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Abstract: The global healthcare sector continues to grow rapidly and is reflected as one of the fastest-
growing sectors in the fourth industrial revolution (4.0). The majority of the healthcare industry still
uses labor-intensive, time-consuming, and error-prone traditional, manual, and manpower-based
methods. This review addresses the current paradigm, the potential for new scientific discoveries, the
technological state of preparation, the potential for supervised machine learning (SML) prospects in
various healthcare sectors, and ethical issues. The effectiveness and potential for innovation of disease
diagnosis, personalized medicine, clinical trials, non-invasive image analysis, drug discovery, patient
care services, remote patient monitoring, hospital data, and nanotechnology in various learning-based
automation in healthcare along with the requirement for explainable artificial intelligence (AI) in
healthcare are evaluated. In order to understand the potential architecture of non-invasive treatment,
a thorough study of medical imaging analysis from a technical point of view is presented. This
study also represents new thinking and developments that will push the boundaries and increase
the opportunity for healthcare through AI and SML in the near future. Nowadays, SML-based
applications require a lot of data quality awareness as healthcare is data-heavy, and knowledge
management is paramount. Nowadays, SML in biomedical and healthcare developments needs skills,
quality data consciousness for data-intensive study, and a knowledge-centric health management
system. As a result, the merits, demerits, and precautions need to take ethics and the other effects of
AI and SML into consideration. The overall insight in this paper will help researchers in academia
and industry to understand and address the future research that needs to be discussed on SML in the
healthcare and biomedical sectors.

Keywords: healthcare; artificial intelligence; supervised learning; computer vision; medical imaging;
deep learning; precision medicine; XAI

1. Introduction

Recent years have seen much clinical and preclinical healthcare research using SML
and many other AI techniques. More specifically, SML has changed almost all sectors
globally in terms of digital healthcare, such as accurate disease detection and classification.
Many academic labs and industries are working to develop AI tools for different healthcare
areas [1]. SML can deliver better support to the medical practitioner and assist them in
making better clinical decisions [2]. SML has the self-learning capabilities to enhance
accuracy. The SML technique also uses advanced methods to foresee health risks and
generate warnings by extracting meaningful features from structured and unstructured
large data. Currently, SML has extended to more accurate methods with the increased use
of an advanced form of machine learning (ML), deep neural network (DNN)/deep learning
(DL), natural language processing (NLP), computer vision (CV), robotics, and many other
fields. [3]. A brief structure of the SML workflow process of data processing, assessment
and outcome, and validation in health is shown in Figure 1.
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In many co-clinical research labs, modern SML techniques are used to predict and
diagnose risky diseases such as cancer and neuronal and cardiac disorders, where timely
detection and analysis are super important [4]. The product-based deployment of SML in
biomedical and healthcare industries is also working to deliver an effective and operative
environment. Earlier, IBM Watson brought a foremost and fundamental revolution to
pioneering SML in the healthcare informatics industry [5].

Figure 1. Working flow of SML process in healthcare.

The advanced and rigorous SML method can quickly learn patterns and features from
bulk-size data and then predict and interpret those complex data to quickly help co-clinical
researchers and users. SML is prepared with learning and self-learning capabilities to
increase accuracy based on feedback [4]. An SML method also helps to increase analytical
and therapeutic accuracy and reduce errors which are practically unavoidable by experts.
Furthermore, an SML-based method will be very suitable to assist medical practitioners
in making real-time interpretations of health hazards and sending AI-based alerts to the
caregiver of the patients. As per the statistical data available [6], the revenue generated
from AI in healthcare [6] is shown in Figure 2.

The primary objective of this paper is to provide an overview of different SML methods,
a subsection of AI-based automated healthcare systems for academia and industry 4.0. This
will help other researchers in taking the decision to analyze data and improve the accuracy
and efficiency involved in biomedical and healthcare data analysis [7,8]. Simultaneously,
a new direction for SML in health application program interface (API) development and
building is introduced, which will accelerate research on self-learning, decision-making,
intellectual behavior, and other issues encountered during implementation, as well as from
a data access and security point of view. According to the scientific community, SML in
biomedical and healthcare would be the most adjustable and trustworthy technique after a
few years. The goal for healthcare is to become more personal, predictive, preventative,
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and participatory, and AI can make major contributions in all academic, research, and
industry directions. We also discuss the concerns regarding AI in the health sector and the
possible ways to overcome those problems. From an overview of the progress made, we
estimate that AI will continue its momentum to develop and mature as a powerful tool for
healthcare sectors.

Figure 2. The probable trend of revenue generation trend in the health and biomedical sectors.

1.1. The Major Data Types Analyzed

The clinical and preclinical data mainly exist in the form of images, videos, signal, raw
data, demographics, medical notes, and electronic records from scanners, devices, health
check-ups, and laboratories. A considerable amount of SML-based data analyses is derived
from diagnostic imaging, genomics, and electro diagnosis [4].

The physical prescription of a doctor and laboratory report observation can also be
considered two additional data sources. We differentiate them with images, videos, elec-
tronic health records (EHR), and genomics from the significant percentages of unstructured
data; those unstructured data are used for indirect analysis. Therefore, the corresponding
unstructured data analysis and AI/ML can emphasize converting the unstructured data to
structured data. The major data types used in SML and their corresponding application
percentage [4] are displayed in Figure 3.

1.2. Major Disease Types Currently Tackled by SML

Although AI is rapidly growing in health sectors, the academic research and devel-
opment community mainly focuses on a limited number of diseases, such as cardiology,
neurology, cancer, and skin-related diseases [4]. A few examples are mentioned below.

1. Cancer: The IBM Watson for oncology was developed using AI to support automated
cancer analysis, and a validation study [9] was performed blindly. Skin cancer and its
subtypes were identified from clinical images with high accuracy by Esteva et al. [10]
who failed to generalize the method.

2. Neurology: Movement of the cortical controller and its restoration in a human using
SML was implemented with limited accuracy in patients with quadriplegia [11]. Later,
a human and machine interface was created based on release time after re-innervation
of the target muscle spinal motor to regulate the prostheses' upper limb [12].
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3. Cardiology: Heart disease diagnosis from cardiac images is a great application in SML.
Arterys received authorization from Food and Drug Administration (FDA)-USA to
market their cardio deep learning (DL) method that provides computerized, editable
segmentations on cardiac MRI images [13].

These three diseases are very dangerous and must be acted on at a very early stage.
Therefore, timely identification and recognition of a particular kind of disease and treatment
are crucial to avoid the further degradation of patients’ health.

Figure 3. Major data types for supervised machine learning in healthcare research.

1.3. Long-Term Prospect

SML helps to simplify the future of healthcare sectors and ML-augmented care, pre-
cision medicine, diagnostic radiography, precision diagnostics, and medicines, enabling
biomedical and healthcare analytics systems to achieve their multiple objectives [14]. ML
continues to accelerate rapidly across physical and mental health, including online health-
care consultation, prognosis, disease diagnosis, drug discovery management, and health
monitoring. Currently, the SML system is not used the same way as a human medical prac-
titioner. Those can sometimes use their clinical experience and intuition. Today, SML-based
systems are started to automate the traditional biomedical task to avoid time-consuming,
big complex data, and tedious tasks. SML can also translate patterns and interpret diseases
from large-volume datasets. Despite this, there is room for significant improvement in SML
regarding precision diagnostics from medical imaging, particularly in diabetic retinopathy
(DR) planning and treatment.

Medium-term (next 10 years): There will be significant improvement and development
occurring after the implementation of the most powerful deep learning algorithms for
various applications that are efficient, can handle more data, automatic annotation, multiple
omics data, handle structure and unstructured data, able to use more unlabeled data,
complex 3D and 4D images, complex signals, unstructured electronic health data, and
behavioral and pharmacological data. AI/ML will help store and structurally analyze the
healthcare sector’s data within the organization. Health check-up practices will change
and adopt new technology to structurally analyze the healthcare sector’s data within the
organization. These will expand SML applications for personalized and precision medicine
and therapeutics study.

Long-term (beyond 10 years): Considering the long-term prospect, SML in the biomed-
ical and healthcare sector will be fully automatic and more intelligent using a thorough
augmented and connected healthcare system. All healthcare and biomedical systems will
shift from traditional to SML biomedicine to provide a preventative, more secure, and
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data-driven personalized disease managing model to achieve an improved patient care
system, clinical experiences, and outcomes in a more cost-effective way.

2. Growing Research Areas
2.1. Connected/Augmented Care

AI/ML considerably reduces healthcare inadequacy, escalates patient flow and knowl-
edge, and improves the caregiver’s clinical experience and patient safety care pathway.
Automation in healthcare could also be applied to remote monitoring and the use of clin-
ical patients through smartphones, wearable sensors, and IOTs to identify, prevent, and
provide timely monitoring of patients [14]. This continuous monitoring will also help to
classify high-risk patients using advanced classification techniques. In the long term, we
can imagine SML-based healthcare clinics, automated hospital systems, fully automatic
personalized social care services, and personalized patients and caregivers connected to
a single, interoperable digital infrastructure combined with ambient intelligence. The
following are two SML applications in connected care.

2.1.1. AI-Based Chatbots

Virtual SML Chatbots and recommendation engines such as Babylon for sick care
and recommendations and Ada support for health condition prediction with clinical su-
periority using artificial intelligence are used by many doctors and patients to recognize
diseases based on symptoms. SML virtual Chatbots can also be integrated with other
imaging tests and wearables to deliver understanding to users and caregivers to improve
patients’ wellness.

