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Abstract: Diabetic macular edema (DME) is a significant complication of diabetes that impacts the eye
and is a primary contributor to vision loss in individuals with diabetes. Early control of the related
risk factors is crucial to reduce the incidence of DME. Artificial intelligence (AI) clinical decision-
making tools can construct disease prediction models to aid in the clinical screening of the high-risk
population for early disease intervention. However, conventional machine learning and data mining
techniques have limitations in predicting diseases when dealing with missing feature values. To
solve this problem, a knowledge graph displays the connection relationships of multi-source and
multi-domain data in the form of a semantic network to enable cross-domain modeling and queries.
This approach can facilitate the personalized prediction of diseases using any number of known
feature data. In this study, we proposed an improved correlation enhancement algorithm based on
knowledge graph reasoning to comprehensively evaluate the factors that influence DME to achieve
disease prediction. We constructed a knowledge graph based on Neo4j by preprocessing the collected
clinical data and analyzing the statistical rules. Based on reasoning using the statistical rules of the
knowledge graph, we used the correlation enhancement coefficient and generalized closeness degree
method to enhance the model. Meanwhile, we analyzed and verified these models’ results using
link prediction evaluation indicators. The disease prediction model proposed in this study achieved
a precision rate of 86.21%, which is more accurate and efficient in predicting DME. Furthermore,
the clinical decision support system developed using this model can facilitate personalized disease
risk prediction, making it convenient for the clinical screening of a high-risk population and early
disease intervention.

Keywords: diabetic macular edema; disease prediction; knowledge graph; neo4j; personalized
prediction; clinical decision support system

1. Introduction

According to statistics from the World Health Organization (WHO), there are approx-
imately 285 million people worldwide who suffer from visual impairment, and 4.8% of
these cases are caused by diabetic retinopathy (DR) [1,2]. Diabetic macular edema (DME)
is a serious complication of diabetes that affects the eye and is an advanced symptom of
DR. It is one of the main causes of irreversible vision loss in diabetic patients [3], affecting
approximately 1/15 diabetic patients globally [4]. As the number of diabetic patients
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continues to increase annually [5], DME imposes a significant economic burden on both
society and families. Since DME can occur at any stage of DR [6], early control of the
associated risk factors is a crucial strategy to reduce its incidence. Therefore, it is critical to
screen a high-risk population for DME and provide early clinical intervention.

The disease prediction model can comprehensively consider the multiple factors that
influence the occurrence of DME [7]. By predicting the probability of DME, the model can
assist in the clinical screening for a high-risk population and aid in the early intervention
for and treatment of patients to prevent further disease progression.

Over the past few years, researchers in both domestic and international contexts have
conducted extensive studies on the clinical treatment of DME [8]. However, the absence
of comprehensive risk factor prediction and evaluation has hindered the application of
disease prediction models, to a certain extent, in the prediction and analysis of DME,
thereby delaying early treatment for affected patients.

At present, disease prediction models are primarily based on data mining and machine
learning techniques. However, these models may encounter challenges in meeting the
requirements of personalized disease prediction and predicting diseases when feature
values are missing. To address these issues, a knowledge graph has emerged as a promising
solution, as it can efficiently process multi-source heterogeneous data, conduct correlation
analyses, and accurately predict disease outcomes. Therefore, a knowledge graph has
become increasingly popular in the medical and healthcare fields.

A knowledge graph is a repository of various types of entities, concepts, and their
semantic relationships. It consists of a collection of knowledge, with each piece represented
as a triple (entity, relation, and entity). The significance of this research lies in the rich
background knowledge it provides for semantic matching and machine learning. Currently,
in addition to Google’s Knowledge Graph, there are several other high-quality and widely
used open knowledge graphs in the world. These include DBpedia, Wikidata, ConceptNet,
and Microsoft Concept Graph, which cover multiple languages and a diverse range of
fields. Additionally, there is OpenKG, a Chinese open knowledge graph platform.

A knowledge graph [9] is a type of knowledge base that utilizes semantic retrieval
techniques to collect information from various sources and improve retrieval quality. It has
been widely applied in clinical auxiliary decision support systems, such as the Nanjing
Dajing traditional Chinese Medicine (TCM) Clinical Intelligent Auxiliary Decision Support
System, the Ancient and Modern Medical Record Cloud Platform, the Daosheng Medicine-
TCM Data Intelligent Service System, the TCM Artificial Intelligence Auxiliary Diagnosis
and Treatment Software, and the Qi-Huang Data AI Workstation. By leveraging artificial
intelligence technologies and clinical datasets from Hospital Information Systems (HIS),
these systems can obtain high-quality structured data through online integration and
processing and subsequently train and apply intelligent models using data mining and
analysis techniques.

