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Abstract: Breast cancer is the most common cancer among women worldwide, after lung cancer.
However, early detection of breast cancer can help to reduce death rates in breast cancer patients and
also prevent cancer from spreading to other parts of the body. This work proposes a new method
to design a bio-marker integrating Bayesian predictive models, pyRadiomics System and genetic
algorithms to classify the benign and malignant lesions. The method allows one to evaluate two
types of images: The radiologist-segmented lesion, and a novel automated breast cancer detection by
the analysis of the whole breast. The results demonstrate only a difference of 12% of effectiveness for
the cases of calcification between the radiologist generated segmentation and the automatic whole
breast analysis, and a 25% of difference between the lesion and the breast for the cases of masses. In
addition, our approach was compared against other proposed methods in the literature, providing an
AUC = 0.86 for the analysis of images with lesions in breast calcification, and AUC = 0.96 for masses.

Keywords: cancer; PyRadiomics System; genetic algorithm

1. Introduction

Artificial Intelligence may help in the detection and diagnosis of any disease. Moreover,
in cancer diseases, early detection is essential to prevent the spread of cancer in the body,
resulting in the patient’s death. Breast cancer is one of the most aggressive types of cancer,
and is responsible for almost 685,000 deaths in females worldwide [1]. In Mexico, breast
cancer has increased between the years from 2013 to 2016, with 24,695 women deaths [2].
Thus, an early diagnosis is critical for breast cancer survival [3]. Screening mammography
is the preferred early detection strategy for reducing breast cancer mortality [4]. Mammog-
raphy screening has had a positive impact in about 35% of breast cancer detection [5]. On
the other hand, the CAD’s systems try to emulate the process realized by the radiologist
for detecting the cancer. Detection of early breast cancer signals is a routine and repetitive
procedure. From the typical radiologist breast cancer subjects, only 0.4% of the cases are
malignant [6].

Aiming to reduce the load of work for the radiologist, computer-aided detection (CAD)
systems are designed to assess the radiologist, as a second opinion, and it may aid in the
correct interpretation of suspicious findings [7–10]. This process is not a trivial task due
to the heterogeneity of abnormalities and the darkening under dense masses, making it
difficult to identify a possible breast cancer. Mammography analysis helps to analyze the
internal structure of the breast, with the aim of studying the tissues and injuries such as
nodules, classifications, asymmetries in breast density and distortion of the architecture
of the breast [11–14]. The features seek to provide information about the shape, contour,
density, and perimeter and correspond to the input of an artificial intelligence system to
classify the lesion into benign or cancer [15]. The relationship between breast lesion analysis
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and morphological description has been widely investigated [16]. Other research has been
focused on extracting features with the viogram function as a texture feature descriptor.
Other features are extracted using a new hybrid of scheme of texture, co-occurrence matrix
and geometric features with a neural network [17].

On the other hand, pyRadiomics is a tool for medical imaging that allows feature
extraction. The pyRadiomics toolkit was used for tissue characterization investigated by
Granzier [18]. Gao et al. have performed a similar series of experiments using the pyRa-
diomics platform for prediction of the auxiliary lymph node tumor burden in breast cancer
patients [19]. Vamvakas investigated the utility of boosting ensemble classification methods
for increasing the diagnostic in differentiating benign and malignant breast lesions [20].
The fist idea is to reduce the quantity of features, which give the benefit to obtain low com-
putational costs. For example, in the investigation proposed by Galván-Tejada et al. [21].
Galvan proposed a multivariate model that classifies the lesion into benign or malignant tu-
mors using a genetic algorithm that analyze the morphological characteristics of the lesions
to obtain an optimal classification. Genetic algorithms as an optimization tool for feature
selection models have been revealed as an efficient technique using a computer-assisted
diagnosis, so this approach will be also used in this investigation [22–24].

Refs. [25,26]: Reports demonstrate that ML models allow one to reduce false posi-
tives when classifying lesions, using optimization techniques on images. Moreover, some
cross-sectional studies suggest an association between fatty and fatty-glandular for the
analysis of mammography using a set of micro calcification features. Other research, which
is based on texture description, spectral clustering, and Support Vector Machine (SVM) for
the detection of breast masses [27], also aims to obtain more informative features. Other
multivariate analysis approaches have demonstrated that prognostic information and pre-
dictive factors can be obtained to identify breast cancer in its early stages [28]. Among the
different techniques of digital image processing and pattern recognition that have been
applied in breast cancer, the use of mutual information and a greedy selection are used for
this diagnosis when the information is uniformly distributed [29]. The feature selection for
classifying benign and malignant lesions could also be made by using standard classifica-
tion algorithms such as: K-nearest neighbors (KNN), decision trees, and naive Bayes [30].
On the other hand, Haralick et al. [31] introduced for the time the concept of Co-Occurrence
Matrix (GLCM) for the analysis of texture patterns and their spatial classification. These re-
lationships are specified in the built-in co-occurrence matrix for breast texture classification,
since in recent works, the co-occurrence matrix for texture classification in breast images
has been incorporated [32]; this concept will be also considered in our proposition.