2.1.2. Ambient and Intelligent Care

The automation of ambient clinical intelligence leveraging sensors and NLP skill and
knowledge can computerize the whole back end of healthcare tasks such as documenting
patient’s information in the form of EHR, upgrading and revamping the clinical roadmap,
and allowing the medical practitioner to concentrate more time on the patient’s care. Recent
research has explored the capability to use smart contact-less devices to observe heart
pulses [15].

2.1.3. Digital Consultation

In the COVID-19 era, the use of digital consultation has increased significantly. The
idea of digital consultation is to decrease unnecessary hospital visits for negligible warning.
Minor cases can be self-treated with special home care and the assistance of a medical
consultant without unnecessary wasting of waiting time. The SML-based model provides
consultation based on the past medical records of patients, questionaries’ (e.g., Chatbot),
and overall information associated with health information and the medical field [16].

Digital consultation is very useful for those patients who have tight work schedules
and find it difficult to find time to visit a doctor often or have regular check-ups or treatment
for themselves or their relatives and sometimes go for over-the-counter medicines. That
is why the SML-based Chabot application, such as Buoy, was introduced in the past and
became very popular. Buoy also used some pre-planned replies to the patients [17]. The
users can choose doctors depending on their illness and health problems from the options
provided in the healthcare digital consultation app.

2.1.4. Internet of Things for Patient Monitoring

The demand for sensors and ML-based automatic progressive modeling for patient
monitoring [18] is increasing daily. Many wearables, such as glucometers, blood pressure
monitors, oximeters, and many more advanced AI/ML sensor applications, such as smart
transplants and prosthetics sensors, are often used in post-surgery patient observation [19].
These AI/ML sensors are used to avoid difficulties after surgery by constantly monitoring
important patient health parameters. A new movement of remote patient care systems
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in the research community, such as smart fabrics, nanorobots, and digital pills, support
medication adherence, monitor cardiac disease, and assist in wound supervision.

2.2. Precision Diagnostics
2.2.1. Analytic Imaging

The automatic detection, segmentation, and classification of co-clinical biomedical im-
ages are the foremost SML in the healthcare sector today [14]. Many recent studies [20–23]
have recognized the capability of SML, particularly in radiological medical images that
surpass the accuracy of human experts. Examples are as follows: A convolutional neu-
ral network (CNNs) DL-based automated pneumonia detection method for chest X-rays
overtook the performance of radiologists [20], and another CNN-based DL method was
established to classify different skin lesions very accurately [21] to help dermatologists.
Lymph node metastases of breast cancer were also accurately detected from whole slide
pathology using SML-based methods compared to multiple pathologists [22], and the
accuracy of heart attack diagnosis using the complete automatic DL method has surpassed
that of cardiologists [23].

2.2.2. Diabetic Retinopathy

Numerous vision-related issues arise due to diabetic retinopathy, and personalized
SML DL-based methods are being developed for proper disease recognition and quick
treatment plans [24]. Deep learning makes diabetic detection easier because manual one-on-
one screening by human observers is expensive due to an increase in the number of diabetes
patients worldwide and an insufficient number of eye care professionals. As a result,
research and development on computerized diabetic retinopathy detection are increasing
in the United States, the Europe Union, the United Kingdom, Singapore, China, and India.
A few of them have already cost-effectively validated vigorous diabetic diagnostics [25].

2.2.3. Faster Results with More Precision and Accuracy

Many significant SML-based methods are being used to assist medical practitioners
in image-based analysis and planning as a non-invasive strategy for cancer treatment and
planning [26]. Tasks such as automatic segmentation of target lesions, annotations, and self-
learning technology reduce the time and laborious efforts taken by humans using specially
designed SML-based methods [27]. Some studies show that the manual preparation and
analysis time for head, neck, and prostate cancer is 90 percent higher than when using an
SML/ML-based method, and the average waiting time for a radiotherapist’s diagnosis and
corresponding procedure can be reduced by at least 50% using an SML-based method [28].

2.2.4. Precision Therapeutics

Researchers all over the world are attempting to explore the cellular and molecular
roots of various illnesses. The main challenge is collecting and gathering a diverse set
of heterogeneous datasets that can lead to faster implementation of the digital image to
biological linking and precision therapeutics; however, these precision therapeutics are
still underdeveloped in terms of SML-based method implementation due to small labs,
unorganized data, and complex personalized procedures. Considering the prevailing
demands of precision therapeutics, synthetic biology and drug discovery could be two
promising futures for SML applications.

2.2.5. Immunomics and Synthetic Biology

SML-based methods must be updated and upgraded [29] for a better understanding
of the cellular foundation of disease. Along with syntactic biology, the categorical heat
map of patient inhabitants’ study can also help to deliver more target-based pre-emptive
approaches in immunomics. Although the application of SML tools on multimodal datasets
in immunomics and synthetic biology is not progressing yet, this research is still the future.
Using immunomics and synthetic biology to diagnose disease will be ground-breaking due
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to the implementation of special regulators in cancer diagnosis, neurology, and other rare
or uncommon disease cases for individual personalized care.

2.2.6. Cancer Diagnosis

SML is widely applied for classification, detection, and diagnostics in clinical and
preclinical cancer studies. Ichimasa et al. reported the usefulness of SML in operations after
the resection of T1 colorectal cancer [30]. In clinical practice, the guessing/prediction or
identification of any cancer and its aggressiveness (for example, identification of lymph
node metastasis) is very difficult, and it is challenging to make a decision towards surgery.
An SML-based accurate prediction model can predict and reduce image scanning time.
Hence, an SML/ML-based model to analyze lymph node metastasis was implemented
on pathological results that can also adopt new information on metastasis to avoid unnec-
essary surgeries [31]. In another study [32], a deep CNN was implemented to study the
transformations and characteristics of non-small cell lung carcinoma from histopathological
slides. Still, the method was not interpretable and self-explainable. Their study shows a
reduction in patient visits to the hospital as the SML method performed the radiological
nodules’ classification work. Various non-Hodgkin lymphomas can be distinguished using
deep learning techniques based on outcomes of discriminant studies [32] of lymphoma
features. Over the years, lymph-node metastases in breast cancer patients have been suc-
cessfully detected using deep-learning algorithms from pathology. The early recognition
and prognostic assessment in precision oncology using the advanced ML method is also
conceivable from pathology. Companies such as IBM, Queri.ai, PAIGE.AI, Inspirata, Pros-
cia, deepMinds, DeepLens, and PathAI use AI/ML tools for the analysis of different cancers
and their subtypes.

2.3. Drug Discovery

Significant improvement is possible in clinical and preclinical trial strategy, workout
plans, and optimization of overall drug discovery and effectiveness procedures. Particularly
in co-clinical study, any combinational optimization technique in the SML-based therapy
and drug discovery system could be replaced [33]. Currently, DeepMind and AlphaFold
are setting up research and development labs and investments to understand the healthier
sympathetic sequence and procedures and predict the structures of protein and protein-to-
protein interaction to develop more target-based therapeutics for clinical aspects [34].

Selecting a novel and effective drug from a bunch of potential pharmacological vigor-
ous chemical bodies is a challenging task [35]. SML-based computer-aided drug discovery
tools, with the help of clinical researchers, can help medical professionals make decisions in
a short amount of time, whereas traditional methods require many years to execute. SML
also helps to identify some policies in drug molecule profiling and design by understanding
disease profiles from a complex data set. Another SML usage in drug discovery is recogniz-
ing the cardiotoxic and nontoxic drugs that belong to the anticancer class. SML can also
identify potential antibiotics from millions of molecules, where Halicin is the first antibiotic
recognized by SML [36]. These algorithms can also be used to detect molecules [36]. SML
can be implemented to distinguishand combat the antimicrobial resistance of molecules
and accountable deoxyribonucleic acid sequences for antibiotic resistance. Currently, SML
is being used by different academics and industries in many drug discoveries: a team
from Toronto University and IBM working together on Ebola virus infections; Sumitomo
Dainippon Pharma and Exscientia strategies working on an innovative drug discovery
SML method for obsessive compulsive disorder; Bayer and Sanofi implementing an AI/ML
drug discovery method for metabolic diseases [37].

2.4. Surgical Robotics

The surgical robot application is gaining usability in many surgical events relating to
orthopedics, clinical neurology, co-clinical oncology, and odontology. SML helps surgeons
better access and understand real-time cautions and offer suggestions during the surgical
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process. The DL-based method could be beneficial in rendering the location and target for
the best clinical and surgical practice with better accuracy [38]. However, these AI/SML
robots require further authentication to accomplish the best practice. In the future, AI/SML
robots will be beneficial for determining the exact amount of blood extraction from blood
vessels for report generation and treatments.

2.5. Clinical Trials

After identifying the promising future outcome ahead in SML-based clinical trials,
many industries are largely investing in SML-based trials as SML-based implementation
makes trial processes faster, well-organized, precise, and more seamless. It was reported
that only 13.8% of non-SML-based clinical trials could successfully survive all three stages,
although trials using SML have not yet been established [39]. Despite this, they have
already been shown to reduce the overall cycle time after SML-based implementation and
lower the overall production costs. The SML-based method allows a nonstop data stream
from clinicians to be managed, coded, and stored in a database in a structured manner
very easily [40]. Details such as EHR, clinical and pre-clinical medical images, and other
tests are collected through the practitioner and used to regulate suitable trial methods and
techniques. Furthermore, it has become easier for patients to update their health-related
information using their wearable SML devices. A step-by-step procedure to automate the
clinical trial is described in the following flow chart (shown in Figure 4).

Figure 4. SML-empowered clinical trial procedure. AI = Artificial Intelligence.