The life cycle of a knowledge graph is shown in Figure 1, which can be divided
into an ontology layer and an entity layer. The ontology layer represents the core of a
knowledge graph, and its main content is the data model of the knowledge classes. This
model is presented as concepts and relationships, including the hierarchical structure
and relationship definitions of the knowledge classes, such as entities, relationships, and
attributes. The entity layer is responsible for storing specific data information, which
is represented and stored as a directed graph in the form of triples (entity, relationship,
and entity). Entities typically represent specified objects or things, relations represent the
connection relationships between entities, and attributes and their values represent the
parameters of an entity or relationship.
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Multi-source heterogeneous data: The data sources for a knowledge graph can in-
clude structured data (such as databases or canonical form data), semi-structured data
(such as tables), and unstructured data (such as text and words).

Knowledge extraction: This process involves extracting entities, relationships, and
attributes from multi-source heterogeneous data. Traditional rules, machine learning,
and deep learning methods are often used to extract the required knowledge. Currently,
the most popular method is CNN [10], which extracts lexical and sentence features for
knowledge extraction. Socher et al. [11] used RNN to obtain vector features of sentences,
which improved the performance of relation extraction. Zhang et al. [12] proposed a
Bi-LSTM method to obtain information between words for relation classification.

Knowledge fusion: This process involves disambiguating, processing, and integrating
heterogeneous and diverse knowledge from different data sources in the same framework,
thus achieving the fusion of data and information from multiple perspectives. Currently,
the technology for knowledge fusion is mainly divided into ontology fusion and data fusion.
Ontology fusion involves integrating multiple heterogeneous ontologies from data sources
into a unified ontology and establishing mapping rules between multiple ontologies, so
information can be transferred between different ontologies. Data fusion involves using
methods such as entity merging, entity alignment, and entity attribute fusion to achieve
data unification and standardization.

Knowledge representation: This is a way of describing knowledge that involves
transforming massive real-world information into structured data using information tech-
nology. Currently, the common methods of knowledge representation include XML [13],
RDF [14], RDFS [15], and OWL [16], among others. XML represents knowledge in the form
of documents and allows users to mark data and define data types. RDF uses a unified
standard “subject-predicate-object” triple to describe entities and relationships, which can
also be expressed as a directed graph structure. RDFS can be used as an extension of
RDF with schema definitions and simple constraint rules for RDF entities, attributes, and
relationships. OWL is based on RDFS, adding a predefined vocabulary to describe the
characteristics of resources.

Knowledge storage: This component is used to manage and store knowledge. The
main methods for storing knowledge include an RDF database, a traditional relational
database, and a graph database. Among them, a graph database has become the mainstream
method for knowledge storage, as it represents data as nodes and edges and clearly shows
the dependencies between data nodes. Graph query languages support various graph
mining algorithms, and popular graph databases include Neo4j [17], JanusGraph [18],
HugeGraph [19], etc.

Knowledge reasoning: This process infers unknown relationship information based
on existing entity relationship information, which further enhances the completeness and
usefulness of a knowledge graph. There are several methods of knowledge reasoning,
including reasoning based on logical rules, reasoning based on distributed feature repre-
sentation, and reasoning based on a neural network.
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Knowledge application: A knowledge graph is widely applied in semantic retrieval,
knowledge question answering, recommendation systems, and decision making. A seman-
tic search is used to understand user retrieval needs at the semantic level and search for
matching resources. Answering a knowledge question involves converting user input ques-
tions into objective entity concepts within the knowledge base, which is achieved through
structured query mapping via natural language methods in order to obtain the answer.
Recommendation systems and decision making involve providing multi-level decision
support and knowledge services for decision-making systems by enhancing the mining
ability of recommendation algorithms in the knowledge graph, taking into consideration
the personalized preferences of users.

At present, there is a lack of research on disease prediction models in the field of DME,
and the development of a DME disease prediction model is of great significance for the
early screening of a high-risk population. In this context, this study used knowledge graph
technology to implement clinical auxiliary disease prediction functions to meet clinical
needs. The clinical data collected by the Tianjin Medical University Eye Hospital were
used as the research object, and a DME disease prediction model based on the knowledge
graph [20] was proposed. By comprehensively analyzing the different influencing factors,
the model was able to obtain the incidence probability of a DME disease.

In addition, a clinical auxiliary decision support system was developed to enable per-
sonalized disease prediction analysis, which can effectively assist in the clinical screening of
a high-risk population for DME, provide technical support for disease prediction, and serve
as a reference for innovative applications of disease prediction models. The innovations are
as follows.

1. A statistical analysis was conducted on the clinical data to identify the high-risk
factors of DME for clinical reference and early intervention.

2. Personalized disease prediction model was developed, which comprehensively con-
sidered the disease influencing factors and analyzed the disease probability of the
target population.

3. Knowledge graph technology was utilized to construct the disease prediction model,
facilitating data updating, maintenance, and iterative improvements.

4. A clinical decision support system was developed to promote the implementation
and usage of this model in clinical practice, providing a technical foundation for an
innovative application of the knowledge graph.