On the other hand, Tsochatzidis et al. investigated the performance of multiple
networks for breast cancer diagnosis from mammograms with mass lesions [33]. The incor-
poration of a margin-specific content-based image retrieval approach into a computer-aided
diagnosis scheme of mammographic masses is investigated for the same authors in [34].
Andrik proposed a method, which is based on AlexNet with some modifications and has
been adapted to our classification problem [35]. A deep ensemble transfer learning and
neural network classifier for automatic feature extraction and classification was proposed
by Aurora [36]. It should be mentioned that the authors also work with the CBIS-DDSM im-
ages. Furthermore, three data sets investigated a CAD system based on deep Convolutional
Neural Networks (CNN) for classifying mammography mass lesions [37].

Feature analysis plays an important role in developing a specialized software for
extracting the key features and building a robust classification scheme; numerous experi-
ments have been implemented in the pyRadiomic system [38]. In this work, a predictive
model was implemented for the detection of lesions in calcification to classify between the
benign and malignant breast. The focus of the work is to speed up the diagnosis of breast
cancer using the genetic algorithm and PyRadiomics System. Subsequently, the diagnosis
can be confirmed by radiology through workflow.

The remainder of the paper is organized according to the following sections: The first
section of this paper will examine other investigations in the literature Section 1. Section 2
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describes the materials and methods. The experimental design is presented in Section 3.
The results and discussion are presented in the Sections 4 and 5. Finally, the last gives a
conclusion in Section 6.

2. Materials and Methods

The proposed methodology is presented in the block diagram on Figure 1. In the
first stage (1), the mammography data set used in this methodology is described and it
corresponds to the input data. The feature extraction method is based on a set of data
extracted on the image using the PyRadiomics System (2). The process to reducing the
number of features is proposed in stage (3). The classification between benign or malign
is described in the stage (4). Finally, in stage , the validation of the model was realized
through proof measures of efficacy, to correctly predict two models: calcification and
masses for benign and malignant lesions (5). All previous stages are detailed in the
following subsections.

Figure 1. Block diagram of the proposed methodology.

2.1. Data Acquisition and Segmentation
2.1.1. Data Description

The Digital Data base for Screening Mammography (DDSM) is a data base collection of
2620 study cases at the University of South Florida [39]. This data set includes two images
of each breast, patient information and an image information system. Recently, another
data base was extracted and standardized to test scientific methodologies, and evaluate
their performance [40]. This CBIS-DDSM (Curated Breast Imaging Subset of DDSM) is a
data subset of the original DDSM database. The digital mammography was decompressed
and converted to a Digital Imaging and Communications in Medicine (DICOM) format (as
shown in Figure 2). The data set imaging contains the left and right of the craniocaudal view
(CC) and medial lateral oblique view (MLO) of the breast images for each patient. The data
set also includes descriptions of the location of the breast lesion on calcifications and masses,
bounding boxes, and pathology diagnosis for training test images. In order to complete
the first stage, it is also necessary to provide a region-of-interest (ROI) segmentation on
the breast lesion. Abnormalities were cropped by determining the bounding rectangle
of the abnormality with respect to its ROI. The data set contains 753 calcification cases
and 891 mass cases. There are Breast Imaging Reporting and Data System (BI-RADS)
descriptors for mass shape, mass margin, calcification type, calcification distribution, and
breast density. Table 1 shows some characteristics of the CBI-DDSM.

2.1.2. ROI Segmentation

The data base CBIS-DDSM includes a mask of the region of interest which represents
the location of the lesion and its pathology. DDSM outlines provide only a general location
and not a precise mass boundary. Subsequently, a segmentation algorithm was proposed to
provide the exact delineation of the mass from the surrounding tissue. This segmentation
was realized only for masses and not for calcifications. All images in the DDSM were
provided from several different scanners at different institutions. We used the image with
the same scanner to avoid contrast problems. The data set thus contains a binary mask
segmented for the radiologist where the value 255 (white color) represent the segmented
lesion and 0 (black color) correspond to the background information, as shown in the
Figure 3.
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Figure 2. Original mammogram (CC) obtained from CBIS-DDSM data-sets .

Table 1. DICOM information.

Information Data

File Size 50,912,930 Bytes
Width 3796
Height 6706

BitDepth 16
ColorType Grayscale
Categories The abnormality from 1 to 5

Data patient Age
FileMetaInformationVersion uint8

Format Tagged Image File Format (TIFF)
Type Calcification or mass

Patology Benign or malign
Views MLO and CC

2.1.3. Breast Regions

The mammography analysis by a specialist allows for the diagnosis of cancer. How-
ever, the long time period of the work flow performed by the radiologist allows the disease
to progress, or to spread it throughout the body. In this research, It proposes a methodology
based on the analysis of the breast, and with the help of artificial intelligence algorithms,
predicts whether there is a benign or malignant lesion in the breast. This would allow the
radiologist to have a rapid diagnostic response. Reducing delays in diagnosis or performing
repetitive tasks is the main goal of the proposed research.
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Figure 3. ROI segmentation.