So far, few SML-based methods have been implemented to monitor patients in clinical
trials using audio and visual data. Companies such as AiCure and Brite Health have used
this SML technique in clinical trials to regulate the efficiency of the trials and retain patients
from dropouts using proper monitoring. Later, the number of patients participating in the
trial can be optimized using digital twins by Unlearn.ai, and deep-SML can be used to
develop an SML-based patient recruitment system that helps to increase patients’ enrolment
in clinical trials. Deep-SML is involved and assists in the analysis of medical records for
proper patient identification for the trial [41].

2.6. Nanotechnology Research

SML plays a significant role in learning the behavior of nanotechnology and under-
standing scientific outcomes to pave the approach for the coherent expansion of SML in
nano-systems. Currently, SML is used heavily in simulations of nanotechnology systems
for many different healthcare application areas [42]. The main work in healthcare is to
develop the simulation of how a nanoparticle works and behaves to effectively choose drug
carriers, reducing the cost and time of development of nanoparticles. A major challenge of
nanomedicine is to determine the effects of different drugs regarding the time, dose, and
effectiveness specific to patients. SML can be efficiently integrated with nanomedicine to
augment the dose in amalgamation therapy.
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2.7. Prediction of Pandemic Outbreak

In the next few years, one of the most impressive efforts of SML is to forecast an
epidemic outbreak based on weather patterns, food habits, genetic populations, pollution,
and regional studies. Although there is no method yet developed to show accurate results,
the SML method can suggest a solution to bring an outbreak under control, which can help
us to act beforehand. One good part of ML is learning the ability to predict the magnitude
of an epidemic such as COVID-19 [43]. The SML algorithm helps in imaging or predicting
the speed of disease to different sectors by analyzing various structured, semi-structured,
and unstructured data from multiple open source and social network data. Cholera and
COVID-19 patterns were analyzed during their outbreak in Bangladesh [44] and India
using an advanced ML algorithm.

At the beginning of the COVID-19 pandemic, BlueDot marked clusters of mysterious
and uncommon COVID-19 cases that occurred around wet and dry marketplaces in Wuhan.
As a result, BlueDot was alerted to the corresponding sectors [45]. An AI engine highlighted
a few research papers that reported the probable source of COVID-19 and many cases of
pneumonia and flu, with many showing a link with the markets of Wuhan [46]. BlueDot also
precisely recognized the cities connected to Wuhan by analyzing the data of international
airline ticketing for alert purposes. As predicted by BlueDot, 11 of the top cities were
infected with COVID-19 at this time. Many other AI engines have since been developed to
predict different outbreaks.

2.8. Computer Vision in Precision Medicine and Diagnostics from Medical Imaging

Computer vision (CV) in radiology is expanding and growing its research in the
precision medicine and diagnostic area. A recent study [47] extends its use into all other
different image modalities, with a particular emphasis on optical coherence tomography
(OCT), X-rays, fluorodeoxyglucose (FDG)-positron emission tomography (PET), ultrasound
(US), computed tomography (CT), magnetic resonance imaging (MRI), echocardiography,
and pathology imaging. The various body part and imaging modality studies are available
and are depicted in Figure 5.

Figure 5. The imaging modality and body parts for ML and CV for clinical studies. (A) Different
imaging modalities can be used for CV and image processing. (B) Imaging from different body parts
of humans.

In the case of a brain stroke, time is very important [48], and special care and analysis
are very necessary for imaging data. As a result, a data-centric model to target lesion identi-
fication, classification, and region segmentation (e.g., ventricular) needs to be developed on
the collected clinical data [49]. These automatic data-driven applications will allow us to
respond quickly in times of crisis events, such as developing and deploying abdomen pain,
stroke, and COVID-19 detection models [50]. Other work in medical imaging continues to
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increase in the field of image translation, reconstruction, quality improvement (e.g., low
to high-resolution image enhancement), automatic health report generation, and specific
location and lesion tracking over time. In the present scenario, deep learning [51] works
efficiently for large data sets and is very useful in diverse tasks, structures, and pathological
interpretability. However, interpretability, explainability, selection of correct patient cohort
and data preparation, choice of testing criteria, data labeling and reference generation,
proper model selection, and performance evaluation need to be strictly monitored despite
many claimed successes of deep learning in specific healthcare areas.

Currently, medical professionals mostly rely on a large number of image analyses that
obtain the benefits of deep learning-based analysis. One of the biggest and most significant
motivational forces for SML, DL, and CV-based methods in clinical non-invasive application
is to handle massive amounts of complex unstructured digital data produced from different
medical schools and hospitals worldwide. Up until 2020, approximately 20 AI-DL image-
based applications [52] were permitted by the FDA USA and the European Union. Now,
these are spreading and focusing on multi-modal and multiple modality images, which
include X-rays, computed tomography (CT), magnetic resonance imaging (MRI), T1w,
T2w, DWI, DCE, FLAIR, ultrasound, and optical coherence tomography (OCT). Most FDA
CV/ML approved applications focus on computerized screening, supporting diagnosis, or
highlighting the radiologist’s needs. One main progress and success in the study of medical
imaging was the detection and recognition of DR, pulmonic embolism, cerebrovascular
coincidences, brain injuries, cancer, and chest disease such as pneumonia. Although
further complex and novel medical explanations are required, problems typically need
empirical thinking using the information of biological procedures. Selectively incorporating
meaningful knowledge and information from past studies or patients’ health history could
also be beneficial for many cases to reach high accuracy.

2.9. Advances in SML-Based Clinical Imaging

DL has excellent potential to provide better outcomes with greater availability. Con-
tinuation of the current work is needed to establish its use as a proper clinical procedure.
The CNN DL method established a recent computerized skin cancer estimation [53]. The
authors compared biopsy results, and the algorithm performed even better (>6% improve-
ment) and was consistent concerning dermatologists in three categories, with more than
10% accuracy compared to traditional dermatologists. The performance of the method
was inadequate in relation to the levels of accurateness for marking training images. The
deep learning application in medical imaging [54] for various avenues (in %) is shown in
Figure 6 below.

Figure 6. The deep learning application in a medical imaging application.

2.10. Current Stages (in Industry)

The application of CV, ML, and DL in medical imaging is still in its initial stages.
Several multidisciplinary research initiatives are taking place among academia, industry,
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and large corporations. However, apart from specific healthcare and biomedical companies,
GoogleBrain [55], DeepMind [56], Microsoft, and IBM are all working on medical imaging
technology and SML-based healthcare developments. Many small and medium-sized
industries, such as Qure, Prognostic in med, Aidoc, Arterys, Ayasdi, Babylon Healthcare
Services, BenevolentAI, Enlitic, TamilNadu government agency, Niramai, Remidio, En-
voiAI, H2O, IDX, MaxQ AI, Mirada Medical, Zebra Medical Vision, Arterys, Gauss Surgical
Inc, Zebra Medical Vision, Freenome, Viz, and DiA, are also conducting valuable research.
A list of prominent SML methods in healthcare research work and company names are
shown in Table 1 below.

Table 1. Prominent work around the world in industry and company related to CV in medical
imaging.

Industry/Company Name Task Performed

Google Brain DR screening solution and also working on AI to improve breast cancer detection

DeepMind Diagnosis and referral in retinal disease

Microsoft Optimization of cancer treatment and radiotherapy-based planning

IBM AI in healthcare and life sciences (e.g., predict the specificity of T cell receptors)

Qure AI-assisted chest X-ray solution

In med prognostic Volumetric analysis of the brain using AI

Tamil nadu e govt agency AI-based cataract detection system

Niramai Health analytix Breast cancer screening solution

Remidio DR screening tool

Arterys Proper blood flow visualization and quantification from MRI of whole-body images

Gauss Surgical Inc Real-time tracking and monitoring of blood loss after surgery

Zebra Medical Vision AI chest X-ray triage

Freenome Cancer detection from blood cells imaging

Viz Early signs of stroke prediction and detection

DiA Imaging AI-powered ultrasound image analysis solution

RetinAi “Discovery Platform” Glaucoma, DR, and macular degeneration (MR) data collection and analysis

BrainMiner AI-based brain MRI scan analyzing systems

Lunit AI-based automated chest X-ray interpretation

The accuracy of the above computer-based works depends on the heterogeneity and
amount of data. For clinical-level application programming interface (API) design and
software by healthcare businesses, there must be increased collaboration between academia
and industry. Collaboration will reduce distance and make it simpler to integrate new ideas
with existing solutions by avoiding high expenditures for serious research, extensive data
collection and assembly for training and validation, expensive hardware, and developed
methodologies for clinical validation.

3. A Use Case of New Non-Invasive Diagnostics Development Approaches

Recent studies and research on developing non-invasive imaging diagnostics such
as MRI, PET, CT, X-ray, ECG, and many others are slowly being established for screening.
Although only a few have some success in clinical trials, invasive coronary angiography
(ICA)-based blood flow assessment is one of them. In this section, we discuss the potential
of non-invasive imaging tests and computation approaches to reduce the quantity of in-
vasive tests and preserve similar quality in diagnosis for biomedical healthcare with the
general and possible vision-based technical approach (CV in medical imaging) as a use case.
Traditional SML solution-building, such as pre-processing, detection, segmentation, classi-
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fication, monitoring, and prediction, is conducted through supervised, semi-supervised,
and traditional techniques. Traditional SML solution-building steps are as follows:

Pre-processing: Pre-processing is applied to raw data, signals, or reconstructed ra-
diological images to apply CV techniques for image analysis, data quality enhancement,
and data cleaning. For example, deep learning methods are currently used to reconstruct
many images from sparse medical (PET\MR) data, low to high-resolution conversion, noise
reduction, artifact removal, quality enhancement, and image acquisition.

Detection: Detection highlights a target-specific tissue and region on images likely
to contain localized tissue spatial heterogeneity. One example of liver metastases lesion
detection and identification of individual lesions with bounding boxes is shown in Figure 7.