2. Literature Review

Studies showed that the risk factors for DME [21] include hyperglycemia, duration of
diabetes, hypertension, hyperlipidemia, renal dysfunction, pregnancy, the level of cytokine
VEGF, heredity, etc. Additionally, other factors such as a history of cataract surgery, insulin
use, sleep apnea syndrome, anemia, and ocular inflammation were also identified.

In addition, studies showed that the level of β-collagen degradation products (β-CTx)
is significantly correlated with DME in female patients with type 2 diabetes, and high
serum calcium can also aggravate macular edema in patients with type 2 diabetes. More-
over, it is widely accepted that DME is caused by oxidative stress induced by continuous
hyperglycemia and the accumulation of inflammatory cytokines and vascular endothelial
growth factor (VEGF), leading to the disruption of the blood–retinal barrier (BRB) [22,23].
Due to the complex pathogenesis of DME, controlling the systemic factors that contribute
to DME progression is key to reducing its morbidity.

At present, disease prediction models in the medical big data environment mainly use
data mining and machine learning methods to predict unknown data. In medical diagnosis
analysis, the characteristic values of disease types are extracted from case examination
items, and the probability of different disease types with different characteristic values is
analyzed to construct disease prediction models.

Puchao, H. et al. [24] used SVM, decision tree C5.0, and ANN methods in a data
mining model to construct a lung cancer risk prediction model.



Diagnostics 2023, 13, 1858 5 of 18

Xing, W. et al. [25] used the decision tree classification method model to test and analyze
historical cases and predict the prevalence probability of diseases such as cold and cough.

Alourani, A. et al. [26] used a model based on a deep neural network to predict the
mortality of patients in health cloud data.

Raju, M. et al. [27] used machine learning methods to capture the clinical symptoms
that may have an EHR history in potential pre-glaucoma patients, to achieve early inter-
vention and preventive treatment of the disease.

However, these methods require sufficient feature data selection to complete disease
prediction, which is challenging when faced with missing feature values. To address
this issue, knowledge graph reasoning can infer unknown relationships or facts from the
existing relationships or facts using any number of entity feature values and apply simple
rules or statistical features for reasoning. By combining manually defined logical rules
with various probabilistic graphical models, knowledge reasoning can be performed on
the constructed logic network, which plays a crucial role in the fields of medical diagnosis,
disease prediction, medical treatment, and medical standardization. A knowledge graph
has a wide range of applications in TCM clinical, TCM basic, TCM health care, and other
fields, including semantic retrieval, intelligent question and answer, decision support, etc.
It lays a solid foundation for the intelligent application of TCM and can also be extended to
other disease prediction fields.

Tong, Y. et al. [28] constructed a knowledge graph for the field of TCM to achieve an
effective integration of TCM knowledge resources.

Li, Y. [29] took ILP as the basic algorithm framework, combined it with the characteris-
tics of TCM diagnosis and treatment to form a knowledge base of TCM clinical syndrome
diagnosis rules, and used the relevant weight training algorithm to learn the weights of the
learned rules in MLN.

Yingying, Z. [30] constructed a TCM knowledge graph, applied it to the field of
TCM diagnosis and treatment, and designed a tongue image diagnosis and treatment
system based on the knowledge graph. According to the TCM diagnosis process, the final
syndrome diagnosis results and treatment plans were given through the symptoms and
tongue body photos entered by users.

Ziqiang, Z. [31] constructed a knowledge graph of the TCM medical cases of chronic
kidney disease to perform representation learning of the CKD TCM medical case knowledge
graph and reasoning of the CKD TCM medical case knowledge graph, realizing the learning
and reasoning of the knowledge graph.

Dan, Y. et al. [32] used the construction method of a knowledge graph and graph
search pattern to construct the pattern layer and data layer design of the knowledge graph
with TCM classics prescriptions as the research object and designed a knowledge retrieval
framework of classics’ prescriptions by using Cypher language in Neo4j.

Kai, Z. et al. [33] used the Neo4j graph database to build a small knowledge graph
based on the Guizhu decoction prescriptions in “Shang Han Lun” and realized the visual
analysis and retrieval functions of the syndromes, prescriptions, and drugs of the Guizhu
decoction prescriptions.

Wenlong, G. [34] realized the construction (knowledge fusion, knowledge acquisition,
knowledge storage, and knowledge reasoning) and visualization framework of a TCM
prescription knowledge graph.

Fan, L. [35] proposed a standardized system process for the construction of a knowl-
edge graph in the field of experience inheritance of famous and old Chinese medicine.

Dan, Z. [36] constructed a knowledge graph of the rules of fatty liver disease syndrome
treatment using famous old Chinese medicine and realized a summary of the rules of
syndrome treatment by medical case collection, data aggregation, data preprocessing,
and data analysis and mining methods (online analysis technology, the complex network
method, and the FP-Growth algorithm).

By presenting the interconnection between multi-source and multi-domain data
through a semantic network, a knowledge graph enables cross-domain modeling and
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querying [37] and allows for the expansion of data on demand without disrupting the exist-
ing data structure. It has found extensive applications in semantic retrieval [38], intelligent
question answering [39], decision support [40], and other fields.