In this subsection, It will perform the segmentation of the breast for subsequently
introducing it to the PyRadiomics tool and then changing it to the feature extraction (second
stage). Firstly, the segmentation is focused on the characterization of the background image
to create a binary image to be used as segmentation mask, then the segmentation technique
validates a pixel group based on a global threshold. The method consists in finding the
target region that can be an approximation of the whole area of the breast. This technique
also allows one to find a global threshold. Therefore, the selected targets have a threshold
value higher than 50 bits. The biggest area in the image has been chosen, which represents
the breast or ROI, as shown in Equation (1). As a result of the image segmentation process,
one mask has been generated with normalized intensity from 0 to 1 (where 1 represent
information into the image and zero corresponds to the background).

max(ROI) =


P(I(Ri)i,j) > 50, 1,

otherwise, 0.
(1)

Xi,j = Mi,j&Ii,j. (2)

The Equation (2) defines Ii,j as the original image. Let Ii,j be the set of integer values
ranging from 0 to 255, then a digital image in DICOM format, where i, j is the set of
pixels in the original image, whose elements are pairs of natural integer numbers, whose
components correspond to the relative position of each pixel in the image. The i values
represent the raw and j the columns. M represents the segmentation mask normalized
between [0, 1]. Finally, & represents the binary operation, and Xi,j is the resulting image.

In this research, the analysis is focused on the lesion segmentation and over the region
of the breast. Then, the previous results of the segmentation process provide the mask
and the ROI breast, and the CBIS-DDSM data set provide mask lesions, which indicate the
region where the lesion is located. A medical image and segmentation mask with format
DICOM are the input data for PyRadiomics System (see Figure 4). On the input, it takes
an initial input of binary masks, which are defined as follows: The mask is realized by the
experience of the radiologist to segment the lesion, as shown in Figure 4a). Subsequently,
in the Figure 4b),the breast segmentation is demonstrated, as realized by the authors.
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Figure 4. Flowchart of the mammography segmentation. (a) Original image and ROI Segmentation
(b) Original image and whole breast

2.2. Feature Extraction

The PyRadiomics System is a specialized package for radiomics feature extraction
from medical imaging [41]. The extracted radiomics characteristics have been validated by
researchers trying to establish a standard framework into the Imaging Biomarker Standard-
ization Initiative document (IBSI) [38]. The installation of the PyRadiomics System has been
made by a compilation of source archives in python version 3.5(64− bits). Then, one can
proceed to extract features from medical images, conduct 2D and 3D segmentation, and the
binary mask (as shown in Figure 5). This system allows one to obtain 8-based-classes into a
morphological context; it is also possible to obtain texture features, and the relationships
between pixels or voxels. Further morphology features, first order statics, can also be
extracted.

Feature Extraction is based on texture analysis and the geometry of the ROI; some of
these characteristics are demonstrated in Table 2.

Table 2. Radiomics features for each class (See Appendix A).

Features Number of Features

First Order statics 19
Gray Level Co-occurrence Matrix (GLCM) [31] 24
Gray level Run Length Matrix (GLRLM) [42,43] 16

Gray level Size Zone Matrix (GLSZM ) [44] 16
Neighbouring Gray Tone Difference Matrix

(NGTDM) 5

Gray level Dependence Matrix (GLDM) 14
Total 94

Furthermore, PyRadiomics developed an optional platform, which uses built-in filters
as Laplacian of Gaussian, Wavelet, Square, Square Root, Logarithm, Exponential, Gradient,
and Local Binary Patterns 2D or 3D. For this investigation, the geometric feature was
eliminated, and filter was chosen (as shown in the filtering stage in Figure 5).

2.3. Feature Selection
2.3.1. Removing Features with Zero Variance

The PyRadiomics System generates a high dimensional space of features, as shown in
the feature matrix of Equation (3). With the aim to reduce the size of features, it was realized
as removing process, and thus the feature selection (third stage) consists in two steps. In
the first step, only those columns with zero variance were removed, subsequently, in the
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second step, the feature selection was carried out using genetic algorithms and considering
the remaining elements of the feature matrix. The extracted data set is represented by the
following feature matrix (3).

X1,1 X1,2 X1,3 X1,4 . . . X1,n
X2,1 X2,2 X2,3 X2,4 . . . X2,n
X3,1 X3,2 X3,3 X3,4 . . . X3,n

...
...

...
...

...
Xm,1 Xm,2 Xm,3 Xm,4 . . . Xm,n

 (3)

Let us write this matrix as an ordered set of column vectors, where the matrix Xj,i repre-
sents the j-th row of features and the i-th sample vector. In order to compute the covariance
matrix Rx,y = E(xpj, xqj), where Var[Xn,m] = 0, and where D = diag{σ2

1 , σ2
2 , σ2

3 , . . . , σ2
m} is

the diagonal variance, which leads to a new covariance matrix Si,i when σ2
k 6= 0.