Segmentation: Segmentation delineates the surface area or volume estimation of
a target based on intensity, shape, texture, heterogeneity, and edges. One example of
the segmentation of a liver metastases lesion outline to extract the largest diameter for
follow-up and care of response to therapy of the future liver remnant [57] is shown in
Figure 7.

Classification: Classification categorizes the type of irregular lesion from one group to
another. For example, liver fat, liver cysts, and hemangiomas can be classified as malignant
metastases liver lesions [57].

Monitoring: Monitoring denotes the regular follow-up of target lesions to measure
changes in position, shape, appearance, and morphology. For example, change in volume,
texture, morphology, and intensity in liver metastases and the affected area.

Prediction selects some features to forestall the progress of ground truth. For example,
the prediction of response to therapy or overall survival of liver metastases can be predicted.
Figure 2 demonstrates the possible clinical usage of SML methods in liver CT imaging [57].

Figure 7. Potential clinical uses of Computer Vision in medical imaging techniques and the corre-
sponding possible tasks.

In general, the top-level view of application architecture for a large data set handler
includes data collection and annotation, data augmentation, better learning, active learn-
ing, semi-supervised learning, transfer learning as a pre-processing, and an intermediate
method for the technical aspect. The solution-building tasks and possible technologies are
described below.
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Inference Pipeline: The inference pipeline comprises image processing, outlier de-
tection, and explainability. The image processing pipeline can form a graph, where each
node would represent one of the algorithms mentioned in the next section. Based on the
use case, this graph will be dynamic and customized (addition and subtraction of nodes).
Outlier detection inference pipelines will be paired with a data processing pipeline to better
detect out-of-distribution data points to understand input/outlier patterns. Explainable
is the technique for visualizing the features that the models in the pipeline are learning
and extracting in order to make the solution more comprehensible. One crucial step in
the image processing pipeline is the data preparation pipeline. Several key steps for the
data preparation procedure [58] are shown in Figure 8, including (i) data acquisition, (ii)
de-identification to eliminate private patient information and maintain privacy, (iii) curated
data to maintain the imaging and non-imaging quality, (iv) storage database management
systems, and finally (v) image labeling and annotation [59].

Figure 8. Data preparation pipeline for Supervised Machine Learning solution.

The technology used to solve traditional solution building steps to handle large
amounts of data is written below.

Data annotation: Automatic or semi-automatic AI tools are required for the annotation
of a large number of datasets, which can also be termed as ‘AI helping AI.’ AI helping
AI–annotation is essential to control the best practices. Traditional and semi-automatic AI
methods, such as active contour, level set, and graph cut, efficiently accelerate the medical
image labeling repository at a higher speed and scale. New AI-helping SML annotation
methods can reduce the burdens of labeling a high-volume of complex images [60].

Data Augmentation: Data augmentation includes the synthesis of near-to-real data
(close to 90%) using a new data generation procedure to build millions of labeled image
datasets for detection and segmentation.

Better Learning: To increase the domain adaptation and speed up the learning models,
new innovative, weakly supervised, semi-supervised, and self-learning techniques can
be very useful. Many researchers use weaker forms of supervision, heuristic generation-
based training data, patterns or rules-based implementation, or other classifiers. Weak
supervision helps in dealing with noisier inputs from the professional.

Active Learning: The data managing pipeline is significant; automating this manage-
ment could be beneficial in developing a complete automation system. A never-ending
active learning approach to managing a data labeling pipeline with automatic data distri-
bution based on the knowledge derived from domain/models could be very useful for the
analysis system.

Semi-supervised learning: A small set of labeled training sets and a larger unlabeled
data set can be very useful in the semi-supervised learning environment. The goal is to
obtain solid high-level data representation as part of a regularized discriminative model.
Recently, researchers developed deep learning algorithms exploiting biophysical models
to estimate biological parameters related to human brain neuronal structure and hemody-
namic properties [60].
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Transfer learning: A pre-trained task-specific model can be transferred to other data
sets to fine-tune based on interest.

There are approximately a dozen ML methods, each captivating a different approach.
However, choosing the correct algorithm can seem overwhelming as no decent method
fits all considering multiple views. The typical questions and main points to identify the
appropriate method are trial and error, the size and type of data, research questions, and the
purpose. The commonly used AI in the detection, segmentation, and analysis of medical
data is shown in Figure 9.

Figure 9. Major AI method used in medical image analysis. (A) Method used in image analysis
and quantitative medical image data analysis, and (B) percentage of each method currently used in
medical imaging analysis. Some statistics were also provided by Kumar et al. [1]. The abbreviations
used in the figure are as follows: Naive Bayes (NB), support vector machines (SVM), regression tree
(RT), random forest (RF), classification tree (CT), classification and regression tree (CART), K-nearest
neighbor (KNN), principal component analysis (PCA), hidden Markov model (HMM), Gaussian
mixture (GM or GM model), fuzzy logic (FL), regions with CNN (R-CNN), deep learning (DL),
self-organized machines (SOM), and artificial neural network (ANN).

Among all of the methods, deep learning is used most commonly [1] in the study
of medical data analysis. In general, Python is the most popular programming language
used for the deep learning implementation purpose. Most researchers use the common
TensorFlow and PyTorch DL libraries for their research. However, many researchers run
Keras, Fastai, and Lasagne on top of TensorFlow and Pytorch. 3.

The deep CNN architecture is an advanced image processing and medical analysis
method. More explicitly, the CNN layer is used as a building block of most DL architectures
for detection, classification, and segmentation based on performance. With more significant
computation, CNN can be easily trained on 3D data such as PET, CT, and MRI [57]. The
Frequently used deep learning techniques and their use cases [58] in medical data are
shown in Table 2.

The choice of the neural network model depends on the application, and the model
architecture changes very rapidly to overcome the application problem and generalize the
model. ResNet and DenseNet models were identified as very efficient for classification
and U-nets for medical imaging-related anomaly identification. Still, feature dependencies
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were not exhibited competently due to non-optimal discriminative feature association
with a semantic class to reach state of the art results. Training and fine-tuning of the
hyperparameters of the model using selected metrics are essential to generalize the building
blocks of the model to curate the dataset. Table 3 summarizes the appropriate architectures
and standards for several medical imaging tasks.

Table 2. Frequently used deep learning techniques and their uses.

Technique Advantage Disadvantage

Deep Neural Network (DNN): Minimum two layers,
many complex nonlinear associations among the layers.
Mainly used for regression and classification purpose.

High accuracy

The very slow learning process.
Nontrivial training procedure due
to back propagation to the
aforementioned layer.

Convolutional Neural Network (CNN): Transformation
of 2D to 3D convolutional filters, and also works well for
2D data.

High accuracy on 2D data and
fast learning model.

Need lots of labeled data
for perdition.

Recurrent Neural Network (RNN): Weight sharing
across all neurons and steps and sequential learning.

Provides high accuracy for
visualization aspect of medical
image analytics problems.

Many issues due to gradient
vanishing and need a large
amount of data.

Deep Boltzmann machine (DBM): It consists of
unidirectional linking between all hidden layers.

More robust inference as
top-down feedback incorporates.

Parameter optimization is not
promising for large data.

Deep Belief Network (DBN): The greedy approach used
in each layer. Unidirectional association between two
layers at the top of layers.

Work well for similar data. Training is expansive due to
initialization problems.

Deep Autoencoder (DAE): The no. of I/P is equal to the
number of O/P., reduced dimensionality. Labeled data is not needed.

Training may suffer due to
convergence and vanishing
problems.

Table 3. General structures and common performance measurement metrics for various medical
imaging-related tasks performed using SML methods.

Detection Segmentation Classification Prediction

Features

Using various shapes such
as circles, rectangles, and
squares and labels using
different binary masks,

overlays, etc.

Texture, shape,
position, and intensity
Higher order features

Texture patches
3D Radiomics

features
Morphological

features
Imaging metrics

Texture and shape
Survival time

Dynamic
modeling

Imaging metrics

Model
architectures CNN UNet/Unet++ Dense net Efficient net/CNN

Performance
metrics

• Mean average precision
or mAP

• Intersection over
union (IoU)

Mainly IoU and F
measure, precision,
recall, relative area
error, and accuracy

Area under the curve
(AUC) or receiver

operating characteristic
(ROC)

Confusion matrix

AUC/ROC
Confusion matrix

Coefficient of
determination

4. Comparative Analysis

The literature study illustrated in Table 4 showcases very brief information such as
disease types, data set availability, the method used, and corresponding success. Table 4
will help readers understand the usability of a suitable method for each of the disease types.
The research can be used to implement the best-suited method for the detection of various
diseases with improved results.
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Table 4. Reported success and comparative analysis for the detection of different diseases.