Knowledge reasoning refers to the process of using existing knowledge, rules, and
constraints to acquire new knowledge. This process involves reasoning about unknown
information based on known information [41]. For example, tasks such as recommendation
computing [42], causal analysis, and query question answering can be reduced to the
problem of reasoning about the relationships between entities. Knowledge graph reasoning
is a technique that can be used to perform tasks such as attribute completion, relation
prediction, error checking, question expansion, and semantic understanding [43]. There
are several methods for performing knowledge reasoning, including rule-based reasoning,
distributed reasoning, and neural-network-based reasoning [44]. Rule-based knowledge
reasoning is based on the connection rules or statistical features of entities. The rules
are obtained by the statistical learning of the whole knowledge graph, and the rules
are improved and optimized on this basis, which can be applied in the field of DME
disease prediction.

3. Materials and Methods

Initially, the dataset was split into a training set and a test set with an 8:2 ratio.
Subsequently, the entities and relationships of knowledge graph were constructed through
statistical analysis and data preprocessing.

On this basis, the correlation enhancement algorithm was applied to refine the weight
attributes of the connecting edges in the knowledge graph. In addition, the generalized
closeness method was utilized to enhance the disease prediction model, enabling the
classification of influencing factors among different target populations. Ultimately, expert
suggestions informed by clinical practice were provided based on the obtained results.

As a result, 3 DME disease prediction models were analyzed and verified based on
link prediction evaluation indicators, including AUC, accuracy, and ranking score, to select
a more accurate and efficient disease prediction model.

The disease prediction model proposed in this study is shown in Figure 2, its activity
sequence is shown in Figure 3, and the disease prediction process is as follows.
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Data preprocessing: The original clinical data were collected, preprocessed, and
subjected to statistical analysis. Initially, clinical diagnostic data and basic information
of cases were classified based on clinical standards, and then data related to biochemical
and non-biochemical indicators were processed separately to identify a limited number
of influencing factor entities. The preprocessed data were subjected to statistical analysis,
which revealed the high-risk factors associated with DME in the clinical data.

Model training: After the preprocessed dataset was split into training set and test
set, the model was trained on the data of the training set, and the knowledge extraction
task was completed by means of entity extraction, attribute extraction, and relationship
extraction. A medical knowledge graph was constructed, the disease prediction model
was constructed by using the correlation enhancement algorithm and the generalized paste
progress method, and the model training was completed.

Model testing: The knowledge reasoning algorithm based on the knowledge graph
was used to predict the disease on the test set and the ontology rules constructed by the
knowledge graph. It includes disease prediction models based on statistical rule reasoning,
based on correlation enhancement, and based on improved correlation enhancement.
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Analysis and evaluation: Three models were verified and analyzed according to the
parameters of the link prediction evaluation indicators of the knowledge graph, including
AUC, precision, and ranking score.

3.1. Dataset

This study utilized clinical data from 507 cases, which were collected by the hospital
information system of Tianjin Medical University Eye Hospital. Specifically, the data
comprised 261 cases of DME and 246 cases of non-DME.

3.2. Statistical Analysis and Preprocessing of Data

The influencing factors of the disease were based on 39 categories, as shown in Table 1.
These factors were preprocessed, classified, and subjected to statistical analysis, and the
quantitative numerical data were transformed into qualitative data that could be interpreted.

Table 1. Disease influencing factors.

Influencing Factor Abbreviation Unit of Measurement

Gender – –
Age – years of age
BMI – kg/m2

Waist-to-hip ratio WHR –
Duration of diabetes DM-P years

Family history of diabetes DM-F –
Hypertension HBP –

Hyperlipidemia HL –
Diabetic nephropathy KD –

Anemia ANEMIA –
Coronary heart disease H –

Cerebral infarction B –
Diabetic peripheral neuropathy N –
Dark spots on the anterior tibia DARK –

Stage of diabetic retinopathy DR –
History of cataract surgery CAT –

History of pan retinal photocoagulation PRP –
History of smoking S –

History of alcohol consumption A –
Use of insulin INSULIN –

Fasting plasma glucose FPG mmol/L
Glycosylated hemoglobin HAlc %

Mean platelet volume MPV fL
Erythrocyte sedimentation rate ESR mm/h

Triglyceride TG mmol/L
Total cholesterol TC mmol/L

High density lipoprotein cholesterol HDL-C mmol/L
Low density lipoprotein cholesterol LDL-C mmol/L

D-dimer DD mg/L
Fibrinogen FIB g/L

Urea UREA mmol/L
Serum creatinine Scr µmoI/L

Uric acid UA µmol/L
Estimated glomerular filtration rate eGFR mL/min

Total protein T-pro g/L
Albumin ALB g/L

Urinary protein U-pro –
24 h urinary microalbumin 24 h MALB mg

24 h urinary protein 24 h PRO g

The processing of biochemical data was divided according to the normal value range
or interval stage, such as fasting plasma glucose, as shown in Table 2. The processing of
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non-biochemical data was divided according to 0/1, such as family history of diabetes, as
shown in Table 3. The statistical classification results of the data are shown in Table 4.

