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Abstract: Cytomegalovirus (CMV) infection is a highly prevalent opportunistic infection among liver
transplant recipients. When the liver donor is infected with CMV, there is a risk of transmission to the
recipient, leading to CMV infection. To improve the postoperative outcome of liver transplantation,
it is crucial to shift the focus of CMV detection to the donor and achieve early diagnosis, as well as
implement effective preventative and therapeutic measures. However, the commonly used CMV
detection methods in the past had limitations that prevented their early and accurate diagnosis in
liver transplant donors. This review focuses on the latest advancements in CMV detection methods
that can potentially be applied to liver transplant donors. The objective is to compare and evaluate
their clinical utility, thereby providing guidance and support for rapid and accurate diagnosis of
CMV infection in the clinic. The clustered regularly interspaced short palindromic repeats-associated
proteins (CRISPR–Cas) system-based assay emerges as a promising method for detecting the virus,
offering great prospects for early and expedient CMV infection diagnosis in clinical settings.

Keywords: liver transplantation; cytomegalovirus; infection; detection methods; CRISPR–Cas

1. Introduction

Cytomegalovirus (CMV) is one of the most opportunistic viruses to which liver trans-
plant recipients are susceptible. CMV infection in liver transplant donors can lead to CMV
carriage in the donor’s liver, posing a risk of CMV infection in the recipient. This not only
affects the outcome of liver transplantation but also impacts the prognosis and management
of the recipients. In severe cases, it can result in the loss of organ function or even endanger
the recipients’ lives. While there are various testing methods to determine CMV infection in
recipients after liver transplantation, there is a growing trend in the morbidity and mortality
rates associated with CMV infection. Therefore, shifting the focus to detecting CMV in the
liver transplant donor and implementing effective preventive and therapeutic measures
is crucial in improving the postoperative outcome of liver transplantation. This approach
holds significant significance. Commonly used methods in the past to detect CMV in
liver transplant donors include viral culture, histopathologic examination, antigenemia
assay, serologic testing, and the nucleic acid amplification test (NAAT) [1]. However, these
methods have limitations and are not sufficient for early and accurate diagnosis of CMV
infection. Hence, this paper primarily summarizes the most recent research progress in

Diagnostics 2023, 13, 3310. https://doi.org/10.3390/diagnostics13213310 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13213310
https://doi.org/10.3390/diagnostics13213310
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0003-0156-0803
https://orcid.org/0009-0009-8410-6243
https://orcid.org/0000-0003-1459-8261
https://doi.org/10.3390/diagnostics13213310
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13213310?type=check_update&version=1


Diagnostics 2023, 13, 3310 2 of 17

CMV detection methods that may be applied to liver transplant donors. It also compares
and evaluates their clinical utility, aiming to provide a valuable reference for rapid and
accurate diagnosis of CMV infection in the clinic.

2. CMV Infection and Diagnosis in Liver Transplant Donors

CMV is the most common opportunistic infection in liver transplant recipients, and
it has a direct impact on graft survival and patient mortality [2]. The histopathologic
features of CMV were first described in 1904, and in 1957, Craig successfully isolated and
identified the virus [3]. As a β-herpesvirus, CMV can remain in the host for extended
periods and is a significant pathogen in immunocompromised populations [4]. Mature
CMV viral particles are enveloped double-stranded linear DNA viruses with a diameter of
150~200 nm, a genome length of 225~240 kb, and encode more than 200 proteins [5]. CMV
infection is highly prevalent in the population, and although CMV infection elicits specific
humoral and cellular immunity, CMV can hyper- and persistently infect the host [6]. CMV
infection is a major cause of morbidity and mortality in organ transplant recipients, even
though it is generally clinically insignificant when the host has a normal immune response.

CMV infection is defined as the presence of CMV replication, indicated by the isolation
or detection of viral proteins (antigens) or nucleic acids in any body fluid or tissue specimen,
regardless of symptoms [7]. CMV disease can manifest in two forms: CMV syndrome
and tissue-invasive end-organ disease. CMV syndrome is characterized by the presence
of at least two symptoms or signs after CMV infection. These include an unexplained
fever lasting at least 2 days, as well as systemic symptoms like malaise, muscle aches,
leukopenia, or thrombocytopenia. On the other hand, tissue-invasive end-organ disease is
diagnosed through biopsy confirmation and includes conditions such as CMV-associated
hepatitis, pneumonia, retinitis, or gastroenteritis [8,9]. Apart from the direct effects of CMV
infection and disease, it is essential to consider the “indirect effects”. These effects can be
categorized as general or graft-specific and are associated with increased rates of infection,
graft loss, morbidity, and mortality across all types of effects [10,11]. The pathogenesis
of CMV infection is highly intricate, involving numerous interactions between CMV and
the human immune system. These interactions are mediated through various complex
mechanisms, including cytomegalovirus effects on human leukocyte antigen expression,
cytokine production, and adhesion molecule production [5]. CMV replication can be
found in various body tissues, blood, and other fluids, irrespective of symptoms. It can
be determined by antigen detection, nucleic acid testing, or viral culture. Depending on
the method or principle employed, CMV replication in the blood is referred to as CMV
antigenemia (antigen detection method), DNAemia or RNAemia (nucleic acid detection),
or CMV viremia (virus culture method) [8].

