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Cardiopulmonary diseases are a significant cause of mortality and morbidity world-

wide. The COVID-19 pandemic placed significant demands on clinicians and care provid-

ers, particularly in low-resource or high-burden regions. Simultaneously, advances in ar-

tificial intelligence (AI), machine learning (ML), and the increased availability of relevant 

images enhanced the focus on cardiopulmonary diseases. According to the recent Amer-

ican Lung Association report, more than 228,000 people will be diagnosed with lung can-

cer in the United States alone this year, with the rate of new cases varying by state [1]. 

Further, heart disease is indiscriminate in ethnic and racial origin, causing mortality. Ad-

ditionally, infectious diseases, such as tuberculosis (TB) often coupled with the human 

immunodeficiency virus (HIV) comorbidity, are found with drug-resistant strains that 

greatly impact treatment pathways and survival rates [2]. The screening, diagnosis, and 

management of such cardiopulmonary diseases have become difficult owing to the lim-

ited availability of diagnostic tools and experts, particularly in low and middle-income 

regions. Early screening and the accurate diagnosis and staging of cardiopulmonary dis-

eases could play a crucial role in treatment and care and potentially aid in reducing mor-

tality. Radiographic imaging methods such as computed tomography (CT), chest-X-rays 

(CXRs), and echo-ultrasound are widely used in screening and diagnosis [3–6]. Research 

on using image-based AI, ML, particularly convolutional neural network (CNN)-based 

deep learning (DL) methods, can help increase access to care, reduce variability in human 

performance, and improve care efficiency while serving as surrogates for expert assess-

ment [7]. We find that significant progress has been made [5,8–10] in DL-based medical 

image modality classification, segmentation, detection, and retrieval techniques which 

have resulted in a positive impact on clinical and biomedical research. We wanted to cap-

ture a snapshot of these advances through a Special Issue collection of peer-reviewed 

high-quality primary research studies and literature reviews focusing on novel AI/ML/DL 

methods and their application in image-based screening, diagnosis, and clinical manage-

ment of cardiopulmonary diseases. These published studies present state-of-the-art AI in 

cardiopulmonary medicine with an aim toward addressing this global health challenge. 

Studying the articles in this collection, the reader will observe that the choice of the 

DL model depends largely on the characteristics of the data under study [11]. A study of 

the literature reveals that no individual DL model is optimal for a wide range of medical 

imaging modalities [12]. Despite delivering superior performance, the performance of DL 

models is shown to improve with the availability of meaningful data and computational 

resources [13]. The quality of medical images and their annotations also plays an im-

portant role in the success of DL models. The visual characteristics of medical images, 

viz., shape, size, color, texture, and orientation are unique compared to the natural stock 

photographic images [14]. The regions of interest (ROIs) concerning the disease 
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manifestations or the organs in medical images are relatively small compared to natural 

images. Hence, it is crucial to select the optimal DL model for the medical image modality 

and problem under study. Unlike natural images, medical images and their associated 

labels are often scarcely available. Strategies including transfer learning [13,15] and mul-

ticenter collaboration [11] have been proposed to handle data scarcity issues. The transfer 

learning-based approaches are prominently used as they leverage the knowledge learned 

from a large collection of stock photographic images such as ImageNet [16] to improve 

performance and generalization in medical visual recognition tasks with a sparse collec-

tion of medical data and their associated labels. In this regard, Gozzi et al. [17] proposed 

the identification of the optimal transfer learning strategy for a CXR classification task. 

They followed a systematic procedure which is as follows: (i) Several ImageNet-pre-

trained CNN models were retrained on the publicly available CheXpert [18] CXR dataset. 

This approach facilitated learning CXR modality-specific feature representations. A study 

of the literature [19–21] reveals that the medical image modality-specific retraining of 

ImageNet-pretrained models demonstrates significant gains in related classification, seg-

mentation, and detection tasks. The authors evaluated the classification performance 

achieved through multiple transfer learning methods such as image feature (embedding) 

extraction, fine-tuning, stacking, and tree-based classification using a private CXR dataset. 

They qualitatively evaluated performance using gradient-weighted class activation maps 

(Grad-CAM) [22]. In this regard, the authors demonstrated superior performance with a 

0.856 area under the curve (AUC) using the image embeddings extracted from the penul-

timate layer of the CNN models and an averaging ensemble of the RF predictions, show-

casing it as the optimal transfer learning strategy for the task under study. The Grad-CAM 

maps showed that the CNN models learned task-specific features to improve prediction 

performance. 