Table 2. Data processing of fasting plasma glucose data.

Plasma Glucose Range (mmol/L) Explanation

>7 Hyperglycemia
6.1–7 Impaired fasting glucose

3.9–6.1 Normal
2.8–3.9 Normal

<2.8 Hypoglycemia

Table 3. Data processing of family history of diabetes.

Numerical Value Explanation

0 No family history of diabetes
1 Family history of diabetes

Table 4. Classification statistics of 39 kinds of influencing factors.

Influencing
Factor Classification Frequency Classification Frequency Classification Frequency Classification Frequency

Gender male 283 female 226
Age ≥70 63 60–69 177 50–59 154 20–49 113
BMI <18.5 4 18.5–24 144 24–28 212 >28 147

WHR male > 0.9 165 male 0.85–0.9 45 male < 0.85 3
female > 0.8 166 female 0.67–0.8 3

DM-P ≥20 years 122 10–19 years 227 <10 years 158
DM-F Yes 301 No 206
HBP Yes 331 No 176
HL Yes 378 No 129
KD Yes 236 No 271

ANEMIA Yes 101 No 406
H Yes 327 No 180
B Yes 160 No 347
N Yes 381 No 126

DARK Yes 89 No 418
DR PDR 23 NPDR 330 No DR 63

CAT Yes 73 No 434
PRP Yes 82 No 425

S Yes 184 No 323
A Yes 135 No 372

INSULIN Yes 324 No 183
FPG >7 317 6.1–7 54 3.9–6.1 57 <3.9 5
HAlc >9 187 6.5–9 256 6–6.5 42 4–6 21
MPV >11 112 7–11 395
ESR male > 15 166 male 0–15 97 female > 20 151 female 0–20 48
TG >2.25 155 1.7–2.25 80 0.45–1.7 270 <0.45 1
TC >6.18 133 5.18–6.18 106 2.9–5.18 251 <2.9 16

HDL-C >1.55 58 1.04–1.55 224 0.9–1.04 105 <0.9 119
LDL-C >4.12 147 3.37–4.12 126 2.07–3.37 185 <2.07 47

DD >0.5 116 0–0.5 390
FIB >4 90 2–4 398 <2 17

UREA >7.5 115 2.5–7.5 392 <2.5 0
Scr >176.8 26 88.4–176.8 80 <88.4 401
UA male > 416 67 male 150–416 212 male < 150 4

female > 357 68 female 89–357 156 female < 89 0
eGFR >120 24 80–120 353 <80 129
T-pro >80 13 60–80 422 <60 72
ALB >55 1 40–55 300 <40 206

U-pro urine protein
(++++) 77 urine protein

(+++) 101 urine
protein (++) 30 urine

protein (+) 299

24 h MALB >30 196 15–30 50 <15 240
24 h PRO >3.5 59 0.15–3.5 110 <0.15 338
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According to the results of data analysis after data processing, 39 categories of influenc-
ing factors were divided into 116 qualitative interpretable value ranges. Using the statistical
rule reasoning method based on knowledge graph, the classification statistical results of
influencing factors were used as the main basis for the weight setting of the connection
edges in the process of constructing DME knowledge graph, which provides data support
for the comprehensive evaluation of influencing factors in the process of disease prediction.

3.3. Construction of Knowledge Graph

After statistical classification and preprocessing of data, a medical knowledge graph
was constructed, consisting of 2 types of nodes: “whether or not the disease” and “116
DME disease influencing factors”, connected by 232 relationships. The weight attributes
of the relationships are added later by computing the weight calculation results, which
completes the task of knowledge completion [45].

Figure 4 shows the schematic diagram of DME disease prediction model based on
improved correlation enhancement. Through data preprocessing and statistical analysis
of the basic information of the case, biochemical indicators, and influence factors of non-
biochemical indicators, the DME data in the training set were input into the knowledge
graph as historical case data. In the process of model validation, the similarity between
the input personalized diagnosis data results and the historical cases was compared. The
weight was used to represent the impact of each influencing factor on the disease, and the
correlation enhancement and generalized progress method were used to further obtain the
calculation results of DME disease probability after feature fusion.
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3.4. Disease Prediction Models

To achieve a comprehensive assessment of the impact of multiple influencing factors
on disease risk, the DME knowledge graph was constructed using weight as the connection
edge attribute between the disease node and the influencing factor node. The statistical
analysis results of the training set data were utilized as the standard for weight setting
during the construction of the knowledge graph [46]. The clinical dataset was randomly
divided into training set and test set at a ratio of 8:2, including 406 cases of training set
(203 cases of DME and 203 cases of non-DME), and 101 cases of test set data contained
58 cases of DME clinical data. The statistical characteristics of the training set data were
used as attributes for the knowledge graph connection edge. Three weight setting methods
are proposed as follows.