Table 1 shows the methods commonly used for CMV testing in the past, which were
compared and evaluated. Among them, quantitative NAAT-based CMV viral load testing
has become a major tool for diagnosing active disease, initiating preemptive therapy,
monitoring response to antiviral therapy, and signaling the risk of clinical relapse or
antiviral resistance [12]. It has been shown that prophylaxis and preemptive antiviral
therapy are the two main strategies for preventing CMV disease [13]. CMV prophylaxis
refers to the use of anti-CMV drugs in patients at increased risk of CMV reactivation, while
preemptive therapy refers to the administration of anti-CMV drugs only when a patient
shows evidence of CMV replication. Studies have shown that both of these strategies can
reduce the incidence of CMV disease in solid organ transplants [14], but both require early
and accurate diagnosis, so further research to obtain a more rapid and accurate diagnosis
of CMV infection is critical [15].
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Table 1. Characteristics of commonly used CMV testing methods in the past for liver transplant donors.

Assay Principle Advantage Disadvantage Reference

Viral culture Viral replication Highly specific
Low sensitivity,

time-consuming culture,
slow turnaround time

[16]

Histopathology Viral inclusion body

Gold standard for diagnosis of
CMV tissue invasive disease;
Differentiating CMV disease

from allograft rejection

Intrusive operations [17]

Serology Specific IgM,
IgG antibodies

Liver transplant
donor/recipient CMV
screening; Predicts the

risk of developing disease

Delayed appearance of
specific IgM and

prevalence of IgG
can mislead results

[18]

Antigenemia PP65 antigen

High sensitivity and specificity;
Easy to perform, rapid

diagnosis of CMV, no need for
expensive equipment

Lack of standardization
of results; Some

requirement for number of PBLs
[19]

CMV-CMI IFN-γ produced by
CD4+/CD8+ T cells

Commercialized Tests;
Prognostic Prediction
of CMV; Viral Load

Measurement; Pre-transplant
risk stratification

Experimental complexity;
Lack of positive

thresholds; Cost-effectiveness issues;
Inadequate clinical trials

[20]

QNAT Viral load High sensitivity, high
throughput, high specificity

Variability prior to different PCR assay
platforms/assays [12]

Abbreviations: CMV-CMI, Cytomegalovirus-specific cell-mediated immunity; IFN-γ, Interferon-gamma; PBLs,
Peripheral blood leukocytes; QNAT: Quantitative nucleic acid testing.

3. Methods Commonly Used in the Past for the Detection of CMV
3.1. Virus Culture

It can be divided into traditional tissue tube cultures (empty spot assay) and vial
cultures, both of which are highly specific for the diagnosis of CMV infection [1]. Compared
to traditional culture, vial culture is a rapid culture method that is based on low-speed
centrifugation, which allows the detection of early CMV antigens before characteristic
cytopathic effects appear in tissue culture, achieving shorter turnaround times (48 h) [21].
In clinical virology laboratories, vial cultures have largely replaced traditional culture
methods precisely because of the short time required to obtain results. Nevertheless, the
sensitivity of vial cultures is not sufficient for the application and remains significantly
lower than that of antigen and molecular assays [22,23]. Additionally, vial cultures share
similar limitations in terms of specificity with conventional culture techniques.

3.2. Histopathology

The gold standard for diagnosing tissue-invasive CMV disease is a histologic exami-
nation of biopsy samples [17]. This method involves identifying enlarged cells and nuclei
and detecting the presence of intracellular viral inclusions, usually basophilic intranuclear
inclusions (called megaloblasts), although eosinophilic cytoplasmic inclusions may also
be observed [16,17] (Figure 1). The diagnosis of CMV infection in tissue sections can also
be established by immunohistochemical staining or in situ hybridization methods [16].
However, due to the invasive nature of the procedures involved in histopathology, routine
CMV testing of liver transplant donors is not recommended.
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Figure 1. Tissue Section of a CMV-Positive Cell. This figure presents a tissue section of a CMV-
positive cell, specifically illustrating CMV gastritis. The yellow arrow in this image highlights a
cytomegalic cell with a basophilic intranuclear inclusion encircled by a halo. The staining method
used is Hematoxylin and Eosin (H&E), and the magnification is 100×. PathologyOutlines.com, a
reputable pathology resource platform, provides the figure. Copyright for this figure is attributed to
the original authors.