In another study, Huang et al. [23] evaluated the gains achieved through transfer 

learning in a multi-label CXR classification task. They used a private CXR collection con-

taining multiple abnormalities including aortic sclerosis/calcification, arterial curvature, 

consolidations, pulmonary fibrosis, enlarged hilar shadows, scoliosis, cardiomegaly, and 

intercostal pleural thickening, etc. The ImageNet-pretrained CNN models were retrained 

on the CheXpert and NIH CXR-14 [24] datasets to learn CXR modality-specific represen-

tations. The learned knowledge was transferred and finetuned for a related CXR classifi-

cation task. They further evaluated the gains achieved through multiple transfer learning 

strategies such as the reuse of pretrained weights, layer transfer where some of the model 

weight layers were frozen, and model retraining, using the models trained on differently 

sized CheXpert and NIH CXR-14 datasets. It was observed that CXR modality-specific 

finetuning of the ImageNet-pretrained models, using the NIH CXR-14 dataset, demon-

strated superior prediction performance with an accuracy of 0.935, compared to other 

models/methods. The authors recommend retraining the CNN models using multiple 

cross-institutional datasets for promising performance and generalization under condi-

tions of sparse medical data and label availability. 

DL models have demonstrated poor performance and generalization in cases where 

the distribution of the data used to train the models (source distribution) is different com-

pared to the unseen real-world data (target distribution). This lack of generalization could 

be attributed to several factors including changes in image acquisition protocols, data for-

matting and labeling, patient heterogeneity based on age, gender, race, and ethnicity, and 

varying characteristics of the underlying disease manifestations, etc., between the source 

and target distribution [25]. The discrepancy in the characteristics of the source and target 

data may eventually lead to domain shift issues resulting in performance degradation and 

sub-optimal generalization. Under these circumstances, training and evaluating the mod-

els using the source data may not accurately reflect real-world settings. Karki et al. [26] 

discussed the generalization issues with the DL models that were trained to classify Drug-

Resistant TB (DR-TB) manifestations from drug-sensitive TB (DS-TB) using CXRs. They 

observed sub-optimal classification performance with an AUC = 0.65 using an unseen test 
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set in a CNN model that was trained on internal data. The authors observed poor locali-

zation using Grad-CAM activation maps as compared to the radiologist-annotated ROIs. 

Training a multi-task attention model using lesion location information from prior TB in-

fection helped to improve classification performance (AUC = 0.68) on the blinded test set. 

The authors highlight differences in acquisition protocols and the variation in non-patho-

logical and non-anatomical image attributes across the datasets that contributed to sub-

optimal performance and generalization. 

Mueller et al. [27] assessed the diagnostic performance of dual-energy subtraction 

radiography (DE) [28] in detecting pulmonary emphysema and compared it to the perfor-

mance achieved using conventional radiography (CR). Pulmonary emphysema, a chronic 

obstructive pulmonary disease (COPD), blocks airflow in the lungs and causes breathing 

disorders. CT imaging is reported to be the most sensitive radiological imaging method 

for detecting and quantifying pulmonary emphysema [29]. The authors used the postero-

anterior and lateral radiographic projections acquired from patients using CR, DE, and 

CT radiography imaging. Expert radiologists were involved in identifying the presence 

and degree of manifestations consistent with pulmonary emphysema in the DR and CR 

images while keeping CT as the reference standard. The specificity and recall in detecting 

and localizing the disease and the inter-reader consensus were measured. The authors 

observed a high consensus between the readers in identifying pulmonary emphysema 

manifestations using CR images (Kappa = 0.611) and a moderate consensus (Kappa = 

0.433) using the DR images. The authors conclude that the diagnostic performance in 

terms of detecting, quantifying, and localizing pulmonary emphysema manifestations us-

ing CR and DE imaging was comparable. 

Li et al. [30] performed a systematic review of the literature to analyze the additional 

effect of AI-based methods on the performance of physicians to detect cardiopulmonary 

pathologies using CXR and CT images. They followed the Place of Relevant Intermediary 

Approach (PRIMA) [31] to record different stages during their literature review process. 