Weight 1 is the frequency of cases in which the i disease influencing factor is connected
to the j disease node, which is the frequency in the sum of the case frequencies of all node
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pair connection relationships, where i = 1 . . . 39 corresponding to 39 disease influencing
factors, j = 0 . . . 1, 0 denotes non-DME, 1 denotes DME, and nij denotes frequency under
corresponding conditions.

weight1ij =
nij

∑i=1 ∑j=0 nij
(1)

Weight 2 is the case frequency connected by the i disease influencing factor and the j
disease node, the frequency ×100 in the sum of case frequencies connected by the node
with or without disease, and the influencing factor under this influencing factor, where
i = 1 . . . 39 corresponding to 39 disease influencing factors, j = 0/1. 0 represents non-DME,
1 represents DME, and nij represents the frequency in the corresponding condition.

weight2ij =
nij

∑j=0 nij
× 100 (2)

Weight 3 is combined with the correlation enhancement algorithm based on the results
of weight 2 setting, that is, weight 2× correlation enhancement coefficient, where i = 1 . . . 39
corresponding to 39 disease influencing factors, j = 0/1. 0 represents non-DME, 1 represents
DME, nij represents the frequency under the corresponding condition, z = 1 . . . 5, and αz
denotes the correlation enhancement coefficient (Table 5).

weight3ij =
nij

∑j=0 nij
× 100× αz (3)

Table 5. Correlation enhancement algorithm.

Priority Range of Results for Weight 2 Correlation Enhancement Coefficient

1 40–60 1
2 30–70 2
3 20–80 3
4 10–90 4
5 0–100 5

The correlation enhancement coefficient indicates that for weight 2 calculation results,
if the frequency of an influencing factor node in DME and non-DME datasets is not
significantly different (i.e., the frequency range is closer to 50%), it implies that the factor
has less effect on DME disease, resulting in a smaller correlation enhancement coefficient.
Conversely, a larger correlation enhancement coefficient indicates a stronger influence of
the factor. These coefficients are ranked based on the frequency range priority, with 1 being
the highest and 5 being the lowest.

The statistical analysis features of the training set were applied to the knowledge graph
to complete the disease prediction task, and the calculation result of weight 1 was used as
the attribute value of the knowledge graph connection edge to construct a DME disease
prediction model based on statistical rules. On the basis of setting the attribute values of
the connected edges of the knowledge graph with weight 2, the correlation enhancement
algorithm was used to set weight 3 to further improve the correlation between the influ-
encing factors and the disease, and a DME disease prediction model based on correlation
enhancement was constructed. In addition, the method of generalized closeness [47] was
used to divide the disease prediction results into interpretable intervals, the DME disease
prediction formula was obtained, as shown in Equation 4, and the DME disease prediction
model based on improved correlation enhancement was constructed.

T
(

M+i, M0
)
= 1− 1

Wmax
· 1
n

n

∑
i=1
|Wmax −Wi|·

∣∣∣µs
(
µ+

i
)
− µs

(
µ0

i

)∣∣∣ (4)
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T
(

M+i, M0) values are used for similarity discrimination to calculate DME disease
prediction results, where M+i is the dataset of the ith disease influencing factors in the
knowledge graph (i = 1, 2 . . . ). M0 is the current input dataset. µ values represents the data
connection relationship in the knowledge graph. If there are data connected with influenc-
ing factors at the same time, that is, µs

(
µ+

i
)
= µs

(
µ0

i
)
, the probability of DME disease in the

target population is 1. The weight Wi of the edge is the result of setting weight 3, and the
maximum value of the weight Wmax = 500. If the edge weights Wi = Wmax, the two nodes
are fully weighted connected, so

∣∣µs
(
µ+

i
)
− µs

(
µ0

i
)∣∣ = 0; otherwise,

∣∣µs
(
µ+

i
)
− µs

(
µ0

i
)∣∣= 1.

Take the predicted DME probability P ∈ [Predictmin, Predictmax] calculated by
Equation (4), and scale the range [Predictmin, Predictmax] to the clinically interpretable range
[P min, Pmax] = [0, 100]. Thus, the probability of DME predicted by the proposed disease
prediction model for the target population was obtained.

PDME = Pmin +
Pmax − Pmin

Predictmax − Predictmin
× (P− Predictmin) (5)

The range of [P min, Pmax] was used as the range of DME disease prediction results. Af-
ter discussion with clinical experts, the probability of DME was divided into four categories,
and relevant suggestions were given, as shown in Table 6.

Table 6. Probability of DME and recommendations.

Probability of DME (%) Recommendations

<50 Probability of DME is low
50–70 Recommend follow-up
70–85 Recommend further examination
>85 Recommend specialist examination

4. Results

The partial results of the weight setting based on correlation enhancement are used as
attributes between the disease nodes and influencing factor nodes in the knowledge graph
(Table A1), and the results are filled into the knowledge graph.