Figure 5. PyRadiomics System configuration for this work.

2.3.2. Data Whitening

In the third stage, it is important to center the extracted data set xk; this process is
well known as data whitening, and it considers that data must have a zero mean and
variance one.

si =
M(S)
std(S)

. (4)

The Equation (4) is defined as the test data si, where M(S) is the arithmetic average,
and std(S) is the standard deviation of Si,i giving, as result, the standard normalization.

2.4. Feature Selection Based in a Genetic Algorithm

Feature selection is a method implemented to select the best features and then ensure
a better classification. One of these feature selection methods are the so-called Genetic
Algorithms.

Genetic algorithms (GA) are optimization techniques based on natural selection where
certain genetic information is transmitted from one generation to the next. This process
of evolution modifies a set of solutions (chromosomes) by selecting individuals with the
best features (gens). The selection is performed using a “fitness” function. The selected
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individuals (parents) will produce the next generation (children). This evolutionary process
will eventually achieve an optimal solution.

It implement the genetic algorithm using Galgo [23]. This software is an object-oriented
programming (OOP) implementation in R. Further, it includes the code to develop models
using Random Forest [28,45].

The stages of the protocol used by Galgo are described below (Figure 6):

Figure 6. Schematic representation of the GA procedure.

1 An initial population consisting of possible solutions to the problem, also called
individuals, is randomly generated. This variable is called chromosomes Si, with
i = 1, . . . , N .

2 Calculate the fitness function F of each chromosome in the population, and evaluated
for the ability to predict the group membership of sample (p ε S)

3 If the chromosome is selected and the procedure stops; otherwise, the procedure (stage
1) continues to stage.

4 Cross-Over: the two selected individuals generate new offspring with a higher fitness
score (see Figure 7).

5 The mutation process is to add a new individual to the new population. The new gene
generated by the mutation is aggregated at the chromosomes.

6 The process is repeated from stage 2 until an accurate chromosome is obtained [46].

Figure 7. Schematic representation of the Crossover; the selection criteria is used by exchanging the
genes of parents from one generation to the next.
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2.5. Model Generation

For the estimation of the parameters, the maximum-likelihood framework has been
chosen, using the logistic regression model (see Equation (5)). Where Y is the variable
to predict, and s1, . . . , sn are the n predictor variables, the logistic regression paradigm is
expressed as follows:

Pt(θ, Y = 1|sn) =
eθ0+θ1 s1+···+θpsp

1− eθ0+θ1 s1+···+θpsp
. (5)

In the previews Equation (5), Y determines the likelihood of malignant lesion, with an
interval [0, 1]; it uses a threshold equal to 0.5. Moreover, a Gaussian Distribution of data is
assumed, with zero mean and variance σ2 (see Equation (6))

yi = Pt(si, θ). (6)

where θ evaluates the accuracy prediction of the model.

2.6. Validation

The cross-validation is the technique used to evaluate the results of the predictive
model by partitioning between the data into training and test sub-sets (see Figure 8).

The data is randomly mixed, forming a number of k data. The model uses K folds for
each iteration to test the model, and the remaining K data set to train the model. The fold
helps to test the data set and the other one supports the training process (see Equation (7)).

f =
1
N

N

∑
i=1

fi. (7)

where f represents K-Fold Cross Validation, and N is the fold’s number of the data set into
sets, training, testing, and validation (in our case, N = 3).

The validation of the model is carried out from prediction measures, such as: Area
under the curve, predictive measures over the classifier with the aim to distinguish between
classes, and specificity and sensitivity are also used to calculate the positive and negative
predictive values. Finally, accuracy provides the percentage of correct predictions for the
prediction models.

Figure 8. Proposed validation strategy.

3. Experimental Setup

In this research, some independent studies were used to explore between two types
of breast lesion, benign or malignant, in images of calcification and mass. Left or right
breast images with suspicious regions were only selected in the proposed experiments; a
total of 400 left and right breast mammograms were used with the CC projection. For the
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calcification, the first sub-set (CS1) was obtained by using only the data contained inside
the ROI segmentation provided by the radiologist; then, for the second classification sub-set
(CS2), the whole breast segmentation was obtained. The same process was also used for
the both sub-sets of the mass data set (MS1, MS2) (as shown in Figure 4).

The segmentation process is used to eliminate artifacts and labels from the mammo-
gram image, and to select the breast ROI. A threshold value was used to extract the binary
mask. Moreover, some morphological operations were applied for the segmentation mask
to finally obtain the region of interest of the breast. The process feature extraction on images
was realized using the PyRadiomics System. The PyRadiomics required the image and the
mask input; for these experimental results, the cases CS1 and MS1 were used for the mask
provided by the radiologist. On the other hand, in the MS1 and MS2 cases, the mask breast
segmentation was used.