The authors retrieved relevant literature on AI-based cardiopulmonary screening/diagno-

sis, published in the last 20 years, using Web of Science, SCOPUS, PubMed, and other 

literature archives. The authors analyzed human performance in terms of evaluation time, 

recall, specificity, accuracy, and AUC, in the presence or absence of AI-based assistive 

tools. It was observed that the average recall increased from 67.8% to 74.6% when human 

decisions were supplemented by AI assistive tools. A similar improvement was observed 

in terms of specificity (82.2% to 85.4%), accuracy (75.4% to 81.7%), and AUC (0.75 to 0.80). 

A significant reduction in the evaluation time was also observed with AI assistance. 

In our work [32], we evaluated the gains achieved using modality-specific CNN 

backbones in a RetinaNet model toward detecting pneumonia-consistent manifestations 

with CXRs. We retrained ImageNet-pretrained DL models, viz., VGG-16, VGG-19, Dense-

Net-121, ResNet-50, EfficientNet-B0, and MobileNet on CheXpert and TBX11K datasets to 

learn CXR modality-specific features. The best-performing model architectures, viz., 

VGG-16 and ResNet-50, were used as the modality-specific classifier backbones in a Reti-

naNet-based object detection model. We used focal loss and focal Tversky loss functions 

to train the classifier backbones. The RetinaNet model was finetuned on the RSNA CXR 

[33] collection to detect pneumonia-consistent manifestations. We compared detection 

performance using various weight-initialization methods, viz., random, ImageNet-pre-

trained, and CXR modality-specific weights, for the classifier backbones. We observed 

that the VGG-16 and ResNet-50 classifier backbones, initialized with the CXR modality-

specific weights, delivered superior performance compared to random and ImageNet-

pretrained weight initializations. We further constructed a weighted averaging ensemble 

of the predictions of the top three performing models, viz., ResNet-50 with CXR image 

modality-specific weights trained with focal loss, ResNet-50 with CXR image modality-

specific weights trained with focal Tversky loss, and ResNet-50 with random weights 

trained with focal loss, to arrive at the final predictions. We observed that weighted aver-

aging delivered superior values for the mean average precision (mAP) metric (mAP: 
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0.3272), which was observed to be markedly superior to the state-of-the-art (mAP: 0.2547). 

We attribute this performance improvement to the key modifications in terms of CXR mo-

dality-specific weight initializations and ensemble learning that reduced prediction vari-

ance compared to the constituent models. 

A study of the literature reveals that COVID-19 viral infection could cause acute res-

piratory distress syndrome and may lead to rapidly progressive and lethal pneumonia in 

infected patients [34]. The laboratory-based real-time reverse transcription polymerase 

chain reaction (rRT-PCR) test has been reported to be the most sensitive test for identify-

ing COVID-19 infection [35]. However, there are several challenges reported in perform-

ing this test, some of which include high false negative rates, delayed processing, varia-

bility in test protocols, and reduced recall, among others. CT imaging has been reported 

to be an effective alternative in identifying COVID-19 disease-consistent evolution, man-

ifestation, and progression [36]. AI-based methods applied to CT imaging could supple-

ment clinical decision-making in identifying COVID-19, particularly in resource-con-

strained settings to facilitate swift referrals and improve patient care. Suri et al. [37] per-

formed an inter-variability analysis by segmenting the lungs for assessing COVID-19 se-

verity using CT images. The authors used two ground-truth (GT) annotations from differ-

ent experts and trained U-Net [38] models to segment the lung regions of interest. The 

authors hypothesized that an AI model could be considered unbiased if the test perfor-

mance reported with the models when trained on two different GT annotations lay within 

the 5% range. They further validated their hypothesis through empirical observations. It 

was observed that the difference in the correlation coefficient obtained using the models 

trained on two different GT annotations was below the 5% range, thereby showcasing a 

robust lung segmentation performance. 

In another study, Wang et al. [39] measured the three-dimensional (3D) vascular diam-

eter of the aorta and the pulmonary artery in Non-Contrast-Enhanced Chest CT Images to 

detect pulmonary hypertension. The authors proposed a novel two-stage, 3D-CNN segmen-

tation pipeline to segment the aorta and pulmonary artery and measure the diameter in the 

3D space. The authors reported superior segmentation performance in terms of the Dice 

similarity coefficient (DSC) metric in this segmentation task (0.97 DSC for the aorta and 0.93 

DSC for the pulmonary artery). The authors discussed the benefits of such a segmentation 

approach in terms of providing a non-invasive, pre-operative evaluation of pulmonary hy-

pertension for the optimal planning of surgery and reducing surgical risks. 

