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Abstract: Diabetic Macular Edema (DME) is a severe ocular complication commonly found in patients
with diabetes. The condition can precipitate a significant drop in VA and, in extreme cases, may
result in irreversible vision loss. Optical Coherence Tomography (OCT), a technique that yields
high-resolution retinal images, is often employed by clinicians to assess the extent of DME in patients.
However, the manual interpretation of OCT B-scan images for DME identification and severity
grading can be error-prone, with false negatives potentially resulting in serious repercussions. In
this paper, we investigate an Artificial Intelligence (AI) driven system that offers an end-to-end
automated model, designed to accurately determine DME severity using OCT B-Scan images. This
model operates by extracting specific biomarkers such as Disorganization of Retinal Inner Layers
(DRIL), Hyper Reflective Foci (HRF), and cystoids from the OCT image, which are then utilized to
ascertain DME severity. The rules guiding the fuzzy logic engine are derived from contemporary
research in the field of DME and its association with various biomarkers evident in the OCT image.
The proposed model demonstrates high efficacy, identifying images with DRIL with 93.3% accuracy
and successfully segmenting HRF and cystoids from OCT images with dice similarity coefficients of
91.30% and 95.07% respectively. This study presents a comprehensive system capable of accurately
grading DME severity using OCT B-scan images, serving as a potentially invaluable tool in the
clinical assessment and treatment of DME.

Keywords: DME; fuzzy engine; healthcare; clinical decision support system; computer vision;
semantic segmentation; image classification

1. Introduction

Diabetic Macular Edema (DME) is an ocular condition predominantly afflicting indi-
viduals diagnosed with diabetes. Characterized by an accumulation of intraretinal fluid
within the inner and outer plexiform layers, DME triggers retinal thickening and progres-
sively impairs visual acuity (VA), potentially culminating in irreversible vision loss. To
detect this condition, clinicians typically employ Optical Coherence Tomography (OCT),
a technique capable of producing high-resolution imagery of the eye. Certain parame-
ters, referred to as biomarkers within the OCT image, serve as key indicators of DME.
These include Central Subfield Thickness (CST), Disorganization of Retinal Inner Layers
(DRIL), cystoid spaces, Ellipsoid Zone (EZ), and Hyperreflective Focii (HRF), all of which
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display a strong correlation with DME [1]. DRIL denotes an inability to distinguish the
boundaries between the Inner Nuclear Layer (INL), Outer Plexiform Layer (OPL), and the
Ganglion Cell Layer-Inner Plexiform Layer (GCL-IPL) complex within an OCT image. HRF,
on the other hand, represents small, round lesions possessing a reflectivity equal to, or
exceeding that of the Retinal Pigment Epithelium (RPE) [2]. At present, clinicians rely on
these biomarkers within OCT images (refer to Figure 1) to determine the presence of DME.
However, being a manual process, it is not immune to errors. False negatives can lead to
an unchecked progression of the disease, resulting in a permanent impact on the patient’s
VA. Therefore, a timely and accurate identification of DME is imperative for the effective
management of this disease.

(a) (b)
Figure 1. OCT B-scan image: (a) DME, and (b) Normal.

Several attempts have been made over the years to develop artificial intelligence
(AI)-based decision support systems (DSS) for the treatment of ocular disorders by utilizing
medical images and discerning the efficacy of deep learning-based models [3–10]. Given the
necessity for real-world adaptability, the consensus veers towards a transparent, explainable
decision rendered by DSS as more desirable compared to an opaque, albeit highly accurate,
decision. Our investigation delves into an AI-oriented system that utilizes OCT B-Scan
images of patients to develop a comprehensive, automated model aimed at determining the
severity of DME. The cornerstone of this system is fuzzy logic, a mathematical paradigm
adept at handling uncertainty and ambiguity. The inherent variability in OCT images is
accommodated by fuzzy logic, allowing the system to make decisions based on fuzzy sets
and linguistic rules. Our system extracts features from different biomarkers associated with
DME severity, namely DRIL, HRFs, and cystoids, from the OCT image. By examining the
existence and characteristics of these features in OCT B-Scan images, the fuzzy logic-based
system aims to offer an objective and automated evaluation of DME severity. This can aid
clinicians in making precise diagnoses, monitoring disease progression, and determining
suitable treatment strategies for DME patients.

2. Related Work

Recently, various computer vision-related tasks have been applied in the domain of
DME. Due to a limited dataset of OCT B-scan images for classifying numerous diseases,
Generative Adversarial Networks (GANs) have been employed to generate additional OCT
B-scan images. This helps in training diverse classification networks to detect diseases
such as Age-Related Macular Degeneration (AMD), DME, and Chronic Neovascularization
(CNV) [11]. He et al. [12] utilized GANs to segment retinal layers from OCT B-scan images.
Similarly, Smitha and Jidesh [13] proposed an end-to-end model, leveraging GANs, to
segment retinal layers from OCT B-scan images, further classifying them as either normal
or disease-afflicted.