Once the mammography features were extracted by PyRadiomics, 141 features were
selected with the basis of texture information from the lesion and from the breast segmenta-
tion, and the 21 shape descriptors were removed. Gray Level Co-occurrence Matrix, Gray
level Run Length Matrix, Gray level Size Zone Matrix, Neighbouring Gray Tone Difference
Matrix, and Gray level feature was selected for this experiment.

Then, in order to select the best features to construct a robust model, a feature selection
process was implemented into two stages; in the first one, the no-variance features were
removed, then on the second stage, a genetic algorithm (GALGO) [23] was used to search
for the best combination of features that correctly classify the samples.

Then, a validation was carried out by means of cross-validation for each CS1, CS2,
MS1 and MS2 sub-sets. A cross-validation with a k = 3 strategy was used, then a series of
metrics were computed in order to assess the performance of the models on unseen data
for this , and the AUC, sensitivity, specificity, and accuracy were calculated. Firstly, we
shuffled the data set to make up k different sub-sets for the training and test phases.

4. Results

In this section, some results are obtained considering four sub-set cases of images with
mass and calcification. This process allows one to read DICOM images converted into
a binary image from a gray level. The experiment consisted of 400 images; two types of
malignant and benign lesions between right or left images are considered for all cases, ROI
segmentation is provided by the radiologist and breast segmentation is obtained according
to the proposed methodology.

The breast segmentation process was based on contour detection; first, the algorithm
finds all the objects inside the input image, then the area containing such objects is com-
puted, next, the biggest area is selected as a candidate for the breast organ. Once the breast
organ is selected, all other objects are eliminated leaving only the breast organ. Neverthe-
less, several of the input images have noise or unwanted tissue on the frame boundary, and
to eliminate such artifacts, 5% of the edge of the image is removed, creating a segmentation
mask that only contains breast tissue; the Figure 9 shows an example of this process.

To start with the feature extraction, the four groups CS1, CS2, MS1 and MS2 and
their corresponding binary masks were selected as the input for the pyRadiomics system.
The pyRadiomics process extracted 110 features; these features were related to the shape,
and those with zero variance were removed, giving a grand total of 88 texture features.
The GA (Galgo) algorithm analyzes different models obtained through evolution, with
a maximum of 300 generations. The obtained models from the evolution process of the
algorithm are shown in the Figures 10–13. Horizontal axis genes ordered by rank and
vertical axis shows the gene frequency and the colour-coded rank of each gene in previous
evolutions. Changes in ranks are marked by different colours. These figures summarize
the population of chromosomes within each generation, where the black color represents
the most stable chromosome in all generated models.
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Figure 9. Segmentation process. (left) Image from CBIS_DDSM; (center) segmentation mask; (right)
ROI segmentation.

Figure 10. Gene Rank Stability graph with calcification model by radiologist segmentation; the gene
rank shows the stability of the top-ranked 50 variables. The horizontal axis shows the genes ordered
by rank, and the vertical axis shows the gene frequency. The bottom color—coded rank represents
the genetic stability where features with no change in the color represent a stable feature; changing
color features represent unstable features (i.e., not always contributing to the performance).

In Figures 11 and 13, seven black stable chromosomes were generated for ROI seg-
mentation. However, for segmentation by the radiologist, as shown in Figures 10 and 12,
seven black stable chromosomes were obtained. Finally, Tables 3 and 4 show a comparison
of chromosomes generated in each model.
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Figure 11. Gene Rank Stability graph with calcification model by radiologist segmentation; the gene
rank shows the stability of the top-ranked 50 variables. The horizontal axis shows the genes ordered
by rank, and the vertical axis shows the gene frequency. The bottom color—coded rank represents
the genetic stability where features with no change in color represent a stable feature; changing color
features represent unstable features.

Figure 12. Gene Rank Stability graph with calcification model by radiologist segmentation; the gene
rank shows the stability of the top-ranked 50 variables. The horizontal axis shows the genes ordered
by rank, and the vertical axis shows the gene frequency. The bottom color—coded rank represents
the genetic stability, where features with no change in color represent a stable feature; changing color
features represent unstable features.
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Figure 13. Gene Rank Stability graph with calcification model by radiologist segmentation; the gene
rank shows the stability of the top-ranked 50 variables. The horizontal axis shows the genes ordered
by rank, and the vertical axis shows the gene frequency. The bottom—coded rank represents the
genetic stability, where features with no change in color represent a stable feature; changing color
features represent unstable features.

Table 3. Comparison between models with CS1 and CS2 calcifications.

Measures Radiologist Segmentation Segmenting Breast Regions

1 First Order Mean
Absolute Deviation NGTDM Complexity

2 NGTDM Busyness GLCM Diference Entropy

3 GLCM IMC2 GLRM Long Run High Gray
Level Emphasis

4 GLDM Dependence
Non Uniformity GLCM idn

5 GLRM Run Length
Non Uniformity

GLDM Small
Dependence Emphasis

6 GLSZM Small Area Low Gray
Level Emphasis

GLSZM Small Area High Gray
Level Emphasis

7 GLCM IMC1 GLDM Dependence Non
Uniformity Normalized

Table 4. Comparison between models with MS1 and MS2 mass.