3.3. Serology

CMV comprises a diverse range of serotypes, each defined by its unique CMV glyco-
protein composition. Notably, disparities in viral serotypes between the donor and recipient
have been identified as a contributing factor to elevated rejection risks in transplantation
settings. Understanding these serotypic variations is crucial for optimizing transplant
outcomes [24]. CMV infection initially triggers the production of IgM antibodies, indicating
recent or acute infection, followed by the production of IgG antibodies, indicating previous
or latent infection. The pre-transplant evaluation of CMV IgG levels in both donors and
recipients represents a widely endorsed approach for assessing and stratifying the risk of
CMV infection [25]. Through the analysis of CMV IgG results, recipients can be categorized
into distinct risk groups, including high-risk (characterized by seropositive donors and
seronegative recipients), intermediate-risk (comprising seropositive recipients), and low-
risk (encompassing seronegative donors and recipients) categories [26]. This categorization
is pivotal in guiding clinical decision-making. It enables healthcare professionals to predict
the likelihood of CMV disease occurrence and tailor the use of prophylactic antiviral ther-
apy accordingly. Therefore, the determination of serostatus through serologic testing is a
fundamental step in pretransplant assessment, providing a critical foundation for optimiz-
ing patient care and outcomes. Research has found that it generally takes 10–14 days after
infection to detect CMV-specific IgM antibodies [18], and it takes approximately 2–3 weeks
from the onset of symptoms to detect CMV-specific IgG antibodies [27]. Therefore, the
detection of CMV antibodies IgM and IgG is not conducive to early diagnosis of CMV
infection. Due to the delayed appearance of IgM and the prevalence of IgG, it is easy to be
misled by false-negative results, which limits the usefulness of serum antibody testing in
the diagnostic process for CMV infection.
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3.4. Antigenemia

CMV antigenemia is characterized by the detection of CMV antigen, specifically PP65,
within peripheral blood leukocytes (PBLs), as illustrated in Figure 2 [8]. This technique
employs a semi-quantitative approach to ascertain the presence of the monoclonal anti-
body PP65 within CMV-infected peripheral blood polymorphonuclear leukocytes (PMN)
and employs immunohistochemistry or immunofluorescence methodologies [19]. Under
fluorescence microscopy, leukocytes exhibiting positive antigenemia exhibit a uniform
yellow–green nuclear pattern. Positive results are quantified as the ratio of stained cells
to the total cell count, with diagnostic significance attributed to PP65 antigenemia when
one or more positive cells per 200,000 are observed [19]. This method plays a crucial role in
detecting ongoing viral replication and aids in clinical diagnosis. Compared to the NAAT
assay for CMV, the antigenemia test also showed reliable, rapid, and sensitive results,
and both were comparable in diagnosing active CMV infection and guiding treatment
response [28]. This assay is sensitive and specific, relatively easy to perform, and does
not require expensive equipment, but results are limited by a lack of standardization,
including subjective interpretation of results and the need for adequate neutrophil counts
(>1000 cells/mL), and importantly, PP65 antigenemia values are usually elevated during
the first week of CMV infection; therefore, it is important to evaluate the results of the
assay during that period [29,30]. Due to the lack of standardization of antigenemia test
results and the requirement for the number of PBLs, most laboratories have moved away
from antigenemia testing for CMV testing in liver transplant donors, preferring to use
quantitative molecular testing methods.
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Figure 2. pp65-positive polymorphonuclear (PMN). This figure showcases pp65-positive polymor-
phonuclear (PMN) cells through different staining techniques. (A,B) depict indirect immunoflu-
orescence staining, while (C) utilizes immunoperoxidase staining. The samples include cytospin
preparations of PMN cells containing pp65-positive cells. These samples are obtained from a patient
with disseminated HCMV (human cytomegalovirus) infection (A) or generated in vitro (B,C). The
degree of staining is denoted as weak (w), moderate (m), or strong (s) based on the intensity of
fluorescence. The magnification used for the images is ×910. This figure is sourced from Pathology-
Outlines.com, a reputable pathology resource platform. Copyright for this figure is attributed to the
original authors.
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3.5. Cell-Mediated Immunization (CMI) Assay