SL. NO. Authors Application Dataset Method Used Reported Success

1
Murat

SeçkinAyhan
et al. [61]

Ophthalmology

Kaggle, Asia Pacific
Tele-Ophthalmology
Society, Messidor and

Indian Diabetic,
Retinopathy Image

Dataset (IDRiD)

Deep neural
networks (DNNs) Accuracy ≥ 90%

2
Elineide S. dos
Santos. et al.

[62]

Skin cancerdermoscopic
images

PH and DermIS
datasets

Linear iterative
clustering (SLIC0)

algorithm
Accuracy = 96.78%

3 Ghorbani, A
et al. [63]

Interpretation of
echocardiograms from

heart

The Stanford
Echocardiography

Database
CNN- EchoNet Area under the

curve = 0.89

4 Bulten, W.
et al. [64]

Grading and diagnosis of
prostate cancer

Data from Radboud
University Medical

Center and Karolinska
Institutet for PANDA

challenge and
competition

Multiple AI and
machine learning

methods

Error or miss: 1%
for cancer and 1.8%
for the pathologist

5

Rakesh
Kumar

Patnaik et al.
[65]

Prediction of liver
function from quick
breath monitoring

A pilot study at a local
university

Different regression
and support vector

machines (SVM) and
various forms of

decision trees

Correlation p < 0.01
between unhealthy

and healthy
samples

6 S Roy et al.
[40]

Treatment response
prediction of triple

negative breast
cancer—Co clinical trial

(PET)

WashU medical
school-imaging

facilities

Radiomics, support
vector machine, and

naïve Bayes
Accuracy ≥ 72%

7 K Dutta et al.
[66]

Preclinical breast cancer
segmentation (MRI)

WashU medical
school-imaging

facilities

Dense UNet deep
network F-measure ≥ 94.8%

8 I. Anand et al.
[67]

Breast tumor
segmentation from
magnetic resonance

images (MRI)

RIDER breast MRI
dataset ResU-Net Architect

Accuracy = 73.22%
and dice coefficient

= 85.32%

9 S Roy et al.
[68]

Preclinical breast cancer
optimal radiomics (MRI)

WashU medical
school-imaging

facilities

Statistics and
radiomics

SNR between 28 to
33/NA

10 Varadarajan
et al. [69]

Edema grades of diabetic
macular from fundus

image

Rajavithi Hospital
clinical data from 2010

to 2018
Deep neural network Area under the

curve = 0.89

11 Chetty, G et al.
[70]

Tumor lesion
segmentation from brain

MRI

BraTS open challenge
data set, 2018

Modified UNET
architecture Dice score = 94%

12 M A. Savaikar
et al. [71]

Prediction of response to
carboplatin therapy for
triple negative breast

cancer (TNBC) from mice
PET images

WashU medical
school-imaging

facilities

Change in imaging
metrics a standard

uptake value

F score of
SUVmax = 73%
SUV25 = 72%

SUV(SS) = 74%

13
Ching-

WeiWang et al.
[72]

Segmentation and
classification of bone

marrow from
Hematopathology image

Own institute dataset Hierarchical deep
learning framework

recall and accuracy
of 0.905 ± 0.078

and 0.989 ± 0.006
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Table 4. Cont.

SL. NO. Authors Application Dataset Method Used Reported Success

14 Liu, M. et al.
[73]

Detect marginal bone loss
around implants

Peking University
School and Hospital of

Stomatology

RCNN or
region-based CNN

architecture
Sensitivity 81%

15 Lea, W.Wi
et al. [74]

Bone-age software on
real-world data

Home
hospital-pediatric clinic

Deep learning
(DL)–based software

Correlation = 98%
and p ≤ 0.025

16 A Mitra et al.
[75]

Glaucoma detection and
analysis from retinal

fundus image

ESSIDOR and Kaggle
datasets

Deep Convolution
Neural Network

(CNN)

Accuracy was 99%
on both two

datasets

17 Mall, P.K et al.
[76]

Musculoskeletal
radiographs, X-ray images

Musculoskeletal
radiograph (MURA)

Combination of
ChampNet

with CLAHE and
other types

Highest accuracy
was 96%

18 S Roy et al.
[77]

Brain abnormality
segmentation from MRI of

brain images
Brainweb database Iterative Level Set Accuracy ≥ 75%

19 S Roy et al.
[78]

Multiple small target
lesion detection and

segmentation from MRI of
the brain

Harvard brain atlas
network

Hybrid level set and
thresholding

correct detection
ration = 92.6%

20 Guan B et al.
[79]

Predict pain progression
in knee osteoarthritis University of Wisconsin deep learning (DL) Area under the

curve = 0.77

21 Iizuka, O. et al.
[80]

Detection and
classification of gastric
and colonic epithelial

tumors from
histopathological slides

The Cancer Genome
Atlas open dataset

CNNs and RCNN
(recurrent neural net.)

Area under the
curves (AUC) was

0.97 and 0.99

22 Abbas, A. et al.
[81]

COVID-19 detection
classification from chest

X-ray

Images were collected
from several hospitals

around the world

Decompose, Transfer,
and Compose based

on deep CNN

Accuracy of 93.1%
(with a sensitivity

of 100%)

23 Wulczyn E
et al. [82]

Multiple cancer types
from histopathology

images

The Cancer Genome
Atlas open dataset

Multiple deep CNN
modules

Disease specific
survival prediction
was significant p <

0.0001

24 Sabanayagam
C et al. [83]

Chronic kidney disease
prediction from retinal

images

Institute
data-Singapore Eye

hospital

Deep learning
algorithm (CNN)

AUC was 0·88 and
0·71 in internal and
external validation

25 Zhang, Y. et al.
[84]

Classifying endometrial
lesions

Hengjing Hospital of
China Medical

University

Tuned VGGNet-16
model Accuracy = 91%

26
Pierre

Pinochet et al.
[85]

Suspected cancer location
detection from PET and
computed tomography

(CT) images

Clinical data from the
Henri Becquerel Cancer

Center
CNNs Dice score was 65%

27 May Sadik
et al. [86]

Bone marrow uptake
estimation and detection
in Hodgkin’s lymphoma

patients from PET images

Sahlgrenska University
Hospital CNN

Sensitivity = 65%
and Specificity =

98%.

28
Janani

Venugopalan
et al. [87]

Early prediction of
Alzheimer’s disease stage

from MRI images

ADNI-Alzheimer’s
Disease Neuroimaging
Initiative open database

Novel deep learning
and multi-modality

data

accuracy of
0.75 ± 0.11
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Table 4. Cont.

SL. NO. Authors Application Dataset Method Used Reported Success

29
Esraa A.

Mohamed
et al. [88]

Breast cancer detection
system from thermograms DMR-IR real data

U-Net network and
world-class deep
learning model

Accuracy = 99%,

30
Muhammad
TariqSadiq
et al. [89]

EEG-based robust
brain–computer interface

framework
– Pre-trained CNN

models

average
classification

accuracy of 99.52%

31
Rodolfo M.
Pereira et al.

[90]

Analysis of chest X-Ray
and identification of

COVID-19 from X-ray
RYDLS-20 Pre-trained CNN

model F1-Score of 0.89

32
Alexandre
Bailly et al.

[91]

Performance prediction of
various machine learning

methods on simulated
data

Simulated data
Deep neural network

and logistic
regression

AUC = 0.80 and
0.85 for neural net

and penalized
regression.

33

Raquel
Sánchez-

Cauce et al.
[92]

Cancer localization from
breast thermal image DMR database Deep CNN

architecture 97% accuracy

34 Wallis, D. et al.
[93]

Identification and
localization of lymph

nodes from pathological
mediastinal

Clinical data obtained
by the authors U-Net and 3D CNN Sensitivity = 87%

35 Johnsson, K.
et al. [94]

Standard report
generation and automated

annotation from PET
imaging data

Progenics
Pharmaceuticals, Inc.,

USA
Deep learning Dice scores ≥ 0.79.

36 Capobianco,
N. et al. [95]

Whole body PET uptake
and prostate cancer

grading classification

Institute data-Technical
University of Munich

Deep learning
methods

80.4% average
precision

37 Etminani, K.
et al. [96]

Alzheimer's and dementia
prediction and diagnosis
of cognitive impairment

European DLB (EDLB)
Consortium

3D deep learning
model AUC = 0.96

38 Mehranian, A.
et al. [97]

Whole-body PET oncology
scans quality

enhancement and noise
reduction

Hospitals-Oxford
University Deep learning Scan time

reduction by 50%

39 Xue, S. et al.
[98]

Low to standard dose in
PET imaging quality

conversion

Harvard Medical
School and

Massachusetts General
Hospital

Cross-scanner and
tracer-based deep
neural network

Conversion
significantly p <

0.05 and
normalized dose

acquisition p < 0.05

40 Wang, L. et al.
[99]

Differentiating between
nontuberculous

mycobacteria and
Mycobacterium

tuberculosis from a chest
CT image

Data was collected
from 2014 to 2020 from
Tianjin Haihe Hospital

deep learning
framework

(3D-ResNet)
AUCs = 0.86

41 Merali, Z et al.
[100]

Spinal cord compression
identification and

detection from cervical
MRI scans

University of
Toronto-Home institute

data
CNN model AUC = 0.94
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Table 4. Cont.

SL. NO. Authors Application Dataset Method Used Reported Success

42 Awan, M.J.
et al. [101]

Detection of anterior
cruciate ligament injury
from MRI scans using

deep learning

Clinical Hospital
Centre Rijeka ResNet-14 AUC = 0.99

43 Awan, M.J.
et al. [102]

Comparative analysis of
machine learning models
to identify the condition of

three anterior cruciate
ligament tears

Clinical Hospital
Centre Rijeka

Random forest,
categorical boosting,

light gradient
boosting machines,

and highly
randomized classifier

AUC = 0.99

44 Awan, M.J.
et al. [103]

Automatic segmentation
of the anterior cruciate

ligament tears from MRI

Clinical Hospital
Center in Rijeka,

Croatia
U-Net Accuracy = 98.4

45 Saeedizadeh
N. et al. [104]

A segmentation
framework to detect chest

regions in CT images
which are infected by

COVID-19

COVID-19 CT
segmentation dataset

U-Net
(COVID-19
TV-U-Net)

Dice score = 86%

46 Stefano, A.
et al. [105]

Automated identification
and segmentation of
COVID-19-infected

regions using CT

COVID-19 Lung CT
Lesion Segmentation

Challenge—2020
(COVID-19-20)

Deep learning
framework
(C-ENET)

Dice score = 75%

Table 5 shows the framework of learning-based algorithms, strategies, and the most
popular method used in the corresponding fields from the survey and Table 4. The table
is divided into three parts: the basic learning style, hybrid learning, and finally, common
complex learning strategies that solve several models together [106].