Suciu et al. [14] elaborated on the laboratory biomarkers employed to discern the sever-
ity of DME. These biomarkers include obesity, age, gender, and vascular risk factors. The
average Body Mass Index (BMI) of DME patients has been observed to fall between 29 and
30. High blood pressure has also been linked to increased DME severity. Markan et al. [15]
attempted to correlate cholesterol levels with DME. Their study revealed that DME severity
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shares a positive correlation with serum levels of total cholesterol, yet displays a negative
correlation with serum High-Density Lipoprotein (HDL) cholesterol levels.

Klein et al. [16] emphasized the risks associated with using laboratory biomarkers,
primarily their invasive nature and limited application in evaluating DME. An alternative
approach is to assess DME severity using imagery biomarkers. With the advent of OCT,
which provides high-resolution cross-sectional images of the neurosensory retina, the iden-
tification of imagery biomarkers has become significantly more accessible and reliable. The
subsequent sections provide a comprehensive discussion on various imagery biomarkers
employed to aid in the identification of DME and its severity.

2.1. Disorganization of Retinal Inner Layers (DRIL)

There are not many studies done on computer-based detection of DRIL or the quantifi-
cation of DRIL extent in OCT B-Scan images. Sun et al. [17] acknowledged DRIL as a crucial
biomarker for detecting DME. In another study, Babiuch et al. [18] have attempted to draw
an association between DRIL and VA at baseline and after treatment in cases of Retinal
Vein Occlusion (RVO). In this investigation, patients underwent Anti-Vascular Endothelial
Growth Factor (AVF) therapy. The authors concluded that DRIL’s presence witnessed a
diminishing trend throughout the treatment period.

2.2. Hyperreflective Foci

Schlegl et al. [19] proposed an enhanced version of the ResUnet model designed
for segmenting HRFs from OCT B-scan images. Their model was trained on Cirrus’ and
Spectralis’ OCT datasets, resulting in dice similarity coefficient (DSC) of 65.26% and 63.49%
on the two datasets, respectively. On a similar note, Xie et al. [20] devised a segmentation-
based model for detecting HRF in Spectral-Domain OCT (SD-OCT) images. Their approach,
which combined U-Net and image enhancement techniques, yielded a DSC of 70.73%, a
precision rate of 72.68%, and a recall rate of 68.89%.

2.3. Cystoid Spaces

Liu et al. [21] designed an algorithm for segmenting Cystoid Macular Edema (CME)
using omnidirectional wave operators on OCT images. The algorithm incorporated several
steps: denoising the image, applying contrast stretching to enhance it, and subsequently
utilizing the wave operator after extracting the region of interest. Their study achieved a
DSC of 81.1% and a recall rate of 75.0%. In a similar vein, Venhuizen et al. [22] developed a
deep learning algorithm specifically for segmenting intraretinal cystoid fluid from SD-OCT
images. This approach yielded a DSC of 75.4%.

Our study is mainly driven by several key motivations:

• There is a lack of research based on developing distinct machine learning models for
detecting each individual biomarker.

• There is an absence of comprehensive research that integrates all biomarkers to provide
a consolidated understanding of DME.

• There is a need to establish a foundational process for detecting the severity of DME
using a machine learning-based approach.

• This research aims to set a benchmark for the overall prognosis of DME, utilizing
biomarkers to help ascertain the severity of DME.

• Employing a fuzzy logic-based approach in the detection of DME severity is also a key
motivation, as recent studies suggest that fuzzy logic has demonstrated noteworthy
performance in detecting diseases [23–25].

3. Materials and Methods

The primary objective of this study is to predict the severity of DME using the OCT
B-Scan of the patient. This is achieved by detecting and extracting three biomarkers (DRIL,
HRFs, and cystoid spaces) from the OCT images. These biomarkers represent the severity of
the disease, which is encapsulated in the form of fuzzy rules. For instance, certain locations
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of HRFs in the OCT image correspond to high reflectivity, thus indicating a higher severity
of DME. Alongside this, numerous other rules are applied to the remaining biomarkers to
ascertain the severity of the disease. A comprehensive explanation of these fuzzy rules can
be found in Section 3.3.

The methodology adopted in this study comprises three stages: the detection of
biomarkers, the generation of insights from each biomarker, and the application of these
insights along with fuzzy rules to finally determine the severity of DME in the patient
(refer to Figure 2). The output of this model is the predicted severity of DME based on
the input OCT B-Scan image of the patient. Each stage is thoroughly detailed in the
subsequent subsections.

Figure 2. Flowchart depicting the workflow of the entire model.