Measures Radiologist Segmentation Segmenting Breast Regions

1 First Order Mean
Absolute Deviation GLCM Difference Variance

2 First Order Mean GLCM Contrast

3 GLCZM Large Area Low Gray
Level Emphasis

GLSZM Size Zone Non
Uniformity Normalized

4 GLDM Small Dependence Low
Gray Level Emphasis

GLDM Small Dependence High
Gray Level Emphasis

5 GLRLM Run Long Run Low Gray
Level Emphasis

GlSZM Small Area Low Gray
Level Emphasis

6 GLRLM Low Gray Level
Run Emphasis

GLSZM Small Area High Gray
Level Emphasis

7 GLRLM Short Run Low Gray
Level Emphasis GLDM Low Gray Level Emphasis
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The global AUC criteria was also calculated by taking the average of all implemented
models.

Table 5 shows a comparison between the results of the experiments with the CS1 and
the CS2 data set.

Table 5. Comparison between models with CS1 and CS2 calcifications.

Measures Radiologist Segmentation Segmenting Breast Regions

AUC 0.86 0.73
Specificity 0.74 0.73
Sensitivity 0.91 0.66
Accuracy 0.82 0.77

AIC 178.68 180.83

The same comparison process as above is performed but now using the mass data set,
as shown in Table 6. Features of black color represent the importance of predicting cancer.

Table 6. Comparison between models with MS1 and MS2

Measures Radiologist Segmentation Segmenting Breast Regions

AUC 0.95 0.74
Specificity 1 0.78
Sensitivity 0.93 0.67
Accuracy 0.96 0.72

AIC 176.62 166

In Table 7, the best predictors for the classification between benign or malignant using
logistic regression for each CS1, CS2, MS1 and MS2 models are shown.

Table 7. The following table compares those features (in bold) that repeat in the different models (CS1,
CS2, MS1 and MS2). These features provide better and more meaningful results for the classification
of malignant cancer.

Calcification Mass
CS1 CS2 MS1 MS2

Feature Feature Feature Feature

NGTDM Busyness First Order Mean Absolute Deviation NGTDM Complexity NGTDM Busyness
GLCM Difference Entropy First order Mean GLCM Difference Entropy GLCM Difference Entropy

GLCM Inverse Variance - GLCM Joint Energy GLSZM Small Area Low Gray Level
Emphasis

GLDM Dependence Non Uniformity - GLCM Difference Variance GLSZM Low Gray Level Zone
Emphasis

GLRLM Run Length Non Uniformity - GLRLM Run Percentage

GLSZM Zone Variance - NGTDM Coarseness GLDM Small Dependence Low Gray
Level Emphasis

GLCM Contrast - GLCM Contrast GLCM Contrast
GLCM Difference Variance - GLCM Difference Variance GLCM Difference Variance

GLSZM Large Area High Gray
Level Emphasis - GLSZM Low Gray Level

Zone Emphasis First Order Skewnees GLCM Contrast

First Order Total Energy - First Order Total Energy GLSZM Gray Level Non Uniformity
- GLCM Id GLDM Gray Level Non Uniformity

GLSZM Large Area Emphasis - GLRLM Run Entropy

GLSZM Gray Level Variance - GLSZM Large Area Low Gray Level
Emphasis GLRLM Gray Level Non Uniformity

GLCM Correlation - GLCM Difference Average GLCM Difference Average
GLDM Gray Level Variance - GLDM Large Dependence Emphasis GLCM Joint Entropy

GLSZM Small Area Emphasis - GLSZM Small Area Low Gray
Level Emphasis

GLRLM Short Run Low Gray
Level Emphasis

Shape Maximum2D Diameter Row -
GLCM Id - GLCM Id

GLCM Joint Energy - First Order Energy Sum Squares
GLRLM Gray Level Varariance - GLCM Maximum Probability First Order Median

First Order Entropy - GLRLM Long Run Emphasis GLDM Dependence Entropy

Moreover, to validate the results obtained with the proposed methodology, the ac-
curacy and AUC results are compared with other proposals; the results are shown in
Table 8.
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Table 8. CBIS-DDSM segmentation show the comparison of the results obtained using the method-
ologies proposed in [33–36].