Multiple previous studies have solidified the connection between CMV-specific T-cell
immunity and the presence of CMV viremia, as well as the development of associated
diseases [31]. To evaluate CMV-specific cell-mediated immunity (CMI), we conducted
an enzyme-linked immunosorbent spot (ELISPOT) assay [32]. This assay involved the
stimulation of T cells using overlapping peptide pools derived from CMV phosphoprotein
65 (pp65) and immediate early-1 (IE-1) proteins. Subsequently, we detected interferon-
gamma (IFN-γ)-producing cells, primarily originating from CD4+ and CD8+ T cells, using
spot-forming units as a measure [32]. This approach provides valuable insights into the
functionality of CMV-specific T cells and their potential role in combatting CMV viremia
and associated diseases. The CMV–CMI assay has been utilized for the CMV prognosis
and prediction [33], as a complement to the CMV viral load monitoring [34,35], and for
risk stratification before organ transplantation [36,37]. Some studies have indicated its
potential usefulness. Nevertheless, there exist several challenges that need to be addressed
for the broad adoption of this approach. These challenges encompass the intricate nature
of the experimental procedure, the absence of a clearly defined positive threshold, concerns
regarding cost-effectiveness, and the limited availability of clinical trials to establish its
efficacy. Furthermore, it has been observed that the detection of CMV-specific cell-mediated
immunity (CMI) may be less informative in the case of deceased donors due to the high
occurrence of indeterminate results [38]. These complexities underscore the need for further
research and optimization to fully realize the potential of CMV-specific CMI assessment in
clinical practice.

3.6. Quantitative Nucleic Acid Amplification Test (QNAT)

The quantitative polymerase chain reaction (qPCR)-based QNAT is a quantitative
assay used to measure CMV viral load in clinical samples by detecting and amplifying
small amounts of viral nucleic acid through PCR technology [12]. Due to its high sensitiv-
ity and throughput, qPCR has become the preferred diagnostic assay for CMV infection,
enabling clinicians to diagnose and treat infections effectively. It is widely utilized in the
clinic to guide preemptive therapy, assess the efficacy of antiviral therapy, determine the
timing of therapy, and monitor viral replication and disease progression [12,39]. There is
a correlation between the quantification of CMV DNA and viral load (i.e., the degree of
viral replication), and active CMV replication is manifested by higher viral load values or
an increasing trend in viral load [40]. Real-time quantitative PCR assays are commonly
used in clinical laboratories to measure CMV viral load. However, variability in the re-
sults persists due to differences in sample types, nucleic acid extraction techniques, target
genes, primers, probes, detection methods, and quantification standards used in differ-
ent laboratories [41,42]. Despite the introduction of international standards by the World
Health Organization (WHO) that has enabled the standardization of viral load values
derived from assays developed by different laboratories [43], which is conducive to im-
proving the consistency of assay results, the problem of variability between different PCR
assay platforms or methods still exists [44,45]. In recent years, it has also been demon-
strated that the amplicon size and DNA extraction method of CMV qPCR assays affect the
variability [46] and that sample type (e.g., plasma versus whole blood versus peripheral
blood mononuclear cells) also greatly affects the variability of viral load values [47]. Newer
methods, such as Droplet Digital PCR, are becoming more widely used in quantitative
viral load assays, not only showing superiority to qPCR in dilution assays of synthetic
DNA [48] but also improving consistency between methods while reducing variability in
results without relying on quantification standards [49]. However, the use of digital PCR
as a reference standard or for routine clinical testing still requires thorough validation of
any given assay and instrumentation, and there are currently no commercially available
analytical methods that use digital PCR assays. In addition, reverse transcriptase nucleic
acid amplification (RT-PCR), which can detect viral mRNA transcripts in peripheral blood
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leukocytes without relying on the presence of DNA, can help to diagnose active CMV
infection, but it is of less sensitivity than the PP65 antigen detection and PCR [50].

4. Recent Advances in CMV Detection Methods for Liver Transplant Donors
4.1. Nucleic Acid Sequence-Based Amplification (NASBA)

Isothermal amplification stands as a compelling alternative to traditional quantita-
tive polymerase chain reaction (qPCR) techniques, offering the ability to amplify nucleic
acids at a constant temperature without the need for costly thermal cyclers [51]. Among
these isothermal methods, nucleic acid sequence-based amplification (NASBA) emerges
as a specific and robust technology capable of detecting unclipped viral mRNA within
a background of DNA [52], as illustrated in Figure 3. NASBA operates optimally at a
temperature of 41 ◦C, allowing for cost-effective and user-friendly heating approaches.
Importantly, NASBA exhibits the unique ability to selectively amplify RNA in the presence
of coexisting background DNA and DNA target sequences, provided they have undergone
prior denaturation [53].
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Figure 3. Mechanism of NASBA (Nucleic Acid Sequence-Based Amplification). This figure illustrates
the intricate NASBA mechanism. The NASBA reaction mixture includes three essential enzymes:
T7 RNA polymerase, RNase H, and avian myeloblastosis virus (AMV) reverse transcriptase, in
addition to two specific primers. (A) Non-cyclic phase: In this phase, upon the introduction of a
target RNA molecule, Primer 1 initiates the reverse transcription process, yielding an RNA–DNA
hybrid. Subsequently, the inclusion of RNase H facilitates the degradation of the original RNA
within the RNA–DNA hybrids, leaving the complementary DNA (cDNA) available for binding with
Primer 2. AMV reverse transcriptase extends the 3′ end of Primer 2, resulting in the formation of
double-stranded DNA (dsDNA). This dsDNA is then transcribed by T7 RNA polymerase, ultimately
generating antisense RNA. (B) Cyclic phase: The antisense RNA proceeds to enter the cyclic phase of
NASBA, leading to the amplification of the antisense RNA strand, which is crucial for the sensitive
detection of target RNA sequences. This figure was created with Figdraw.