3.1. Detecting Biomarkers

The initial step involves the detection of biomarkers from the OCT B-Scan image. As
delineated by Endo et al. [26], numerous biomarkers such as DRIL, EZ, FAZ, inner hyper-
reflective foci count, height of intraretinal fluid, and others are detectable. Furthermore,
the study also demonstrates DRIL has a positive correlation with both the EZ and FAZ. As
such, the presence of DRIL alone can serve as an indicator of the condition of EZ and FAZ.
Similarly, Arthi et al. [2] finds a positive correlation between HRF and SRF. Consequently,
this study focuses on three crucial biomarkers, namely DRIL, HRFs, and cystoid spaces.
These biomarkers were chosen due to their significance in determining the severity of DME
and their distinctive characteristics that are easily identifiable in OCT images.

3.1.1. Disorganization of Retinal Inner Layers (DRIL)

This study utilizes an OCT B-Scan image to examine the presence of DRIL. DRIL
refers to a condition where the distinction between different inner retinal layers becomes
unclear. Figure 3 showcases sample OCT B-Scan images with and without DRIL. Prior to
feeding into the classification network, the images are resized to 416 × 416 and converted
to grayscale. Moreover, each pixel value is scaled by a factor of 1/255, thereby limiting
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each pixel value to a range between 0 and 1. For classification, a VGG-19 [27] network
(see Figure 4) is utilized as the backbone, with its weights pre-trained on the ImageNet
dataset. VGG-19, consisting of 19 layers, is a dependable backbone network that requires
less training time than VGG-16. This is due to the additional three convolutional layers in
VGG-19 as compared to VGG-16, which allow the model to be robust even with a smaller
sample size. Therefore, the network requires fewer samples than VGG-16, which ultimately
reduces the training time. VGG-19 includes convolutional layers with a filter size of 3 × 3
and 1× 1, a stride of 1 px, and a max-pooling layer of size 2× 2 with a stride of 2. Following
this, the feature map generated after the last max-pooling layer is flattened and fed into a
fully connected layer, determining the final probability of the image belonging to either
the DRIL or Normal class. All hidden layers utilize ReLU, except for the final layer, which
uses a Softmax activation function. The model was trained using an Adam optimizer for
75 epochs.

(a) (b)

(c) (d)
Figure 3. Typical OCT B-Scan images: (a,b) with DRIL (c,d) Normal.

Figure 4. VGG-19 Network [27].

3.1.2. Hyperreflective Focii (HRF)

HRFs need to be segmented from the OCT B-scan image. Prior to input into the
segmentation network, all images are resized to 192 × 192, with the three channels (RGB)
preserved. A custom U-Net based model architecture [28] was employed for the purpose
of semantic segmentation on OCT images, resulting in a segmented image mask containing
the HRFs. U-Net comprises two paths: contraction and expansion. The contraction phase
involves passing the image through a standard convolutional layer followed by a max-pool
layer. A 3 × 3 filter is employed in each convolutional layer, with a rectified linear unit
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(ReLU) serving as the non-linear function. For pooling, a 2 × 2 filter with a stride of 2 is
implemented. Following the contraction phase, the expansion phase is undertaken. The
feature map generated after contraction is passed through an up-sampling layer followed
by a 2 × 2 convolutional layer. The output from the up-sampling and feature extraction via
the convolutional layer is then concatenated with the corresponding feature map from the
contraction phase. A diagrammatic representation of a U-Net is depicted in Figure 5. The
result of HRF segmentation for a sample OCT B-scan image is shown in Figure 6.

Figure 5. U-Net network architecture [28].

(a) (b)
Figure 6. Result of HRF segmentation: (a) original image (b) segmentation map.

The custom U-Net model utilized in this study employs Binary Cross Entropy (BCE)
Loss and dice similarity coefficient (DSC) for training the segmentation model [9]. The
respective loss function is presented in Equation (1), wherein BCE is defined by Equation (2)
and DSC is defined by Equation (3).

Custom Loss = 0.3 ∗ BCE(yi, p(yi))− DSC(yi, p(yi)) (1)

BCE = −(yi ∗ log(p(yi)) + (1 − y)log(1 − p(yi))) (2)

DSC = (2 ∗ Area of Overlap)/(Total Number of Pixels in Both Images) (3)

where Area of Overlap = Area of overlap in the segmented class between the predicted
segmentation map and the ground truth The value of the DSC ranges between 0 and 1. IOU
can also be used as a similarity measure, which is the intersection between the union of the
predicted segmentation map and the ground truth. It is positively correlated to the DSC.
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3.1.3. Cystoid Space

Similar to HRFs, cystoid spaces also require segmentation from the OCT B-scan image.
Each image retains its three channels (RGB) and is resized to a 192 × 192 resolution. To
remove any unwanted noise, a Gaussian blur with a kernel size of 5 × 5 is applied to
the input image before it is passed to the segmentation network. For segmentation, the
identical U-Net model utilized for HRF segmentation is employed for the segmentation
of cystoid spaces from the OCT images. The outcome of the cystoid segmentation for a
sample OCT B-scan image is displayed in Figure 7. In the current study, the custom U-Net
model employs BCE Loss and DSC to train the segmentation model [9]. The loss function
is given by Equation (1), where the DSC is defined as in Equation (3), and BCE is expressed
as in Equation (2).