Authors Models View Data Set Accuracy AUC

Tsochatzidis et al. [33] CNNs CC and
MLO Mass 0.74 0.80

Andrik et al. [35] DNN CC and
MLO

Calcification and
Mass 0.80 0.84

Tsochatzidis et al. [34] SVM CC and
MLO Mass 0.81 0.85

Arora et al. [36] Neural Network
(nntraintool)

CC and
MLO Mass 0.88 0.88

Our Method CS1—Model CC Calcification 0.82 0.86
Our Method MS1—Model CC Mass 0.96 0.95

Chougrad et al. [37], CCNs (Data set DDSM) CC and
MLO Mass 0.97 0.98

Chougrad et al. [37] CCNs (Data set INBreast) CC and
MLO Mass 0.95 0.97

Chougrad et al. [37] BCRDs (Data set BCRDs) CC and
MLO Mass 0.96 0.96

5. Discussion

Results obtained when using the sub-sets CS1, CS2, MS1 and MS2 to classify calcifi-
cation and masses were as good as it could be expected, which means, for example, that
the obtained AUC was at least 0.8 for calcification and at least 0.9 for masses. The whole
predictive measures obtained by the data set of calcification and mass between regions
of interest are shown in Tables 5 and 6. As shown, the predictive accuracy between the
data set of CS1 is 86% and CS2 is 76%. The minimal difference is 12% according to the two
models to predict malignant or benign images. On the other hand, for the results from
Table 6, the predictive accuracy between the models MS1 is 95% and MS2 is 74%. In the
comparison between the two previous models, the difference was 22% in accuracy. Finally,
the evidence suggests that the prediction model CS2 (Calcification) has a higher probability
of predicting the MS2 (Malignant) with a percentage of 10% of error.

According to Table 7, the results demonstrate that, for classification purposes, the
measures of GLCM Difference Entropy, GLCM Contrast and GLCM Difference Variance
are strongly correlated in the cases of CS1, MS1, and MS2 models. The relation between
CS1 and MS2 models is given with NGTDM Business features. Finally, CS1 and MS1 models
are correlated by GLCM Id and First Order Total Energy features. GLCM Difference
Entropy is other measure of correlation that presents MS1 and MS2 cases. This experiment
demonstrates that the GLCM class provides strong prediction measures to classify between
malignant or benign class models. The most important result that emerges from the analysis
in this section is the relationship between breast mass and cancer, and, respectively, between
breast calcification and cancer; there are three radiomic features from the classes such as
GLRLM, GLSZM, and GLCM, which are considered stable. Another advantage of the
selection procedure used in the proposed methodology, is the dimensionality reduction
with a 20% in the generation of a new optimal model.

The results provided in Table 8 give a comparison with respect to other state-of-the-
art methodologies. In order to observe the veracity of the proposed methodology, some
comparisons are made with respect to the other four methods, which employ the same
database used in this research (CBIS_DDSM). It is important to say that these methods
evaluate benign and malignant lesions according to calcification and mass mammograms
images using two projections, MLO and CC. The obtained results with the proposed
methodology outperform those results reported by [34,36], for benign and malignant
lesions, for example for the MS1 case, and the area under the curve (AUC) given by our
proposition is about 0.95 and 0.96 of accuracy. The AIC score (CS1, CS2, MS1 and MS2) is
given for the MS2 model with 166—the lowest score as the best.

Feature extraction provides information for classifying breast lesions, and it is possible
to make a good feature selection using logistic regression classification based on the texture
image. This study found that the mass provides more information for classification, but
the calcifications do not necessarily give more information. The calcifications could be
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segmented and, subsequently, features were extracted. The relationship between mass,
calcification and cancer has the best classification rates when it is evaluated by the Gray
Level Co-occurrence Matrix.

On the other hand, the image analysis performed by [35] also evaluates two types of
lesions for calcification and masses with two projections, obtaining an AUC of 0.84 and
0.8 of accuracy. Moreover, in this comparison for the CS1 case, the proposed method gives
a better result, since it obtained an AUC of 0.86 and 0.82 of accuracy. However, the AIC
score (CS1, CS2, MS1 and MS2) is given for the MS2 model with 166—the lowest score as
the best.

It has been demonstrated that the CC projection analysis provide the best information
for the benign and malignant lesions classification, making an optimal feature extraction
from the mammal tissue.

6. Conclusions

The detection of breast cancer at an early stage can be prevented from spreading to
other parts of the body or avoiding death in the patient. The integration of predictive models
in the diagnosis of breast cancer have allowed the radiologist to make quick decisions.
Comparing a lesion breast analysis realized by a radiologist and the segmentation of the
breast on mammography made by the classification models implemented in this work, there
is no substantial difference in decision making. The implementation of genetic algorithms
was considered in order to help to choose the best predictors in the detection of breast
cancer; the results of the models implemented have a 86% AUC for calcification models
and 95% of AUC for mass models.

Although there is much research focused mainly on finding the region of interest, this
type of analysis would allow finding types of lesions in a very restricted area. In this new
methodology, we propose an automated segmentation based on the analysis of the whole
breast region to classify between benign and malignant lesions. The results demonstrate
that between the lesion and the whole breast there is around a 10% of difference for cases of
calcifications, and a 20% of difference in the case of masses. Based on the previous results,
the radiologist would focus on the cases where the system finds malignant cases, and carry
out a more in-depth study of the case. Our proposal allows us to speed up the work of the
radiologist in decision-making.