The detection of mRNA PP67, indicative of active viral replication, serves as a valuable
marker for CMV infection [16]. One notable example of a specific test harnessed through
NASBA technology is the Nuclisens pp67 test, designed to monitor the expression of
CMV mRNA PP67. Studies have demonstrated its high specificity and lower sensitivity in
comparison to antigenemia and PCR-based tests [54]. While NASBA is widely employed
for identifying various pathogenic microorganisms and holds promising research potential,
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its effectiveness may be constrained by prerequisites for pre-amplification nucleic acid
extraction and purification steps [55]. Additionally, its relatively lower sensitivity and
susceptibility to RNA mutations, potentially leading to false positives, may limit its utility
when compared to antigenemia detection and quantitative nucleic acid testing (QNAT) [21].
As such, further refinements are necessary to fully harness the potential of NASBA for
CMV detection in liver transplant donors.

4.2. Loop-Mediated Isothermal Amplification (LAMP)

LAMP is a novel gene amplification technique that is characterized by rapidity, sim-
plicity, and specificity [56]. In the LAMP reaction, pairs of internal and external primers
are used to generate a large number of DNA amplification products with complementary
sequences and alternate repeat structures by sequential repetition of both types of elonga-
tion reactions by strand-displacing DNA polymerase in a burst amplification process [57].
In contrast to real-time qPCR, which necessitates programmed temperature increases or
decreases, LAMP has a short turnaround time, does not require expensive instruments,
and has the potential for use in point-of-care diagnostic tests [51]. The potential of LAMP
for point-of-care diagnostic tests is not only beneficial for the early and precise diagnosis
of CMV infection in liver transplant donors but also provides greater diagnostic value
for early CMV detection in post-transplant recipients. The integration of isothermal am-
plification methods into microfluidic devices has demonstrated endless opportunities for
rapid, simple, and sensitive detection of pathogens [58]. Although LAMP is a rapid and
sensitive nucleic acid amplification technique that can be applied to clinical diagnosis and
pathogen detection [59], its complex ring primer design and unstable single-base resolution
are important factors hindering its further clinical diffusion [60,61]. Therefore, further
research is necessary to use LAMP widely for the early diagnosis of CMV infection.

4.3. Hybrid Capture Assay

The hybridization capture assay employs an RNA probe in the form of enzyme-
linked immunosorbent assay (ELISA) types to detect and quantify viral DNA, utilizing
chemiluminescence to measure the resulting signal. This assay demonstrates comparable
sensitivity and specificity to the PP65 antigen assay while outperforming the cell culture
assay in determining CMV viremia [62]. However, further investigation is necessary to
enhance the diagnosis of CMV infection.

4.4. Gene Sequencing

Peripheral blood rapid whole genome sequencing (rWGS) has been used to identify
microbial DNA during acute infections [63]. rWGS may be a sensitive method for detecting
CMV infections and can be performed to guide the initiation of antiviral therapy, helping
to improve patient prognosis [64]. Some studies have shown that rWGS may be more
sensitive than qPCR [65], but further studies are needed to determine the specificity and
sensitivity of this method and, thus, demonstrate its clinical utility. Metagenomic next-
generation sequencing (mNGS) technology is a non-invasive assay that allows for unbiased,
hypothesis-free identification of a wide range of pathogenic microbial infections for diag-
nosis and monitoring of infectious diseases [66]. In addition to pathogen identification,
mNGS can also detect virulence genes and resistance genes (Dulanto Chiang and Dekker,
2020). It has been shown that mNGS can simultaneously monitor and quantify multiple
viruses in patients with results comparable to standard qPCR assays [67]. However, high
detection costs, low detection throughput, and a complex process are challenges that must
be addressed before mNGS can be widely adopted in clinical settings.

4.5. Gene Chip Technology

Gene chip technology, also known as DNA microprobe arrays, uses in situ synthesis
or microdot sampling to bind specific oligonucleotide sequences or cDNA fragments to
probes immobilized on a support. These probes are then hybridized with fluorescently
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labeled samples, with resulting signals analyzed for information on gene expression and ar-
rangement [68]. This method is highly sensitive and accurate, as well as has the advantages
of rapidity and high throughput, so it has good application prospects for early diagnosis of
CMV infection. Nevertheless, the complex and expensive nature of the technology remains
a significant challenge that must be addressed before it can become widely used in the
early detection of CMV infection.