(a) (b)
Figure 7. Results of cystoid segmentation: (a) original images (b) segmentation maps.

3.2. Generating Insights from Detected Biomarkers

Following the detection and segmentation of required biomarkers, the subsequent step
is to extract from them features that indicate the severity of DME. Such features include the
determination of whether DRIL is central, the position of HRFs, and the count and area of
the cystoid spaces. Each of these is discussed in subsequent sections.

3.2.1. Center Identification for DRIL

DRIL is characterized as the inability to detect separation in INL, OPL, and the GCL-
IPL complex on an OCT image [1]. Sun et al. [29] posited that DRIL with a horizontal
extent exceeding 0.5 mm in the 1 mm central foveal area corresponds to worsened VA.
Consequently, if DRIL is present in the OCT image, it becomes necessary to classify its
position as either central or non-central. Figure 8 illustrates sample images for both central
and non-central DRIL situations.

In classifying images with DRIL as either central or non-central, an object detection
model, inspired by YOLOv5 [30,31], was first utilized to detect and draw bounding boxes
around the 1 mm central foveal area. The decision to utilize a Yolov5-like model was
influenced by its compact size and faster object detection runtime. Following the detection
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of the 1 mm foveal center, the VGG-19 network [27], similar to its previous application,
was employed for classifying images as either DRIL or Normal. The weights utilized
were pretrained on the ImageNet dataset, and the obtained feature map was flattened and
fed into a fully connected layer. The model underwent training for 50 epochs with an
Adam optimizer.

(a) (b)

(c) (d)
Figure 8. Results of DRIL image: (a,b) central DRIL. (c,d) d non- central DRIL.

3.2.2. Fetching the Location of HRFs

HRFs located in the OPL and ONL have a substantial negative impact on patients’
VA [32]. Therefore, following the segmentation of HRFs, those located above, within, or
below the OPL layer require counting in the post-processing phase. The presence of a larger
number of HRFs below or within the OPL layer indicates more severe DME than the former.
This process is executed in two stages. The first stage involves the segmentation of the OPL
from the OCT image. To achieve this, the same model utilized earlier for HRF segmentation
is applied. The second stage involves determining the location of HRFs relative to the
segmented OPL layer. Here, the position of HRFs is obtained from the segmented map
resulting from HRF segmentation. This is done using OpenCV, which identifies HRFs as
contours on the segmented map. The position of these contours is retrieved, providing the
position of the HRFs. Ultimately, the position of the HRFs is compared with the OPL layer
obtained from the other segmentation map (the map segmenting the OPL layer). Figure 9
illustrates the results of OPL layer segmentation for a sample OCT image. A comparison of
these elements helps determine whether the HRF is present above the OPL layer or not.
For instance, let (x1, y1) represent the position of an HRF. Then, in the segmentation map of
OPL segmentation, for line x = x1, the value of the y-axis of the upper boundary of the OPL
layer is examined to see whether it is greater than or less than y1. If it is greater than y1,
the HRF is located inside or below the OPL layer. Otherwise, it is located above the OPL
layer and, therefore, does not have as severe an impact as the former.
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(a) (b)
Figure 9. Results of OPL layer segmentation: (a) original image (b) segmentation map.

3.2.3. Fetching of Cystoid Space Parameters

Yalçın et al. [33] outlined various parameters relating to the cystoid space in OCT
images, indicative of the severity of DME. Four conclusions can be derived from their
study: (i) There is a 58% probability of VA being less than 20/60 in eyes with a horizontal
cyst diameter of ≥450 µm. (ii) There is a 73% probability of VA being greater than or equal
to 20/60 in eyes with a horizontal cyst diameter of less than 450 µm. (iii) There is a 62%
probability of VA being less than 20/60 in eyes with a vertical cyst diameter of ≥300 µm.
(iv) There is a 69% probability of VA being greater than or equal to 20/60 in eyes with a
vertical cyst diameter of less than 300 µm.

Apart from the relationship between cystoid diameter and VA, Nagai et al. [34] demon-
strated that the number and area of cystoids present in the OCT image decreased with
DME treatment, therefore signaling an improvement in disease severity. To incorporate
these findings into our study and construct a computer vision-based model to grade DME
severity based on cystoid spaces, cystoids must be segmented out from the OCT images.
Subsequently, the count, area, and diameter (both horizontal and vertical) of these cystoids
must be obtained. These parameters, together with the insights from recent studies [33,34],
can then be used to determine a patient’s DME severity. After applying the U-Net model
to OCT B-Scans to segment cystoids, the resulting segmentation map is utilized to extract
information about each cystoid’s size and both horizontal and vertical diameters. For this
study, OpenCV was used for this purpose. Initially, cystoids are detected as contours on
the segmentation map. The count of these contours and the area of each contour are then
obtained using OpenCV’s built-in functions. To determine the horizontal and vertical
diameters of the cystoid, a minimum bounding rectangle is drawn around each detected
contour. The dimensions of the rectangle represent the horizontal and vertical diameters of
each cystoid space.