Table 5. Learning outlines and approaches with some popular techniques in the field of medical
imaging.

Learning Type Methods Applications

Basic learning frameworks

Supervised
learning

Different types of classification and regression trees
(CART), RF, NB, SVM, ANNs, and RNNs

- Disease detection and diagnosis
- Target lesions segmentation
- Radiotherapy dose estimation
- Multimodalities imaging and synthetic

image generation

Unsupervised
learning

Dimensionality reduction (e.g., PCA, LDA), different
clustering—unsupervised (e.g., K-medoids,
K-means), and auto encoders

- Classification of the patient population
- Different domain adaptation tasks

Reinforcement
learning Markov model and reinforcement Q-learning

- target lesion separation and image
reconstruction

- Treatment response prediction and growth
prediction

Hybrid learning frameworks

Semi-supervised
learning Generative adversarial networks

- Abnormality classification
- Synthetic image creation
- missing data handler

Self-supervised
learning

Augmentation, texture features, patch extraction,
and rotation

- Target lesion classification, detection,
and/or segmentation
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Table 5. Cont.

Learning Type Methods Applications

Complex learning strategies

Transfer
learning Causative, perspiration, and unsupervised

- Toxicity estimate of radiotherapy dose
- Clinical practices adaptation
- Model simplification

Ensemble
learning

Bagging bootstrap aggregating and boosting
(e.g., AdaBoost, gradient boosting)

- Prediction of radiotherapy
- Uncertainty Estimation
- Stratification of patients

5. Challenges from the SML Implementation Side

The challenges towards healthcare transformation in using SML are data issues, data-
snake oil, interdisciplinary team building, reproducibility, personalized medicine, moving
into clinical practice, data and algorithms, causal AI, product development, and effective-
ness and trust in AI-augmented healthcare [107].

5.1. Data Issues

Maximum SML-based analytics (especially deep learning) relies on access to large
datasets for healthcare data analysis, and all supervised learning requires a labeled training
set. Access to high-quality labeled data is crucial and difficult to achieved in the implemen-
tation and assessment of SML methods for the co-clinical decision-making process [108].
Creating training labels from known archives data/records requires skilled medical per-
sonnel to review patient charts for meaningful label creation. As a result, the time and cost
involved in the project increase. On the other hand, many publicly accessible labeled data
sets for SML methods are very small in size. Data sets labeled from clinical records can
also be used for research, but those are variable in quality, which restricts the efficacy of
training in many cases. The performance of the SML/ML depends on the training data,
and performance cannot be expected to be more than the training data set will allow. The
more quality and heterogeneous data we obtain, the better the data set will perform, and
there will be fewer inconsistent images within the training space.

5.2. Data-Snake Oil

The presence of bogus sites and data repositories has increased due to the enormous
demand and money floating for data in the healthcare industry. The lack of information
regarding the data on those sites and repositories causes trust issues. For example, informa-
tion concerning patient conditions, symptoms, tests, diagnoses of patients, and treatment
possibilities is provided by the American Cancer Society [109] and the Mayo Clinic [110],
which are very helpful for further studies. WebMD has been very successful from the
beginning of its foundation as a news and information outlet associated with human
health providers. WebMD is one of the most visited medical sites in addition to other
government/semi-government/private healthcare sites [111]. Similar trustworthy websites
and repositories created by experts will help people to direct the proliferation of SML
health at all levels. Otherwise, the proliferation of misrepresentation or misinterpretation
could obstruct the implementation of AI health. Then, these improper representations or
incomplete data may lead to ‘snake oil’ in place of ‘new oil’. Endorsement of best practices
and engagement of learned bodies is required to guard against the proliferation of snake oil.

5.3. Interdisciplinary Team Building

An interdisciplinary team for building the non-invasive vision aspect of medical image
analysis using ML is provided in Table 6.
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Table 6. Checklist of steps required for project management involving CV and DL.

Task/Type Management

Team

o Team lead and principal investigator (e.g., faculty or industry expert in the related fields).
o Domain experts (e.g., doctors, medical practitioners, surgeons, radiologists, hematologists, and
pathologists).
o Imaging analyst (e.g., image scientist, radiologist, researcher, or data scientist).
o Technical researchers (e.g., researchers, AI/ML/data scientists, and imaging experts).

Cohorting
o Selection process (e.g., by target population, heterogeneous data, or database).
o Identification of data source (clinical and open-source data).

Data

o Security and privacy.
o Collection and cleaning.
o Examination and quality controller.
o Annotations and data labeling.
o Reference data generation.
o Training and test division.

Model

o Development of a new model.
o Proper model selection.
o Hyper parameters fine-tuning.
o Test on an unconnected dataset.
o Performance measurements.

Hardware
o Define the best memory machine/system.
o Central processing unit and graphics processing unit configuration.

Regulatory
o Market research to commercialize.
o Feature management system.

Clinical adoption
o Validate clinically and measure the performance.
o Deployment for clinical practice.

Multi-disciplinary team building: multi-disciplinary team building is essential in
SML for healthcare applications to share their ideas and cooperate with others on joint
collaborative work. A project leader is necessary at the top to manage, organize, and
preserve the thought of the members of the team in order to guarantee smooth work and
flow of the project. Population cohorting: Correct cohort population data selection is
required along with catalogue testing that includes all patients. Data with missing values or
insufficient studies must be omitted. Data collection and curation: This procedure is usually
the most time-intensive stage, but this is very precarious to train for any model. Biobank,
images, related information to the data, and radiology reports must be included for any
clinical-level AI-based implementation. Data labeling: All lesion or outcome labeling
must be conducted by radiologists to train the models. Typical tasks such as annotation,
segmentation, ROI drawing, and tracking of targets can be automated using CV techniques.
Dataset sampling strategies: The data sets should be independent of each other as much as
possible and identically spread for proper implementation in clinical adaptation.

5.4. Reproducibility

Healthcare research suffers a lot due to the reproducibility problem, similar to many
other areas of science research. Many times, SML-based healthcare models have been
verified in unrealistic clinical settings. The repeatability of scanner or any medical device
data must be justified with proper statistics before implementing an AI-based method [112].
Many SML methods fail due to bias in the data set, which leads to failures in the generaliza-
tion of the model. Researchers should use more heterogeneous data and reproduce the same
results during their training method. Despite these common setbacks, a few SML-based
methods (semi-supervised learning) conserve their performance on new heterogeneous
data and show great efficiency in clinical reality [113].

The reproducibility crisis leads to massive impediments to translation and an enor-
mous waste of time, effort, money, and faith. Technically isolated positive studies can also
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fail to convince healthcare practitioners to accept SML health products. Therefore, proper
data preparation, reporting criteria, documentation and clarification, development, and up-
dated feature metrics need to be developed to avoid the reproducibility issue [40]. Stepwise
documentation will avoid damage to pertinent information and move toward consistent
improvement. Honest and repeated rigorous testing of both internal and external validity
are essential for the successful deployment of SML in healthcare products at all stages of its
implementation process. These developments will lead to imprudent translation.

5.5. Personalized Medicine

SML-based implementation in precision medicine (among many important healthcare
applications) is still under-recognized for automation. Many developers are unaware of the
inter-disciplinary effort and undervalue the specific challenges of threatening translation.

Furthermore, confirmatory validation training is required, and it is very costly as
sufficient patient enrolment per subcategory is essential. In addition, experts and people
familiar with preclinical and clinical implementation and validation studies are required.
Projects without high-quality validation and evidence are guaranteed to fail in the actual
field. Several cancer research studies have suffered from transformation failures due to a
high dependence on low-grade evidence in a small cohort group [114]. Some challenges
also translate theoretical fundamentals to practical ones as experience is scarce and the
SML method is still in its infancy. Integration of and overlaps of theoretical fundamentals,
data science, proper statistical inference, approximation, and attribution, are very active
and open research up to questions regarding this type of healthcare research [107].

Another real problem is the lack of understanding of the actual meaning of precision
medicine, and in many cases, researchers are unable to understand the required level of
clinical validation. Proper planning and conceptualization of the project will decrease this
failure. Continuous funding with an interdisciplinary team will also provide higher chances
of success; excellent and experienced decision-makers will help in the critical assessment
of projects.

5.6. Moving into Clinical Practice

SML-ML computational-based technologies may be adequately relevant to enhance
diagnostic, analysis, and therapeutic procedures, resulting in enhanced results at extremely
low costs. For example, in many cases, doctors recommend invasive testing to determine
the negative diagnosis result for those patients who underwent serious chest pain. This
intrusive procedure is expensive, painful, and time-consuming, which causes patients
to become anxious. In many cases, unnecessary use of invasive coronary angiography
tests leads to continued levels of high chest pain, where 60% of patients have no other
important signs of coronary artery disease [115]. Furthermore, more than 50% of cases
would not benefit from revascularization. The diagnosis of coronary artery disease using a
computer-aided system will help with cardiac revascularization.