4.6. CRISPR–Cas System

The CRISPR–Cas system is a sensitive biological system capable of rapidly recognizing
pathogen-specific nucleic acids [69]. It is arguably one of the most promising research areas
in gene editing technology and the diagnosis of pathogens currently being investigated.
The basic principle of the CRISPR–Cas system is depicted in Figure 4. CRISPR–Cas locus
structures are composed of the Cas gene upstream, the leader sequences, and CRISPR
sequences, which encompass repeat sequences and spacer sequences. The DNA of each
spacer sequence is not identical but matches the viral DNA [70]. The Cas gene expresses
the Cas protein with helicase and nuclease activities, which can cut the DNA strand and
play a key role in realizing the function of the CRISPR–Cas system. First, the CRISPR
sequences transcribe and process the crRNA, which matches the spacer sequences. Then,
the crRNA guides the Cas protein to viral target sequences that match the spacer sequences,
and finally, the corresponding structural domain of the Cas protein is targeted to shear the
viral target sequences. The corresponding target sequences can be recognized by changing
the guiding sequences, which lays a mechanistic foundation for the use of the CRISPR–Cas
system for nucleic acid detection [71]. At its core, the CRISPR–Cas system operates as
a prokaryotic adaptive immune system, designed to identify and cleave foreign nucleic
acids effectively [72]. This intricate system falls into two primary categories: Class 1 and
Class 2. Class 1 deploys multi-protein complexes, including type I, type III, and type IV
systems, to neutralize foreign nucleic acids. Conversely, Class 2 predominantly relies on a
single protein to execute its function, encompassing types II, V, and VI [73]. These versatile
CRISPR–Cas systems have found extensive application in the realm of pathogen nucleic
acid detection, with a particular emphasis on prominent CRISPR-associated proteins, such
as Cas9, Cas12, Cas13, and Cas14 [74]. Among these, Cas12 and Cas13 have garnered
widespread use in the detection of both DNA and RNA [75]. These groundbreaking
developments underscore the remarkable utility of CRISPR–Cas technology in advancing
nucleic acid detection methodologies.

The CRISPR–Cas system may be an ideal method for detecting viruses that meets
the requirements of sensitivity, specificity, low cost, speed, ease of use, low equipment
requirements, and ease of delivery to the user [76]. This has high application value for
early, rapid, and accurate diagnosis of CMV infection in liver transplant donors, guiding
preemptive treatment, improving post-transplantation outcomes, and monitoring graft re-
jection after transplantation. To further enhance its diagnostic capabilities, the CRISPR–Cas
system can be combined with isothermal amplification methods such as LAMP, NASBA,
and recombinase-aided amplification (RAA) for pre-amplification of nucleic acids [77].
The introduction of isothermal nucleic acid amplification technology can eliminate the
reliance on thermal cyclers and allow assays to be performed outside of the laboratory,
making point-of-care diagnostic tests possible [78]. Leveraging the unique attributes of Cas
proteins, which exhibit precise recognition of target nucleic acids and subsequent activa-
tion of cutting activity upon recognition, scientists have pioneered a suite of CRISPR–Cas
technologies that are transforming the field of molecular diagnostics. These innovations
include the Specific High-sensitivity Enzymatic Reporter unlocking (SHERLOCK) [79],
DNA Endonuclease Targeted CRISPR Trans Reporter (DETECTR) [80], and the one-Hour
Low-cost Multipurpose highly Efficient System (HOLMES) [77], with their fundamental
principles illustrated in Figure 5. Cas effectors, guided by crRNAs, demonstrate extraor-
dinary specificity in recognizing and cleaving template nucleic acids. Upon activation,
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these Cas effectors exhibit remarkable trans-cleavage capabilities, leading to non-specific
cleavage of reporters and generating fluorescence signal readouts.
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which is further processed into guide RNA complementing the viral target sequence. Finally, during
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sequence, leading to the formation of an effector complex. The Cas protein’s cleavage activity then
degrades the phage’s target DNA. It was created with MedPeer (www.medpeer.cn).

SHERLOCK and DETECTR diagnostic tools share common attributes, including sensi-
tivity, specificity, cost-effectiveness, and the ability to operate without complex equipment.
HOLMES was initially developed by combining PCR with the CRISPR–Cas12a system,
requiring a two-step reaction. To streamline this process, HOLMES v2 was created, in-
tegrating isothermal amplification technology (LAMP) and the CRISPR–Cas12b system,
allowing for one-step detection [81]. Additionally, to reduce reliance on the PAM sequence,
researchers used LAMP amplification to design core primers containing the PAM site,
enabling the LAMP amplicon to carry a specific PAM site for CRISPR/Cas12a recognition,
facilitating the detection of any target sequence [82].