The purpose of the present investigation is not to change the opinion of the radi-
ologist, but to motivate the use of an alternative tool that allows one to improve the
response time of the analysis in the detection of malignant or benign lesions in images
with calcification or mass. The Pyradiomics system provided optimal features for a good
classification. However, this system is limited by both the processing speed and the amount
of memory available.
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Abbreviations
The following abbreviations are used in this manuscript:

ROI A Region Of Interest
ROC Area under the curve
DDSM The Digital Database for Screening Mammography
CBIS-DDSM Curated Breast Imaging Subset of DDSM
DICOM Digital Imaging and Communication In Medicine
IBSI Imaging Biomarker Standardization Initiative
GA Gentic Algorithm
AUC Area under the ROC Curve
CC Craniocaudal
LD Linear dichroism
GLCM A Gray Level Co-occurrence Matrix
GLRLM Gray level Run Length Matrix
GLSZM Gray level Size Zone Matrix
NGTDM Neighbouring Gray Tone Difference Matrix
GLDM Gray level Dependence Matrix
TIFF Tagged Image File Format
CNNs Deep Convolutional Neural Networks
DNN Deep neural network
SVM Support vector Machines
CNN Convolutional Neural Networks

Appendix A

Table A1. Radiomic Features.

Abbreviation for Feature Definition

NGTDM Coarseness Contrast Feature indicates the level of the spatial rate of change in intensity.
NGTDM Busyness Feature describe the changes in the intensity between neighbouring pixels.

NGTDM Complexity Features describe how are common are the non uniformity and rapid
changes in the gray levels.

GLCM Energy Angular second Momentum, Uniformity.
GLCM Contrast Variance

GLCM Difference Entropy
Difference Average measures the relationship between occurrences of pairs

with similar intensity values and occurrences of pairs with differing
intensity values.

GLCM ID
Inverse difference normalizes the difference between the neighboring

intensity values by dividing over the total number of discrete
intensity values.

GLCM Maximum Probability Maximum Probability is occurrences of the most predominant pair of
neighboring intensity values.

GLCM Joint Entropy Joint entropy is a measure of the randomness/variability in neighborhood
intensity values.

GLCM Joint Energy Energy is a measure of homogeneous patterns in the image

GLRLM Long Run Emphasis LREis a measure of the distribution of long run lengths, with a greater value
indicative of longer run lengths and more coarse structural textures.

GLRLM Gray Level Non-Uniformity GLN measures the similarity of gray-level intensity values in the image.
GLRLM Gray Level Non-Uniformity Normalized (GLNN) GLNN measures the similarity of gray-level intensity values in the image

GLRLM Run Length Non-Uniformity (RLN) RLN measures the similarity of run lengths throughout the image.
GLRLM Run Length Non-Uniformity Normalized (RLNN) RLNN measures the similarity of run lengths throughout the image.

GLRLM Run Percentage (RP) RP measures the coarseness of the texture by taking the ratio of number of
runs and number of voxels in the ROI.

GLRLM Gray Level Variance (GLV) GLV measures the variance in gray level intensity for the runs.

GLRLM Run Entropy (RE) RE measures the uncertainty/randomness in the distribution of run lengths
and gray levels.

GLRLM Low Gray Level Run Emphasis (LGLRE) HGLRE measures the distribution of the higher gray-level values.

GLRLM Short Run Low Gray Level Emphasis (SRLGLE) RLGLE measures the joint distribution of shorter run lengths with lower
gray-level values.

GLRLM Short Run High Gray Level Emphasis (SRHGLE) measures the joint distribution of shorter run lengths with higher
gray-level values.

GLRLM Long Run Low Gray Level Emphasis (LRLGLE) measures the joint distribution of long run lengths with lower
gray-level values.

GLRLM Long Run High Gray Level Emphasis (LRHGLE) LRHGLRE measures the joint distribution of long run lengths with higher
gray-level values.
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Table A1. Cont.

Abbreviation for Feature Definition

NGTDM Coarseness Coarseness is a measure of average difference between the center voxel and
its neighbourhood and is an indication of the spatial rate of change.

NGTDM Contrast Contrast is a measure of the spatial intensity change, but is also dependent
on the overall gray level dynamic range.

NGTDM Busyness Busyness a measure of the change from a pixel to its neighbour.

NGTDM Complexity An image is considered complex when there are many primitive
components in the image.

NGTDM Strength Strength is a measure of the primitives in an image.

GLDM Small Dependence Emphasis (SDE) A measure of the distribution of small dependencies, with a greater value
indicative of smaller dependence and less homogeneous textures.

GLDM Large Dependence Emphasis (LDE)
Large Dependence Emphasis a measure of the distribution of large

dependencies, with a greater value indicative of larger dependence and
more homogeneous textures.

GLDM Gray Level Non-Uniformity (GLN) Gray Level Non-Uniformity measures the similarity of gray-level intensity
values in the image
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