3.3. Fuzzy Rules

The utilization of fuzzy logic for tackling a variety of healthcare issues has been
reported in several recent studies. For instance, Soltani et al. [23] employed a fuzzy logic
approach for detecting glaucoma, attaining an impressive accuracy of 96.15%. Sibiya and
Sumbwanyambe [24] similarly utilized a fuzzy system to identify maize common rust
disease, demonstrating a test accuracy of 89%. Moreover, Jindal et al. [25] introduced a
fuzzy logic method for diagnosing renal cancer, with their system yielding an accuracy of
96%, a sensitivity of 95.5%, a specificity of 96.1%, and a precision of 95.8%.

The next phase in this process, following the generation of insights from the biomark-
ers, involves applying fuzzy rules to these insights to determine the severity of DME.
The identification and feature extraction outputs from each biomarker (DRIL, HRF, and
cystoid spaces) are processed through the fuzzy engines. Subsequently, by adhering to the
rules highlighted in our study (refer Table 1), the final DME severity is discerned, along
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with supplementary information that may aid the patient or physician in deciding upon
a treatment plan. In the following subsections, we delve deeper into various fuzzy rules
underpinned by recent research in this domain.

Table 1. Rules used to develop the fuzzy engine.

Biomarker Rule Study Supporting
the Rule

DRIL

If DRIL of >0.5 mm in a central foveal area of >1 mm then
it represents lower VA.

[29]

Patients with no DRIL and no HRF respond better to dex-
amethasone (DEX) implants.

[35]

HRF

If the HRF is present on the borders of outer nuclear and
the outer plexiform layer, or below it, then it considers
deflecting more light than usual hence worsening VA.

[32]

HRF is more implies SRF is also a high chance, and if SRF
is there, it means more fluid in the eye hence implying
higher severity of DME.

[32]

Cystoid

The high number, and area of cystoids, predict worse VA. [34]

Space

73% probability of VA ≥ 20/60 is present with eyes having
horizontal cyst diameter < 450 µm.

[33]

69% probability of VA ≥ 20/60 is present with eyes having
vertical cyst diameter < 300 µm.

[33]

Patients with cystoids of size greater than >450 um hor-
izontal diameter and >300 um vertical diameter have a
high chance of BCVA of <20/60, in which case they should
be advised not to drive and read.

[36]

If the horizontal diameter of the cystoid is <450 um and
the vertical diameter <300 um, then the patient has a high
probability of responding to ranibizumab.

[36]

3.3.1. Rules for Insights Generated on DRIL

In the research conducted by Endo et al. [26], pivotal correlations were discovered
between factors obtained from OCT images and patients’ VA. The study determined that
VA was significantly affected by factors such as the extent of DRIL, FAZ circularity, and
EZ disruption. Notably, a direct proportionality was identified between the lengths of
DRIL and EZ, while an inverse proportionality was seen between the lengths of DRIL and
FAZ circularity. According to Grewal and Jaffe [1], DRIL emerges as a robust imaging
biomarker for predicting VA in patients afflicted with DME. Furthermore, as highlighted
by Sun et al. [29], VA can be adversely affected if the horizontal extent of DRIL is greater
than 0.5 mm within the central foveal area of 1 mm. It is also worth noting that an increase
in the extent of DRIL over a period of eight months correlates with a deteriorating VA for
the same duration.

3.3.2. Rules for Insights Generated on HRF

In the study conducted by Arthi et al. [2], an exploration of factors associated with
HRF such as SRF and cystoid spaces was undertaken. This study established high positive
correlations between these factors, suggesting HRF as a potential source of inflammation in
patients. Similarly, Bolz et al. [32] demonstrated that the presence of HRF on the borders
of the outer nuclear and the OPL leads to more light deflection than usual, consequently
having an adverse effect on VA.

3.3.3. Rules for Insights Generated on Cystoid Spaces

Yalçın et al. [33] indicated that (i) 58% probability of VA less than 20/60 is present
in eyes with horizontal cyst diameter ≥ 450 and (ii) 73% probability of VA greater than
or equal to 20/60 in eyes having horizontal cyst diameter amounting to less than 450 µm
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(iii) 62% probability of VA less than 20/60 in eyes with vertical cyst diameter ≥ 300 µm
and (iv) 69% probability of VA greater than or equal to 20/60 in eyes with vertical cyst
diameter < 300 µm. Nagai et al. [34] observed that the number and area of cystoid spaces
decreased with DME treatment.

3.3.4. Other Inferences

Dexamethasone (DEX) implant, a technique utilized for mitigating the impact on VA
in patients with DME, has shown to improve DRIL [37]. As shown by Zur et al. [37], DRIL
could be enhanced with a DEX implant, ameliorating DRIL by 60.6% and 75.0% at the
intersection of Ganglion Cell and Inner Plexiform Layers (GCIPL) and INL at the intervals
of four and twelve months, respectively. On the other hand, DRIL was reduced by 31.3%
and 35.1% at the boundary between the INL and OPL after four and twelve months. Further,
Zur et al. [37] also proposed that eyes devoid of HRF and DRIL and having sub-macular
fluid are more likely to respond positively to DEX implants.