After data processing and data analysis, the top six influencing factors with the highest
weights in the DME data were Scr, DR, urine protein, 24 h PRO, 24 h MALB, and FIB. The
statistical results are shown in Figure 5.
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A DME disease prediction analysis was performed on the test set of the DME dataset
using the DME disease prediction model based on improved correlation enhancement, and
the results are shown in Table 7.

Table 7. Predictions on the test set.

Probability of DME (%) <50 50–70 70–85 >85 Total

DME 0 8 44 6 58
Non-DME 3 16 24 0 43

Total 3 24 68 6 101

According to the validation results of the training set, taking a disease probability of
70% as the standard for predicting DME disease, the DME case data in the test set were
analyzed and verified, and the DME disease prediction results shown in Table 8 were
obtained. According to the DME disease prediction model based on improved correlation
enhancement, the disease probability of the 58 cases of DME data in the test set was
predicted. The results showed that the disease probability was mostly 70–85%, which was
consistent with the expected results.

Table 8. DME disease prediction results.

ID Probability
of DME (%) ID Probability

of DME (%) ID Probability
of DME (%)

1 74.85 21 76.84 41 73.07
2 73.37 22 61.82 42 75.50
3 84.32 23 67.73 43 90.28
4 75.67 24 71.48 44 85.01
5 73.53 25 74.91 45 75.86
6 82.36 26 76.36 46 70.13
7 77.07 27 78.53 47 75.81
8 94.25 28 75.13 48 81.53
9 72.71 29 70.16 49 76.40
10 58.43 30 71.87 50 70.50
11 76.18 31 80.50 51 73.14
12 72.50 32 74.23 52 54.37
13 68.66 33 78.75 53 90.35
14 72.01 34 81.89 54 71.08
15 85.64 35 82.23 55 57.80
16 69.20 36 89.81 56 72.18
17 73.29 37 73.81 57 71.92
18 58.92 38 70.06 58 73.38
19 80.98 39 72.69
20 81.78 40 72.32

Table 9 presents the evaluation results of the three disease prediction models, namely,
AUC [48], precision [49], and ranking score [50], based on the link prediction evaluation
parameters of the knowledge graph reasoning. These results were obtained through
analysis and verification.

Table 9. Results of evaluation metrics for link prediction.

DME Disease Prediction Model AUC Precision Ranking Score

Based on statistical rule reasoning 19.61% 19.61% 0.511
Based on correlation enhancement 58.26% 57.76% 0.502

Based on improved correlation enhancement 86.21% 86.21% 0.508
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The AUC measures the accuracy of an algorithm as a whole. Given a prediction
algorithm, for each unknown node will be given a value of the likelihood of existence. After
training, the algorithm obtains the similarity value of each pair of nodes in the knowledge
graph network, and a degree greater than 0.5 indicates that the degree of the algorithm is
better than the random selection algorithm.

AUC =
n1 + 0.5n2

n
(6)

The precision is the proportion of accurate predictions among the top L predicted
nodes. If the probability value of the connection is arranged from large to small, and m
nodes in the top L are in the test set, then the accuracy is defined as Equation (7).

Precision = m
L (7)

The ranking score considers the position of the nodes in the test set in the final ranking,
and the smaller the ranking score is, the better the prediction effect of the algorithm is. H is
the collections of unknown nodes, re ∈ Ep denotes test node e in sorting ranking, and the
ranking score of the test nodes is RSe =

re
|H| . By traversing all the nodes in the test set, the

system ranking score is obtained.

RS =
1
|Ep|∑e∈Ep

re

|H| (8)

The link prediction evaluation index parameters of the knowledge graph reasoning
were used to analyze and verify the three disease prediction models. Based on the evalua-
tion results of the three models, the algorithm using correlation enhancement demonstrated
superior performance than the statistical rule reasoning, with a 38.65% higher AUC and
a 38.15% higher precision. The algorithm based on improved correlation enhancement
showed even better performance, with a 27.95% higher AUC and a 28.45% higher precision
compared to the previous method. The proposed DME disease prediction model based on
improved correlation enhancement can more accurately and effectively predict the disease
by comprehensively evaluating the diagnostic data of the cases. The model can facilitate
the clinical screening of the high prevalence of a DME disease, provide references for early
disease intervention, and achieve the expected effect.

