic alterations at specific time-points, such as Parkinson’s disease,
Alzheimer’s disease, sepsis, stroke, traumatic injuries, and malfunctioning gene therapy;
(iii) they may be used to monitor the safety and efficacy of various kinds of therapy;
(iv) they may be useful for studying the diversity and fluctuation of the microbiome as well
as its role in human health and disease; (v) they can be used to trace the biological footprint
and effects of assimilated environmental DNA; (vi) they can be used to study complex
biological phenomena such as genomic mosaicism; (vii) they can be used to investigate
the dynamic response of the genome in general or the genome of specific organs to the
diet (e.g., long-term consumption of inflammatory foods) or dramatic dietary changes; and
(viii) they can be used to determine body-wide changes of the genome as a result of aging.
In addition to structural genomic changes, an increasing number of studies indicate that
cfDNA can be used to infer gene expression patterns in specific tissues. Refinement of such
approaches in concurrence with an improved understanding of cfDNA biology may, in
the future, allow the use of cfDNA for studying benign and detrimental gene expression
in various contexts, e.g., disease, exercise, and poorly understood biological processes
(e.g., embryogenesis).

While the use of cfDNA for these purposes is mostly speculative at this stage and
depends highly on the rate at which we expand our knowledge of cfDNA biology, its
potential to transform our understanding of genome biology and pathology is undeniable
and should, therefore, be provoking more comment than it currently is.

12. Concluding Remarks

While considered trivial at the time of its discovery and even decades thereafter,
cfDNA is now emerging as one of the most interesting classes of molecules in human
biology. In this review we showed how cfDNA is uniquely poised to transform clinical
diagnostics as well as genomics research in various ways: (i) it may serve as highly specific
and versatile biomarkers for a wide range of pathologies; (ii) it may serve as surrogate
markers for monitoring or studying numerous physiological states; (iii) it may grant an
unprecedented window of access to characterize temporal genomic alterations in numerous
contexts; and lastly (iv) as cfDNA molecules have biological activity and may contribute to
both pathology and normal biological functions, it may possibly shed new light on some
of the unknown or poorly understood mechanisms underlying various pathologies and



Diagnostics 2022, 12, 2147 31 of 51

important biological processes. However, several challenges need to be overcome if we
want to harness the full potential of cfDNA for these various purposes (Figure 9).

Figure 9. Factors that need to be addressed in order to increase the fidelity of cfDNA analysis. In
order to (i) use cfDNA for studying temporal genomic changes, (ii) investigate the role of cfDNA
in human health and disease, and (iii) develop increasingly powerful clinical cfDNA assays, the
quantitative and qualitative information contained in cfDNA samples needs to be reconstructed with
high fidelity. Here we briefly summarize various factors that need to be considered and steps that
can be taken towards increasingly accurate cfDNA measurements.

Among the potential applications of cfDNA, its perusal as a biomarker has received
the most attention. However, despite the spectacular results that have been demonstrated
by clinical studies in various domains of medical research, only a small number of cfDNA
assays have to date been validated for clinical use, and only in the fields of oncology and
prenatal testing. The factors that challenge the development and clinical implementation of
cfDNA assays are multifarious and overlapping:

As it is a neglected factor in cfDNA research, we, in this review, shed some light on
how the immense heterogeneity and fluctuation of the cfDNA population in vivo, and by
extension in biospecimens, is the unique factor that concomitantly makes cfDNA such
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a valuable biomarker class and tool in basic biological and genomic research, but also a
very challenging analyte. High-fidelity reconstruction of the information encoded into the
aggregate cfDNA population, or specific cfDNA target molecules, requires a significantly
improved understanding of the genetic and physico-chemical features of cfDNA as it
relates to various biological, physiological, pathological, lifestyle, environmental, and
preanalytical factors. This may prove to be very challenging, but useful insights may also
be achieved using in vitro methods. For example, in studying the biological factors that
affect the properties of cfDNA, many of the inherent complexities of the in vivo milieu
may be circumvented by using cell culture models. While much context about the in vivo
setting may be lost in cell culture investigations, significantly diminished variables may
allow unique insights into the biological properties of cfDNA in vivo. Another approach
may be to monitor the physico-chemical properties and fluctuation of a purified cfDNA
subtype spiked into plasma biospecimens or into artificial/simulated plasma.

Nevertheless, the heterogeneity and fluctuation of cfDNA is only part of the problem.
While an in-depth enquiry into these factors were beyond the scope of this review, it is
worth noting that the developmental timeline for clinically meaningful tests is extended
by several persistent obstacles that need to be overcome, including a lack of universal
preanalytical standards, an ever-expanding menu of preanalytical products, limited best
practice guidelines, analytical limitations, no standard reference materials, insufficient
analytical validation, and poorly-designed clinical trials. In addressing each of these
obstacles, it would be beneficial to develop strategies for assessing the influence of the
biological factors of cfDNA.

Moreover, it is becoming increasingly clear that new bioinformatics approaches, such
as the incorporation of ML algorithms, are desperately needed to interpret and under-
stand the sheer amount of data generated in cfDNA research, especially studies in which
numerous parameters are assessed.
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