In terms of cost-effectiveness, SHERLOCK technologies are priced at less than $1 per
test, and DETECTR and HOLMES have been suggested as economical alternatives, with
the potential for further cost reductions through systematic optimization [76]. Therefore,
the HOLMES v2 assay platform holds promise for detecting cytomegalovirus genomes in
transplantation settings. Despite certain limitations, these assays open novel pathways in
pathogen detection and offer significant potential for the early diagnosis of CMV infection
in liver transplant donors.

The CRISPR–Cas system, beyond its role as a powerful gene-editing tool, has emerged
as a robust diagnostic technology, exemplified by the HOLMES-based assay system, herald-
ing a transformative era in molecular diagnostics. As researchers delve deeper into the
capabilities of Cas12, Cas13, and Cas14 in trans-cleavage activity and continue to inno-
vate in nucleic acid detection within the rapidly evolving field of CRISPR–Cas applica-
tions, it presents an exciting avenue for exploration. Moreover, biosensing platforms
based on CRISPR–Cas systems hold tremendous potential to revolutionize pathogen
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diagnosis [83,84]. These advancements collectively usher in a new era of precision di-
agnostics and pathogen detection.
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Figure 5. A schematic representation of the CRISPR/Cas-based detection system. It effectively
illustrates the dual functionality of Cas effectors in this system. (A) Template: The types of targets
that can be detected by CRISPR/Cas-based detection systems include dsDNA, ssDNA, and ssRNA.
(B) Targeting: Cas effectors exhibit exceptional specificity, precisely recognizing and cleaving template
nucleic acids with the guidance of crRNAs. (C) Reporter cleavage: Once activated, these Cas effectors
display impressive trans-cleavage abilities, leading to the non-specific cleavage of reporter molecules.
(D) Signal detection: This trans-cleavage event generates fluorescence signal readouts, allowing for
the detection of target nucleic acids. This figure, created with MedPeer (www.medpeer.cn), provides
a concise visual summary of the fundamental principles underpinning CRISPR/Cas-based nucleic
acid detection.

Despite the advantages of high specificity, sensitivity, rapidity, and cost-effectiveness,
the practical application of CRISPR–Cas system-based pathogen detection methods faces
challenges such as off-target effects, sample cross-contamination, and pathogen quantifica-
tion problems [85]. Nonetheless, the rapidly developing CRISPR–Cas system-based assay
technology shows immense promise and has a wide range of potential applications. As one
of the most promising areas of current research, the CRISPR–Cas system has significant
prospects for early and rapid detection of CMV infection in clinical settings.

5. Discussion

CMV is the predominant opportunistic infection in liver transplant recipients. CMV
infection in liver transplant donors can lead to CMV presence in the donor’s liver, posing a
risk to the recipient. This, directly and indirectly, influences the morbidity and mortality
of transplant recipients. Therefore, early detection of CMV in liver transplant donors
and implementation of preventive and therapeutic measures are crucial for enhancing
postoperative outcomes. Several methods have been employed to detect CMV. A com-
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parative analysis of the specificity and sensitivity across various CMV assays has yielded
noteworthy findings. CMV–CMI, molecular assays, gene chip technology, and CRISPR–Cas
system-based assays have demonstrated high levels of both specificity and sensitivity.
In contrast, antigenemia-based assays exhibit moderate specificity and lower sensitivity.
Serologic assays exhibit high specificity but lower sensitivity, while isothermal nucleic
acid amplification techniques demonstrate relatively lower levels of both specificity and
sensitivity. It is essential to emphasize that while specificity and sensitivity are critical
parameters, the choice of assay should also consider additional factors such as time, cost,
required equipment, and laboratory conditions. These factors should be carefully evalu-
ated on a case-by-case basis to make an informed selection. Firstly, virus culture, while
common, is time-consuming, labor-intensive, and lacks sufficient sensitivity, leading to
its declining clinical use. Histopathology remains the diagnostic gold standard for CMV
tissue invasive disease but is invasive and not always recommended. Serological detection
can be misleading due to the delayed appearance of antibody IgM and the prevalence of
IgG. The antigenemia assay is reliable and significant for early diagnosis, but its lack of
result standardization and specific requirements limit its use. CMV–CMI shows promise in
viral load detection, but its complexity, cost-effectiveness, and limited clinical trials present
challenges. QNAT, with the advantages of high sensitivity, high throughput, and high
specificity, is currently the preferred method for early diagnosis of CMV infection and is
the most widely used pathogen detection method. Still, there is the problem of variability
between different detection platforms or methods, which requires further improvement.
Secondly, it is worth noting that more and more laboratories are gradually abandoning
single-laboratory tests and switching to commercially available tests calibrated to interna-
tional standards, and the consistency of results across different testing platforms will be
further improved. Thirdly, mNGS is also a widely used method for pathogen detection,
but the high cost, low throughput, and complexity of the process are challenges that need
to be solved for its clinical promotion, and further research is needed. Fourthly, emerging
detection methods, like the CRISPR–Cas system and gene chip technology, have a great
application prospect, among which the detection technology based on the CRISPR–Cas
system is developing rapidly, with the advantages of high sensitivity and specificity, low
cost, rapidity, and ease of use, which may become an ideal method for virus detection in
the clinic and soon become a preferred clinical method for virus detection, pending further
research and validation.