A clinical decision support system was developed using the improved DME disease
prediction model, which enables personalized disease risk prediction by allowing users to
input any number of diagnostic data results. Figure 6 illustrates the flowchart of this system.
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For example: The influencing factors were “female, 60–69 years old, BMI is 24–28 kg/m2,
Waist-to-hip ratio of central obesity, duration of diabetes is 10–19 years, family history
of diabetes, hypertension, hyperlipidemia, diabetic nephropathy, anemia, no coronary
heart disease, no cerebral infarction, diabetic peripheral neuropathy, no pre-cervical dark
spots, diabetes. The stage of retinopathy is PDR, no history of cataract surgery, no his-
tory of retinal laser photocoagulation, smoking history, no history of alcohol consump-
tion, use of insulin, glycosylated hemoglobin > 9%, mean platelet volume 7–11 fL, ery-
throcyte sedimentation rate >20 mm/h, triglyceride 0.45–1.7 mmol/L, total cholesterol
2.9–5.18 mmol/L, high density lipoprotein cholesterol 1.04–1.55 mmol/L, low density
lipoprotein cholesterol 3.37–4.12 mmol/L, D-dimer 0–0.5 mg/L, fibrinogen 2–4 g/L, urea
2.5–7.5 mmol/L, creatinine <88.4 µmol/L, uric acid 89–357µmol/L, estimated glomerular
filtration rate 80–120 mL/min, total protein < 60 The probability of DME in the users with
g/L, albumin < 40 g/L, urinary protein (+), 24-h urinary protein < 0.15 g, and 24-h urinary
microalbumin < 15 mg”. For these people, the probability of DME is 86.65%, and a special
examination is recommended.

5. Discussion

A knowledge graph allows for disease prediction even in the case of missing clinical
data values. This method is more universally applicable and significant compared to
traditional data mining algorithms, as it can complete disease prediction tasks with small
amounts of data using simple statistical rule reasoning. The DME disease prediction model
based on improved correlation enhancement proposed in this study defines a simple and
effective rule-based reasoning algorithm, which realizes a more accurate and effective
reasoning application. It not only provides a reference for the clinical screening of a DME
high-risk population but also provides research ideas and methods for the early prediction
and intervention of other clinical major special diseases. This model can comprehensively
evaluate disease influencing factors using any number of objective diagnostic data and
tolerate incomplete data. Compared to traditional data mining classification algorithms,
it facilitates model optimization, update and iteration, and can assist in clinical screening
for high-risk populations for diabetic macular edema, providing expert advice based on
different disease probabilities and, thus, contributing to clinical disease prediction and
early intervention.

The proposed DME disease prediction model uses a knowledge graph to statistically
analyze clinical data, classify the 39 types of DME disease influencing factors, and construct
a medical knowledge graph using three weight-setting methods for the knowledge graph
connection edge. Based on this, the disease prediction formula was derived using the
generalized closeness degree method and improved using correlation enhancement. Three
DME disease prediction models were tested, and the precision of the disease prediction
model based on improved correlation enhancement was increased by 28.45% compared to
the algorithm before improvement, indicating the model’s better performance in completing
the disease prediction task and providing technical methods for the intelligent prediction
of clinical diseases.

In this study, the proposed DME disease prediction model comprehensively evaluates
disease probability based on basic clinical data, disease history, medical test results, and
other factors, resulting in a clinical decision support system for disease prediction visual-
ization [51]. This system is useful in promoting and applying the disease prediction model
in clinical practice. The study plans to collect more clinical objective data in the future to
update the model and further improve its accuracy of disease prediction. Additionally,
this study’s findings can serve as a reference for the prediction of other major clinical
diseases such as hypertension, diabetes, coronary heart disease, and others, providing
support for early disease screening and intervention. Furthermore, the model can offer
decision-making technical support for TCM syndrome differentiation, disease diagnosis,
disease treatment, and physical identification.
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Appendix A

Table A1. The partial results of setting weight.

Disease Influencing Factor Weight Disease Influencing Factor Weight

non-DME male 53 DME male 47
non-DME female 46 DME female 54
non-DME age ≥ 70 53 DME age ≥ 70 47
non-DME age 60–69 52 DME age 60–69 48
non-DME age 50–59 44 DME age 50–59 55
non-DME age 20–49 52 DME age 20–49 48
non-DME BMI < 18.5 75 DME BMI < 18.5 225
non-DME BMI 18.5–24 51 DME BMI 18.5–24 49
non-DME BMI 24–28 54 DME BMI 24–28 46
non-DME BMI > 28 44 DME BMI > 28 56
non-DME WHR central obesity 49 DME WHR central obesity 51
non-DME WHR normal 59 DME WHR normal 41
non-DME duration of diabetes ≥ 20 years 40 DME duration of diabetes ≥ 20 years 60
non-DME duration of diabetes 10–19 years 46 DME duration of diabetes 10–19 years 53
non-DME duration of diabetes < 10 years 126 DME duration of diabetes < 10 years 74
non-DME family history of diabetes 47 DME family history of diabetes 53
non-DME no family history of diabetes 54 DME no family history of diabetes 46
non-DME hypertension 45 DME hypertension 55
non-DME no hypertension 120 DME no hypertension 40
non-DME hyperlipidemia 46 DME hyperlipidemia 54
non-DME no hyperlipidemia 124 DME no hyperlipidemia 76
non-DME diabetic nephropathy 69 DME diabetic nephropathy 231
non-DME no diabetic nephropathy 219 DME no diabetic nephropathy 81
non-DME anemia 72 DME anemia 328
non-DME no anemia 58 DME no anemia 42
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