3.4. Combining It All

The input to the proposed model is an OCT B-Scan image affected by DME. Firstly, the
necessary biomarkers for this study, namely DRIL, HRF, and cystoid spaces, are identified
in the image. The DRIL is detected using a classifier, whereas the HRF and cystoid spaces
are detected based on segmentation. Following this, the features that form part of the rules
used in the fuzzy engine are extracted from these identified biomarkers. The resulting
values are then passed through a fuzzy inference engine, where they are initially converted
into fuzzy values through fuzzification. Subsequently, according to the rule base, the image
is classified as representing severe, moderate, or mild DME.

4. Results
4.1. Dataset

For this study, a custom dataset was curated and validated by an expert ophthalmolo-
gist. The dataset was created from approximately 150 high-resolution, low-noise images se-
lected from a larger set of 1000 OCT B-Scan images with DME sourced from Kaggle [38–40].
All images were in JPEG format with a resolution of 416 × 416 pixels. The dataset was
divided into five distinct categories corresponding to various tasks: DRIL/Normal clas-
sification, Central/non-Central DRIL, HRF segmentation, OPL layer segmentation, and
cystoid segmentation. For the DRIL/Normal classification task, images with DME were
further subdivided based on the presence of DRIL. 100 images (50 with DRIL and 50 non-
DRIL images) were used for training and 30 for testing. Images with DRIL were further
classified into central or non-central DRIL for the Central/non-Central DRIL classification
model. This classification task utilized 100 images for training and 30 for testing. The
categorization of these images was verified by an ophthalmologist. For the task of HRF
segmentation, 30 annotated images of 192 × 192 pixels resolution served as the ground
truth to train the model. Annotations were manually conducted using online software
and verified by the ophthalmologist. Sample annotated images used for training the HRF
segmentation model are illustrated in Figure 10. The patient’s OCT B-scan image was the
model input, and the corresponding soft map, generated post-annotation, was considered
the ground truth for model training. Similarly, for OPL layer segmentation, 22 images of
192 × 192 pixels resolution were used for training and five for testing. This task aided in
determining the positions of HRFs, as shown in Figure 11. For the cystoid segmentation
model, a separate data folder containing input OCT B-scan images and their corresponding
soft maps, with annotated cystoid spaces, was created. The model was trained on 25 images
(192 × 192 pixels resolution) and tested on 10 images. Sample annotated images utilized
for training the cystoid segmentation model can be found in Figure 12.
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(a) (b)
Figure 10. Sample images: (a) input, and (b) soft map from HRF segmentation mask.

(a) (b)
Figure 11. Sample images: (a) input, and (b) soft map from OPL layer segmentation mask.

(a) (b)
Figure 12. Sample images: (a) input, and (b) soft map from cystoid segmentation mask.

4.2. Evaluation Metrics

Different metrics were used for classification and segmentation tasks. The DSC is
used for segmentation to measure the model’s performance. It is given by Equation (3).
For classification, standard validation metrics were employed, including sensitivity (also
known as recall or True Positive Rate (TPR)), precision, F1-score, and accuracy. These
metrics predominantly evaluate the performance of true positives (TP), false positives
(FP), false negatives (FN), and true negatives (TN) identified by the classification model.
Sensitivity, the ratio of TP to the total actual positive cases and is given by Equation (4). A
higher sensitivity value indicates that the model is good at capturing positive instances.
Precision (refer Equation (5)) is the ratio of TP to all the cases predicted as positive. A higher
precision value indicates that the model is good at ensuring that its positive predictions are
indeed positive. F1-score (refer Equation (6)) is the harmonic mean of precision and recall,
and the system is considered better as this value increases. This metric is more informative
than the standard accuracy score as it considers TP, FP, TN, and FN. Accuracy (refer
Equation (7)) is the proportion of all predictions that are correct. This metric provides a
general measure of the model’s performance across all classes.

Sensitivity =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

F1-score = 2 · Precision · Sensitivity
Precision + Sensitivity

(6)
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Accuracy =
TP + TN

TP + FP + FN + TN
(7)

4.3. Biomarker Study Comparison

This study is the first to build classification models for DRIL/Normal and Central/non-
Central DRIL and segmentation models for the OPL layer and cystoid spaces. There is a
study, however, that has built a model for HRF segmentation. This has been discussed
in detail, along with the individual performances of models for each biomarker, in the
subsections below.