6. Summary and Outlook

CMV is among the opportunistic viruses to which liver transplant recipients are
most susceptible, and infection in liver transplant donors can lead to CMV carriage in the
donor’s liver, thereby placing the recipient at risk. Shifting CMV detection to the liver
transplant donor and implementing effective preventive and therapeutic measures are
crucial for reducing both the incidence of CMV infection in liver transplant recipients
and the mortality rate from complications such as graft rejection. The commonly used
CMV detection methods in the past are not sufficient for early and accurate diagnosis
of CMV infection in liver transplant donors due to various limitations. Therefore, it is
necessary to develop a new type of detection method that meets the requirements of the
clinic. Table 2 presents an overview of the advantages and disadvantages associated with
the latest CMV detection methods. Currently, QNAT and mNGS are the predominant
pathogen detection methods, with QNAT being favored for CMV detection due to its
high sensitivity and specificity. This method is vital for early diagnosis and preemptive
treatment guidance, but the variability between different PCR detection platforms must
be addressed. Emerging detection technologies like the CRISPR–Cas system and gene
chip technology hold promise, with the potential breakthrough of combining gene chip
technology with enzyme-linked immunosorbent spot (ELISpot) for early CMV detection.
The rapidly developing CRISPR–Cas system-based detection technology offers advantages
such as high sensitivity, specificity, low cost, and ease of use, positioning it as a potential
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ideal method for clinical virus detection. However, challenges and opportunities exist, and
future development may include integrating with isothermal nucleic acid amplification
technology to visualize the detection results, reducing the probability of off-target effects,
solving the problems of sample storage and possible contamination, further exploring the
types and uses of Cas proteins, and further realizing the combination with the biosensor.
A comprehensive assessment of the advantages, disadvantages, and common principles
of each detection method is essential, and the limitations of relying on a single detection
method must be overcome, such as by integrating CRISPR–Cas reaction with RAA for early
and accurate CMV diagnosis in liver transplant donors. Additionally, the possibility of CMV
presence in organ irrigation or preservation fluid should be considered, as it may be another
checkpoint for secondary CMV infection in transplant recipients. Risk stratification of
infection and the adoption of prophylactic and preemptive antiviral treatment for the donor
liver or transplant recipients could significantly improve post-transplantation prognosis
and management.

Table 2. Comparison of the latest CMV detection methods.

Assay Principle Advantage Disadvantage Specificity Sensitivity Refs.

NASBA mRNA detection

Highly specific for viral
replication; clinical

utility for preemptive
therapy; monitoring

response to treatment

Qualitative assay; less
sensitive than nucleic

acid amplification tests
Low Low [21]

LAMP
Single-temperature

nucleic
acid amplification

Rapid, simple, specific,
and not dependent on
expensive instruments,
with the potential for

rapid on-site detection

Complex ring primer
design and unstable

single-base resolution
Low Low [51]

Hybrid
capture assay

DNA–RNA
hybrid

Highly specific for CMV
infection; rapid diagnosis

of CMV infection

Less sensitive than
nucleic acid

amplification tests
High High [21]

Gene
sequencing

Sequencing the
genome

Non-invasive test;
provides information on

virulence genes and
resistance genes;

monitors and
quantifies multiple
viruses in patients

High detection costs; low
detection throughput;

complex process
High Medium [64]

Gene chip
technology

In situ
synthesis or

microdot
sampling

High sensitivity and
accuracy; fast and
high throughput

Costly and
technically complex High High [86]

CRISPR–Cas
System

Changing the
guiding

sequences

Meets the requirements
of sensitivity, specificity,
low cost, speed, ease of

use, low equipment
requirements, and ease
of delivery to the user

Off-target effects;
sample cross-

contamination; pathogen
quantification problems

High High [87]

Abbreviations: NASBA, Nucleic Acid Sequence-Based Amplification; LAMP, Loop-Mediated Isothermal Amplifi-
cation; DNA–RNA, Deoxyribonucleic Acid–Ribonucleic Acid. CMV, Cytomegalovirus; CRISPR–Cas, Clustered
Regularly Interspaced Short Palindromic Repeats and CRISPR-Associated.
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