Khan et al. [40] proposed a joint segmentation and classification network to detect 

pulmonary lung nodules in publicly available lung CT datasets. Performing unified seg-

mentation and classification would not only help to learn and delineate the semantic re-

gions of interest but also classify them into their respective categories. The authors used 

the VGG-SegNet [41] for nodule segmentation. The classification model was constructed 

by appending the classification layers to the VGG-SegNet encoder backbone. The ex-

tracted features from the penultimate layer of the trained model were concatenated with 

hand-crafted features extracted using a gray-level cooccurrence matrix (GLCM), local bi-

nary patterns (LBP), and pyramidal histogram of gradient (PHOG) algorithms. A radial 

basis function kernel-initialized support vector machine (RBF-SVM) classifier learned 

these concatenated features to improve classification performance with a 97.83% accuracy. 

AlOthman et al. [42] proposed a novel feature extraction technique with minimal com-

putational overload to detect and assess the severity of coronary artery disease (CAD) using 

CT images. The authors used the enhanced features from the accelerated segment test 

(FAST) to reduce the dimensions of the features extracted from a CNN model. The authors 

observed improved performance with this feature extraction method, demonstrating accu-

racies of 99.2% and 98.73% with two benchmark datasets. These findings highlighted the 

importance of optimal feature selection methods to improve model performance. 

Germain et al. [43] analyzed whether CNN models could supersede the performance 

of experienced clinicians in diagnosing Cardiac Amyloidosis (CA) using Cine-Cardiovascu-

lar cine magnetic resonance (Cine-CMR) images. This disease results in the accumulation of 
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amyloid fibrils in cardiac tissues that might lead to progressive cardiomyopathy. Cine im-

aging is a type of magnetic resonance imaging (MRI) sequence that captures motion. Cine-

CMR is a sensitive diagnostic modality that is used to assess cardiac tissue characterizations 

and dysfunctions such as CA [44]. The preprocessed systolic and diastolic cine-CMR images 

were used to train a VGG-based CNN model to classify them as manifesting CA or left ven-

tricular hypertrophy (LVH). The model performance was compared to the outputs of three 

experienced radiologists. The VGG-based CNN model significantly superseded (p < 0.05) 

human performance on frame-based evaluations, demonstrating an accuracy of 0.746 and 

AUC of 0.824 as compared to human experts (accuracy = 0.605 and AUC = 0.630). A similar 

performance improvement was observed in patient-based evaluations. The authors con-

cluded that CNN models have a unique capability to identify CA manifestations in Cine-

CMR images compared to trained human experts. 

The electrical conductivity is observed to vary considerably among the biological tis-

sues and the movement of gases and fluids within these tissues. Electrical impedance to-

mography (EIT) is a non-invasive medical imaging modality that uses surface electrodes 

to measure the electrical permittivity, impedance, and conductivity of biological tissues. 

However, there exists an inverse problem in EIT imaging in which the non-linear and 

noisy nature of the EIT imaging acquisition results in sub-optimal reconstruction. Re-

cently, artificial neural networks (ANN) have gained prominence in tackling the inverse 

problem in EIT imaging. Rixen et al. [45] proposed an ANN model to resolve the EIT in-

verse problem. The authors reused the dense layers in the ANN model multiple times 

while considering the rotational symmetries exhibited by the EIT in the circular domain. 

The authors used an α-blending method to generate synthetic data and augment the train-

ing samples. Superior reconstruction performance and robustness to noise were reported 

with augmented training in which the ANN model demonstrated high values for the am-

plitude response (AR: 0.14) and low values for the position error (PE: 7.1) compared to 

conventional methods (AR: 0.1 and PE: 11.0). 

In conclusion, the manuscripts published in this Special Issue discuss the novel, state-

of-the-art methods for binary, multiclass, and multi-label classification, 2D and 3D image 

segmentation, object detection and localization, image reconstruction, generalization, rec-

ommendation, and inter-reader consensus analysis for identifying, segmenting, classify-

ing, quantifying, reconstructing, and interpreting cardiopulmonary diseases using several 

medical imaging modalities including CT, MRI, CXRs, and EIT, among others. Neverthe-

less, deploying these proposed approaches in real-time settings remains an open avenue 

for research. We would like to express our sincere thanks to the authors for their signifi-

cant contributions. We hope readers benefit from these research findings, and that the 

work included in this Special Issue inspires novel methods for diagnosis, treatment, and 

processes that could eventually promote healthcare. 
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