4.3.1. DRIL

This study employed two classification models. The first model was used to dis-
tinguish between OCT images demonstrating the presence of DRIL and those without
DRIL. Following this DRIL/Non-DRIL classification, a custom object detection model was
utilized to pinpoint a 1 mm central foveal area. This was accomplished with a precision of
0.874, a recall of 0.636, and a mean average precision of 0.653. Subsequently, an additional
classification model was used to categorize the images displaying DRIL as either Central or
Non-Central DRIL. The confusion matrices of the DRIL/Non-DRIL classification and the
Central/Non-Central DRIL are presented in Figure 13. The outcomes of the classification
models are tabulated in Table 2. Sample images and their corresponding detection results
are exhibited in Figure 14.

(a) (b)
Figure 13. Confusion matrices for classification models (a) DRIL/normal (b) central/non-central
DRIL.

Table 2. Result of DRIL/normal and central/non-central DRIL classification models.

S.No Classification Model Training
Size Testing Size Accuracy

(%)
Sensitivity
(%)

Specificity
(%)

F1-Score
(%)

1 DRIL/Normal 100 30 93.33 0.875 1.0 0.93333
2 Central/non-Central DRIL 100 30 90.00 0.9333 0.8666 0.9032

4.3.2. HRF

This study uses two segmentation models for HRF detection and their positions: HRF
segmentation and OPL layer segmentation. The result is shown in Table 3.

Table 3. Result of HRF segmentation, OPL layer segmentation.

S.No HRF Segmentation Training Size Testing Size DSC (%)

1 HRF segmentation 20 8 91.30
2 OPL layer segmentation 22 5 98.28
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Figure 14. Results of object detection model. The red box indicates the detected central foveal area.

4.3.3. Cystoids

For cystoids, the proposed segmentation model is utilized for detection. The result of
the segmentation is given in Table 4.

Table 4. Results of the cystoid segmentation model.

S.No Segmentation Model DSC (%)

1 Our Model 95.07

4.4. Fuzzy Rules Quantification

Table 5 shows the results after applying the fuzzy engine to the features extracted
from three biomarkers: DRIL, HRFs, and cystoids.

Table 5. Final results for sample OCT B-Scan images.

Image DRIL HRF Cystoid Final Score

Yes, Central Severe

Yes, Central Severe

Yes, Non-central Medium
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Table 5. Cont.

Image DRIL HRF Cystoid Final Score

Yes, Central Severe

No Mild

Yes, Central Mild

Yes, Non-central Mild

5. Discussion

Recently, fuzzy engines have been employed for the detection of various diseases.
However, this system has not yet been applied to the detection of DME or detection of the
severity of DME. Our study seeks to detect the severity of DME using a fuzzy engine. This
study divides the entire methodology into different stand-alone models, each of which
can be individually enhanced without affecting other models. For example, the biomarker
extraction is one such model, where the inclusion of more biomarkers can potentially
improve the overall model performance. Similarly, diverse features can be extracted from
a biomarker, or alternative rules can be applied to each biomarker to enhance model
performance. Such a modular solution facilitates further refinement of the model’s results
by integrating additional biomarker extraction models, more descriptive features for each
biomarker, and more precise rules for the features derived from each biomarker.

It has been observed that a DRIL exceeding 0.5 mm of horizontal length in a 1 mm
central foveal area leads to a greater loss of VA [33]. However, minimal research has been
conducted in predicting the presence of DRIL and its location in the central foveal area. Our
model addresses this by initially classifying OCT B-Scan images into those with DRIL and
those without. The model employs a VGG-19 network for image classification, followed by
a fully-connected layer that generates the final probability of the image containing DRIL.
The DRIL/Normal image classifier attained an accuracy of 93.33%. A comparison of the
VGG-19 network with other backbone networks for DRIL/Normal image classification is
presented in Table 6.
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Table 6. Results of VGG-19 network and other backbone networks on DRIL/Normal classification.

S.No Backbone Network Training Accuracy (%) Validation Accuracy (%)

1 VGG19 97.96 70.0
2 ResNet50 93.88 60.0
3 ResNet101 96.94 50.0
4 Inception 97.96 63.33

When DRIL is detected, a subsequent classifier determines if DRIL is located in the
1 mm central foveal area, thereby extending its overall performance and applicability.
This network also employs a VGG-19 network, which achieved an accuracy of 93.00%. A
comparison of the VGG-19 network with other backbone networks for Central/non-Central
DRIL images is presented in Table 7.

Table 7. Results of VGG-19 network and other backbone networks on Central/non-Central DRIL
classification.

S.No Backbone Network Training Accuracy (%) Validation Accuracy (%)

1 VGG19 98.47 60.0
2 ResNet50 95.83 40.0
3 ResNet101 83.33 50.0
4 Inception 87.50 40.0

Cystoid spaces are the second biomarker, which the model segments out from the OCT
B-scan images and calculates their area, vertical diameter, and horizontal diameter and
count before feeding the values into the fuzzy engine. Liu et al. [21] built an algorithm for
CME segmentation using omnidirectional wave operators on OCT images and produced
a DSC of 81.1% and a recall of 75.0%. Venhuizen et al. [22] developed a deep learning
algorithm to segment intraretinal cystoid fluid from SD-OCT images with a DSC of 75.4%.
Our model uses a custom U-Net-based architecture to segment the cystoid spaces and
achieves a DSC of 95.07%. Table 8 draws a comparative study between segmentation
models used for cystoid segmentation in previous studies and our model.