5.7. Use of Hospital Data

Healthcare institutions often face the challenges of epidemics and the influx of diseases
with new/previously unknown and unobserved symptoms. To effectively combat such
challenges with lesser fatalities, the interest in advanced technologies has been of utmost
importance during recent decades. The applicability of DL and SML to medical research has
the potential to solve such crises efficiently. However, data, especially quality data, plays
an important role in training and designing such models. The analysis of a large amount of
data generated by clinical institutions related to disease symptoms, diagnosis, treatment,
digital images, and laboratory analysis results has been proven to provide useful insights
into numerous health problems such as is majorly used in the areas of diseases detection and
classification, treatment and planning, diagnosis, treatment response prediction, diabetes,
cardiology, brain and neurology, retinopathy, pathology image analysis, chatbots, and many
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more. Clinical data is collected during the ongoing disease investigation of a patient or as
part of a formal clinical trial program. Clinical data falls into six major types, namely:

• Electronic health records: Such data is obtained at the point of care at a medical care
facility or hospital. These data include administrative and demographic information,
diagnosis, treatment, etc. Sites such as NIH and the Stanford center for clinical
informatics provide access to such databases as mediated or collaborative access.

• Administrative data: These data are often associated with electronic health records
and are reported to a government agency such as the Agency for Healthcare Research
and Quality (AHRQ).

• Claims data: These data describe the billable interactions between insured patients
and healthcare delivery systems. The sources of claims data can be obtained from
the government, such as Medicare, and commercial health firms, such as United
Healthcare.

• Patient/disease registries: These data include clinical information systems that track
a narrow range of data for specific chronic conditions such as cancer, heart disease,
and asthma.

• Health surveys: These consist of data which represents an accurate evaluation of
population health and surveys conducted for common chronic conditions.

• Clinical trials, registries, and databases: ClinicalTrials.gov, Cochrane Library, European
Union Clinical Trials Database clinical research datasets, The National Heart, Lung,
and Blood Institute (NHLBI), Biomedical Translational Research Information System
(BTRIS), and the National Institute of Mental Health (NIMH).

5.8. Data and Algorithms

Many medical data have the following problems: (a) They are usually broader than
their significance. For instance, the data dimension is large, but the sample size is very small.
(b) Data sharing and aggregation with other useful information has many legal challenges
related to privacy, security, and anonymization. (c) Working on non-established and non-
stationarity data is difficult for any supervised method as medical data and diagnostic
rules change very frequently over time. (d) During data collection, there may be a large
number of missing entries in heterogeneous data sets. (e) Bias plays an important role in
the subsequent failures in clinical trials, which is added during the data acquisition stage.
Without knowing the proper protocol of data acquisition, it is difficult to translate SML
deployment into product development. Sometimes, trials with a limited amount of data
lead to inconsistencies in the SML model. Federated learning can be used in those cases
where “not enough data” are available [116].

Another issue is that the development process must take into consideration the con-
stantly changing protocol and data interpretation standards. The development of SML
in medical science is not facilitated by regularly modifying clinical standards. The prob-
lem of bias in data collection and the use of SML methods is another challenge to the
commercialization of AI in healthcare.

5.9. Causal AI

Correct and accurate information extraction is challenging for SML-based healthcare
application interfaces. Commonly, SML models initially seem to have impressive perfor-
mance but successively fail due to unseen data [117]. Many biological issues are changeable
and are not just uncorrelated but provide highly unstructured real-world paths. Studying
such paths from large heterogeneous data sets requires considerable technical and practical
skills. Still, it is sometimes challenging to obtain them from smaller data cohorts. These all
lead to a high translation failure rate in clinical trials.

New causal revolution [113] procedures allow straight validation of causal effects
through innovative computerized methods. Causality theory, in the procedure of semi-
structured learning methods, is one of the best promising tools provide logical support to
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healthcare SML applications and thus analytically enhance their methodical translation
into clinical trials and practice.

5.10. Product Level Development

Despite much progress in digital health technology, SML in healthcare is still very
dissimilar to customer tech-based SML. Therefore, transforming the SML in a healthcare
project into a real-world application useable product needs an intensive, market-oriented,
and specialized attitude to develop a successful product [118].

The industry founders need to raise the fund investment to deploy a consumer SML
that is conjugal with the more significant revenue prototypes of SML in health sectors.
Therefore, some overall best practice strategies must be followed and documenting the
whole process must be from the beginning of the project until the launch of the product,
including specific evidence and information on regulatory and development processes.
Developed countries such as the USA, the UK, and many European countries follow stan-
dard FDA and Johner Institute [119] guidelines for product development. Such standards
and professional paths provide guidance and security to all applicable stakeholders for
developed software that reduces the failure of SML-based health sector product.

5.11. Effectiveness and Trust in AI-Augmented Healthcare

The real-world use and application of AI in healthcare (especially in clinical prac-
tice) are still inadequate despite substantial focus by prominent industry and academy
sectors over the last few years [120]. Most of the time, SML is applied to healthcare and
implemented successfully without consideration of proper clinical workflows, actual user
requirements, trust, safety, and ethical implications. Hence, in building an SML-based
healthcare and biomedical system, other essential aspects apart from the medicine and
human interaction need to emphasize and improve the adeptness and efficiency of that
interaction. Most importantly, healthcare automation must be improved and developed
through in-depth knowledge of the interdisciplinary team, centric human-centric under-
standing, and care pathways.

First, problems must be identified and then the solutions can be designed using
the experimental method by consulting with suitable investors, particularly healthcare
users and practitioners. Then, an investors/stakeholder team should bring strategic,
motivator, leadership, operative, and technical experts to delineate problems, objectives
and background, possible success pathways, and intermediate outcomes [14].

Human-centered AI: As an appropriate parameter for the identification of multiple
problems, it is important to understand the accessibility and availability of the desired
heterogeneous data sets required to build the model and its evaluation. Healthcare us-
ing SML systems would function within existing standards and follow them to ensure
implementation, providing suitable solutions to the problems and feedback or issues by
the end-user to implement appropriate algorithms and update them within the existing
workflow. This will help to create a human-centric SML method with the combination of
an ethnographic understanding of health systems and a technical point of view of SML.

Experimentation: The implementation of an SML procedure with recurring feedback
helps to interpret purpose and envision the uses from the perspective of the end-user
and the potential mischief and ethical associations for data security, privacy, and safety.
Trying out new thoughts concurrently and learning about the good fitting method is very
important in the experiments.

Evaluate and validate: Three-dimensional evaluation and validation (statistical, clini-
cal, and economic utility) are critical factors for healthcare SML where statistical validity
includes accuracy, steadfastness, robustness, solidity, and standardization. Then, evaluation
of the method in a real-time clinical study on cross-validation, hold-out, and sequential
validation is required to determine clinical utility.
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Scale and diffuse: Scale-up of the SML-based method requires special consideration
for the deployment of different modalities, update of the DL model, monitoring ecosystem,
and the disparity between health and biomedical systems.

Screen and monitoring: Continuous monitoring and validation are needed even after
any SML method is clinically deployed. It will reduce the risks and adverse events of
post-market shadowiness [121].

5.12. Precision Medicine

Precision medicine enables us to tailor healthcare interventions to individuals based on
patients’ disease profiles or prognostic information. The treatment considers the genomic
variations and a wide range of factors such as age, gender, patients’ immunity and metabolic
profile, microbiome, geography, family history, race, and environment vulnerability [122].
Precision medicine is advantageous due to its low healthcare costs, the effectiveness of
drug action, and reduced adverse drug response [123]. Precision medicine intends to use
patient biology at every stage of treatment instead of population biology.

Curative therapies: Synthetic biology and data preparation have progressed for gene
editing and personalized cancer treatments in the last few years. However, the development
of this synthetic biology is still extremely incompetent and costly. In the coming days,
SML will help us understand, discover, and affect biology with better access to multiple
OMICS data. This understanding of biology will also help us increase the adeptness of
drug discovery in a much better way to predict the therapeutic agents that anticipate
adverse drug effects [14]. The proper implementation of this synthetic biology method
will democratize access to new progressive therapies at a meagre cost compared to the
original one.

SML-enabled professionals: After a few years, AI/ML will leverage biomedical and
health professionals in intensifying the care they provide to patients, allowing them to
deliver safe, standard, accurate, and effective care [14]. In the future, it is hoped that
clinicians will opt for personalized medicine and use SML-based digital consultation to
study the patients’ symptoms and disease using “digital twin” models, allowing effective,
safe, and informative testing and enabling the related report to deliver more accurate health
check-ups and suggestions from clinicians to patients.

6. Explainability in Healthcare

DL-based SML technology has played an important role in the new age of digital
healthcare. Still, the explainability of these models is an unaddressed issue. Explainable
SML can play an important role as an auxiliary advancement for potentially overcoming
the small sample learning problem by filtering out clinically insignificant information. Fur-
thermore, several high-performance DL algorithms, so-called black boxes, produce results
that are incomprehensible to unaided humans. Although these models are capable of out-
performing humans in terms of efficiency, it is difficult to provide intuitive interpretations
which can validate the findings of the model, define their uncertainties, or derive further
clinical understandings from these computational algorithms. With millions of attributes in
the DL model, understanding what the machine sees in clinical data, such as radiographical
images and dermatoscopic images, can indeed be very difficult [124,125]. It is important
to show that a high-performance DL model properly recognizes the relevant portion of
the image and fails to overemphasize irrelevant data (See Figure 10). Recent studies have
started to understand what these black boxes are through visualization methods. Occlusion
maps [60], salience maps [126], class activation maps [127], and attention maps [128] are
some often used levers. Since the outcome is a radiographic image, localization and seg-
mentation techniques may be more easily interpreted. Model interpretation, on the other
hand, remains significantly more challenging for DNN models trained on non-imaging
data other than images, which is now a common problem for continuing research attempts.

In healthcare, DL-based SML technology has become very popular for diagnosis [129],
prognosis, treatment planning, and patient management. Many unresolved topics in
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the medical profession have sparked clinical studies utilizing deep learning and SML
techniques. However, in the medical sector, the challenge of understandability is still in its
early stages. More specifically, interpretability in clinical sectors includes issues that are not
recognized in other fields, such as risk and obligations. It can even cost a life if medical
analysis and critical decisions are made without the explainabilities of these SML models.
In addition to these legal considerations, it is a critical problem that might have disastrous
consequences if used maliciously.