Table 8. Comparison of different cystoid segmentation models.

S.No Segmentation Model DSC (%)

1 Using omnidirectional wave operator [21] 81.1
2 Deep Learning-based Algorithm [22] 75.4
3 Our Model 95.07

The final biomarker considered in this study for the detection of DME severity is HRF.
These must be segmented from the OCT B-Scan image, and their positions relative to the
OPL, either above or below, must be determined. Schlegl et al. [19] proposed an enhanced
ResUnet model to segment HRFs from OCT B-scan images, achieving DSC of 65.26% and
63.49% on the Cirrus and Spectralis OCT datasets respectively. Xie et al. [20] proposed
a segmentation-based model to detect HRF in SD-OCT images. It provided a DSC of
70.73%, a precision of 72.68%, and a recall of 68.89% using U-Net and image enhancement
techniques. Our model outperforms these by achieving a DSC of 91.30% (refer Table 9).
The increase in DSC can be attributed to changes in the HRF segmentation methodology
and the architecture of the employed U-Net model. Contrary to the model proposed by
Xie et al. [20], where the input SD-OCT image was denoised and enhanced before feeding
into the U-Net as a 2-channel input, our model directly inputs the denoised image into
the U-Net model. During encoding, our model consists of pairs of convolutional and
up-sampling layers with intervening max-pooling layers, followed by a dropout layer after
each convolutional layer to control model overfitting. For decoding, the standard U-Net
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architecture is followed, with concatenation of convolutional layers with the corresponding
up-sampled layer. The final layer is a convolutional layer with one channel and a sigmoid
function, yielding a segmentation map of size 192 × 192 . To ascertain whether the HRFs
are above or below the OPL layer, another segmentation model is trained to segment the
OPL layer. We utilized the same network architecture as the other segmentation models,
and segmented the OPL layer from the OCT B-Scan image with a DSC of 98.28%. Upon
obtaining the segmentation map with the OPL layer and another map with segmented
HRFs, these maps are overlaid to determine the relative position of HRFs to the OPL layer.
Xie et al. [20] utilized 33 SD-OCT cubes from 27 patients, whereas Schlegl et al. [19] utilized
145 OCT images from private hospitals. This study leverages 30 publicly accessible OCT
images manually annotated with online tools and validated by ophthalmologists.

Table 9. Comparison between models for HRF segmentation.

S.No Segmentation Model DSC (%)

1 U-Net with Image Enhancement [20] 70.73
2 ResUnet+ (Cirrus) [19] 65.23
3 ResUnet+ (Spectralis) [19] 63.49
4 Proposed Model 91.30

Following the classification of OCT B-Scan images based on the presence and position
of DRIL, segmenting HRFs and cystoids, and extracting features from each
biomarker—which include categorizations of DRIL or Normal, Central or Non-Central
DRIL, the position of HRFs relative to the OPL, and the count, area, and vertical and hori-
zontal diameters of cystoids—these features are input into a fuzzy logic system. The rules
for this system are informed by insights from existing studies examining the relationships
between each biomarker and DME. Consequently, the fuzzy engine outputs the predicted
severity of DME. This study contributes to clinical practice by enabling physicians to es-
timate the severity of DME using solely a patient’s OCT B-Scan image. This could assist
in determining appropriate treatment approaches and monitoring disease progression in
response to therapeutic interventions. Future research could explore the generation of
predictive OCT images for patients with DME, given their baseline OCT images. This could
offer valuable insights into the potential progression of the disease, aiding clinicians in
their treatment strategies and enhancing the likelihood of patient recovery.

6. Conclusions

In this study, we proposed a comprehensive model to grade the severity of DME from
OCT B-Scan images by focusing on three key biomarkers: DRIL, HRF, and cystoid spaces.
The methodology adopted in this work encompasses three stages. In the first stage, the
image is classified as either Normal or DRIL, and further, DRIL images are subclassified
into Central DRIL or Non-Central DRIL. Simultaneously, the HRF and cystoid spaces are
segmented from the OCT image. The second stage involves the extraction of relevant
features from the segmented images, predominantly using OpenCV. The extracted features
are then passed into a fuzzy logic engine during the final stage. This engine, guided by
rules derived from recent studies in this domain, outputs the ultimate DME severity grade.

The outcomes of this study can equip healthcare professionals with a valuable tool
to grade DME severity, thereby facilitating personalized, targeted treatment plans for
patients. While the current model presents promising results, it could potentially benefit
from incorporating a broader range of biomarkers for severity evaluation, or by integrating
more rules into the fuzzy engine. Such expansions, of course, would require further analysis
based on previous research findings and expert medical input for validation. In this way,
our model’s reliability and applicability could be further enhanced in future studies.
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