As a result, recent studies [130] have started to focus on the explainability of these
black boxes in the medical domain. More precisely, researchers now focus more on under-
standing the model, its explainability, and the importance of understanding in the medical
field. Many researchers have followed the logical XAI strategy of providing interpretability
to their predictive algorithms. These strategies rely mostly on ensuring the interpretability
of simpler SML models while boosting their performance through refinement and opti-
mization techniques. The different modules, including the interface and its requirements of
XAI to achieve a trustworthy healthcare automation model, are shown in Figure 10.

Diagnostics 2022, 12, x FOR PEER REVIEW 27 of 35 
 

 

In healthcare, DL-based SML technology has become very popular for diagnosis 
[129], prognosis, treatment planning, and patient management. Many unresolved topics 
in the medical profession have sparked clinical studies utilizing deep learning and SML 
techniques. However, in the medical sector, the challenge of understandability is still in 
its early stages. More specifically, interpretability in clinical sectors includes issues that 
are not recognized in other fields, such as risk and obligations. It can even cost a life if 
medical analysis and critical decisions are made without the explainabilities of these SML 
models. In addition to these legal considerations, it is a critical problem that might have 
disastrous consequences if used maliciously. 

As a result, recent studies [130] have started to focus on the explainability of these 
black boxes in the medical domain. More precisely, researchers now focus more on un-
derstanding the model, its explainability, and the importance of understanding in the 
medical field. Many researchers have followed the logical XAI strategy of providing in-
terpretability to their predictive algorithms. These strategies rely mostly on ensuring the 
interpretability of simpler SML models while boosting their performance through refine-
ment and optimization techniques. The different modules, including the interface and its 
requirements of XAI to achieve a trustworthy healthcare automation model, are shown in 
Figure 10.  

 
Figure 10. The schematic diagram of XAI for a machine learning-based model to achieve a transpar-
ent and trustworthy model. 

7. Ethical Implications  
Many researchers encounter various medical, occupational, technological, and ethi-

cal modifications regarding SML development in the healthcare field. Governmental, 
semi-governmental, and other controlling bodies should limit negative implications to 
create structures for proper monitoring of critical issues and responsibilities. Another 
challenging issue for our novel technology in the healthcare industry is transparency. It is 
difficult to interpret some medical imaging and analysis with the most advanced algo-
rithms, such as deep learning [131]. This makes us unable to answer the question ‘why’, 
which is very important in the healthcare and biomedical industry. Medical practitioners 
may be unable to provide an explanation even if they are familiar with their operation. 
Another issue is failure. It can be difficult to establish accountability for the medical prac-
titioner if the system mistakes in the patient diagnosis and treatment [122]. Many times, 
SML/ML methods in biomedical and healthcare may have a biased decision based on data 
collection, for example, gender bias due to the training data when those are not causal 

Figure 10. The schematic diagram of XAI for a machine learning-based model to achieve a transparent
and trustworthy model.

7. Ethical Implications

Many researchers encounter various medical, occupational, technological, and ethical
modifications regarding SML development in the healthcare field. Governmental, semi-
governmental, and other controlling bodies should limit negative implications to create
structures for proper monitoring of critical issues and responsibilities. Another challenging
issue for our novel technology in the healthcare industry is transparency. It is difficult to
interpret some medical imaging and analysis with the most advanced algorithms, such
as deep learning [131]. This makes us unable to answer the question ‘why’, which is very
important in the healthcare and biomedical industry. Medical practitioners may be unable
to provide an explanation even if they are familiar with their operation. Another issue is
failure. It can be difficult to establish accountability for the medical practitioner if the system
mistakes in the patient diagnosis and treatment [122]. Many times, SML/ML methods in
biomedical and healthcare may have a biased decision based on data collection, for example,
gender bias due to the training data when those are not causal factors [123]. Finally,
the use of smart devices and software to help human efficiency increases transparency,
responsibility, security, and privacy issues.
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8. Radiomics

Radiomics is a branch of medicine that uses data characterization algorithms to extract
a large number of quantitative features from medical images. The data are analyzed in
order to improve decision support. It has the potential to reveal disease characteristics that
are difficult to detect using only human vision. Radiomics is a technique that retrieves a
significant number of specific quantitative characteristics from radiographic images that go
beyond the degree of precision visible to the natural visual system. X-rays are noninvasive
imaging procedures which are carried out to detect fractures, artifacts such as catheters
and stents, and diseases such as COVID-19 and pneumonia. On the other hand, CT scans
provide extra pixel information, which includes the attenuation coefficient of individual
pixels. As a result, selective information regarding target lesions can be specifically viewed.
However, 3D imaging techniques such as MRI and PET provide detailed special information
regarding highly metabolic regions. Since these techniques involve the injection of certain
radioactive elements such as FGD, tissues with high metabolic rates are highlighted. This
helps in the easier detection of cancer cells [132]. These features can be better explained
with software such as Pyradiomics [133] and LifeX [134]. Artificial intelligence, particularly
deep learning, analyzes and learns from the image frame sequence entirely; however,
radiomics specifies only the contour of a specific disorder. As a result, we believe that DL
and radiomics provide distinct imaging indicators. However, the performance of radiomics
is more robust in the case of small data. Therefore, in order to avoid overfitting in DL
models, these features should be included.

9. The Future of SML in Biomedical and Healthcare

The main challenge for AI/ML in biomedical and health care is not only developing
novel methods that are beneficial but also ensuring their acceptance in real-world clinical
practice on a daily basis. SML and ML must be approved by a regulatory body, combined
with EHR systems, standardized, proper training and taught to medical practitioners, and
most importantly, updated over time for extensive adoption. We expect that SML will
master providing diagnosis and treatment recommendations based on the imaging in the
near future. Given the quick developments in SML for medical imaging examination, it
seems possible that radiologists and pathologists will prefer automatic image analysis by the
computerized method. Automatic speech and text recognition will be engaged for patient
communication and to collect notes of clinical use. It is very clear that SML-based software
will not replace human clinicians but rather help them on a bigger scale and increase
their judgment for patient care. Over time, clinicians will move toward job scheduling
and draw on exceptional human assistance such as responsiveness, encountering new
cases, encouragement, and integration of the big picture. However, lower-level healthcare
practitioners may lose their jobs in the future if they are not willing to update their work
alongside SML [124].

In healthcare, SML has already started changing the patient experience, research on
clinician medicine practice, and how the drug discovery industry operates. By 2030, SML
will have accessed many data sources to diagnose and predict disease more accurately,
identify illness trends, and improve therapy and care. A person’s risk of developing
certainn illnesses and recommending a path to avoid those could be conducted by an
SML-based system. Patient waiting times in hospitals and health systems will be reduced
using SML-based systems, and that will increase the efficiency of the hospital management
system. Mobile application-based SML will occur in radiology, drug discovery, patient risk
identification, and primary care areas.

This study is basically an overview of the use of artificial intelligence in the healthcare
sector, and we have not covered techniques such as federated learning, optimization of
learning function [135], unsupervised learning, semi-supervised learning, weakly super-
vised learning, zero-shot learning, and federated and fin grained learning in detail, which
can be the potential limitation of this study and the future scope of schematic review.
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10. Conclusions and Discussion

We are at a turning point of convergence of traditional healthcare practice to techno-
logical application, and it needs to overcome issues of real-world clinical trials. Higher
accuracy and reduced time are critical for effective planning and treatment when it comes
to efficient diagnostic care. SML is a massive and diverse dominion of data, processes,
analytics, neural networks, deep neural networks, and visualization techniques that are
continuously increasing and updating the requirements of biomedical and health sectors
efficiently and accurately. Industrial SML in disease diagnosis could further extend to
Alzheimer’s disease, cancer and its biology, diabetes and kidney-related disease, chronic
illnesses, heart-related disease, bone-related, fatal brain, stroke, and cerebrovascular-related
issues, high blood pressure, skin-related problems, and liver metastasis in the next five
years. The clinical diagnostics and decision-making problem must be solved on a prior
basis to resolve and constantly improve our ability to treat diseases more accurately and
effectively, although few reported advancements have occurred over the past few years.

The blurriness between end-users and SML-implemented methods must be removed
from time to time in order to build trust in AI/ML software used in the biomedical and
healthcare sectors. The methods’ expandability should be investigated further. Many works
are required to train the SML-based model, which can then be fitted to other methods,
such as transfer learning, to increase the accuracy of prediction for automated diagnosis.
In the future, the flaws and gaps (if any) in SML methods, as well as the overall SML
techniques, must provide an equally valuable and understandable relationship between
medical users and SML application developers. Furthermore, a distributed federated, semi-
supervised, self-supervised learning model can be used to create a solo training model that
will aid in the timely diagnosis of diseases in remote and rural villages. The enlargement of
translational research and development needs to be conducted with proper care to build
lab-level implementation to product development. Alongside this, we require proper funds
and investment to upskill the healthcare workforce and to understand the perspective and
potential of the SML-enabled healthcare system. The advanced form of AI/ML and data
science should have the ability to update very quickly and combine with a small device
to achieve high accuracy in personalized, predictive, and portable healthcare systems.
However, the procedures for data access ethics, security, privacy and ML implementation,
evaluation, validation, and adoption must be taken care of during implementation. It is
also critical to build ‘trusted’ SML algorithms that can be embedded into suitable systems.

It is expected that the next 10 years will subsequently create great data medical sets
and novel SML tools that will provide insight and value to society by translating better
clinical outcomes and solving the major issues and problems of today.
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