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Abstract: Background: This research explores the application of morphometric texture analysis
in chest Computed Tomography (CT) scans for determining Bone Mineral Content (BMC) and its
temporal changes, both crucial in diagnosing osteoporosis. The study establishes an innovative
approach to osteoporosis screening by leveraging Hounsfield Units (HUs) in CT scans to evaluate
BMC, offering a comparison with dual-energy X-ray absorptiometry (DXA)-based BMC. Methods:
A total of 806 instances (encompassing 379 individuals) were meticulously compiled from a sole
institution, during the period stretching from 6 May 2012 to 30 June 2020. In this detailed analysis,
each participant was subjected to a pair of chest CT scans, sequentially pursued by a DXA scan, spread
over two years. Focused records of BMC values at the inaugural lumbar vertebra (L1) were secured
from both the DXA and CT axial slices across all instances. A meticulous selection process pinpointed
the largest trabecular section from the L1 vertebral body, whereupon 45 distinctive texture attributes
were harvested utilizing gray-level co-occurrence matrix methodologies. Utilizing these amassed
45 attributes, a regression architecture was devised, aiming to forecast the precise BMC values
individually. Moreover, an alternative regression framework was engaged, leveraging 90 distinct
features, to gauge the BMC fluctuations observed between the duo of scans administered to each
participant. Results: The precision of the cultivated regression frameworks was scrupulously assessed,
benchmarking against the correlation coefficient (CC) and the mean absolute deviation (MAE) in
comparison to the DXA-established references. The regression apparatus employed for estimating
BMC unveiled a CC of 0.754 and an MAE of 1.641 (g), respectively. Conversely, the regression
mechanism devoted to discerning the variations in BMC manifested a CC of 0.680, coupled with an
MAE of 0.528 (g), respectively. Conclusion: The innovative methodology utilizing morphometric
texture analysis in CT HUs offers an indirect, yet promising, approach for osteoporosis screening
by providing estimations of BMC and its temporal changes. The estimations demonstrate moderate
positive correlations with DXA measures, suggesting a potential alternative in circumstances where
DXA scanning is limited.

Keywords: dual-energy X-ray absorptiometry (DXA); Computed Tomography Hounsfield Unit
(CT HU); Bone Mineral Content (BMC); morphometric texture analysis; linear regression

1. Introduction

Osteoporosis, a prevalent bone disease, is characterized by a decrease in bone mass
and strength, leading to an increased risk of fractures—particularly in trabecular bone-rich
areas such as the proximal femur, vertebral body of the spine, and the distal radius [1]. This
necessitates the need for a comprehensive diagnostic system that can predict and manage
osteoporosis effectively.

Currently, dual-energy X-ray absorptiometry (DXA) is the primary tool for evaluating
Bone Mineral Density (BMD) and Bone Mineral Content (BMC). However, the assessment
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of BMD and BMC can be complicated due to their variability, which depends on factors
such as the progression of osteosclerosis and the degree of adiposity [2]. The lumbar spine,
in particular, poses significant challenges to accurately measure BMD and BMC when
compared to the femoral neck bone density [3].

In this innovative study, we utilize axial cuts from chest CT scans at the L1 level and
from abdomen pelvis CT scans at the femur neck. The aim is to gain a comprehensive
understanding of bone health by examining the correlation between BMD, BMC, and
texture analysis values derived from these CT scans.

BMC plays a vital role in fracture prediction due to its influence on bone strength,
structure, and fragility, whereas BMD is a key determinant of bone density and risk of
osteoporosis [4]. The trabecular bone, due to its high bone turnover rate, is especially
sensitive to metabolic stimuli [5]. Therefore, BMC and BMD hold significant potential as
precise indicators for osteoporosis and fracture risk, particularly when considering the
trabecular bone.

Our novel approach exploits the potential of CT scans that fall outside DXA insurance
guidelines, unveiling a more efficient method for evaluating bone mineral status. This
method is especially beneficial for patients who do not meet the criteria for DXA. Our
comprehensive data set, which includes follow-up patients, offers unique insights into the
progression of bone health over time. We further quantify the interval changes in BMD and
BMC and examine their correlation with texture analysis values.

This study aims to establish an objective basis for quantifying the degree of BMD and
BMC at different scan intervals and tracking their temporal changes using CT models. The
methodology involves an in-depth analysis of HU values in CT, the extraction of model-
based texture features via a Gray-level Co-occurrence Matrix (GLCM), and the formulation
of Linear Regression models informed by DXA measures [6,7]. Our findings underscore the
considerable potential of texture analysis as a reliable and efficient tool for monitoring bone
mineral status, ultimately leading to more precise osteoporosis diagnosis and management.

2. Materials and Methods
2.1. Subjects for the Region of Interest

Our research, sanctioned by the institutional review board (P01-202109-21-014), began
with an extensive compilation of 3620 instances, incorporating 1643 individuals. Every
participant underwent dual CT scans—encompassing both chest and abdomen-pelvis
sectors—and DXA, all within the same facility, from 9 May 2011 to 30 July 2022. From this
extensive assortment, a rigorous selection regimen was executed, yielding a refined assem-
blage of 892 instances involving 379 participants, conforming to stringent prerequisites: a
chronological divergence under a month between CT and DXA evaluations, a minimum of
two subsequent follow-ups, and a two-year lapse post-initial evaluation.

As the selection evolution progressed, instances were omitted contingent on the ful-
fillment of particular criteria: the non-presence of a tangible, quantifiable axial section of
the L1 vertebra or femur neck within CT visuals; antecedent records of L1 compression;
pronounced fractures or intrusive surgical reparations due to fracturing events; the discern-
ment of metallic discrepancies resulting from precarious burst fractures; or complexities
in isolating trabecular bones owing to pronounced osteolytic alterations or pathological
manifestations.

The culmination of this exclusionary phase saw the subtraction of 350 instances
(embodying 211 individuals), ushering in the conclusive selection of 806 instances from
379 participants for in-depth analysis (Figure 1). This meticulously curated selection
procedure bolstered the integrity and dependability of our investigative endeavor, centering
on the paramount, elucidative instances for our exploratory journey into the applicative
frontier of texture scrutiny in the surveillance of bone mineral integrity.
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Figure 1. Flowchart depicting the selection of L1 axial cut and femur neck from patients undergoing
concurrent chest CT and APCT.

2.2. CT and DXA Imaging Protocols

The CT scans were meticulously performed utilizing a Siemens scanner (SOMATOM
128, Definition AS+; Siemens Healthcare, Forchheim, Germany), adhering faithfully to a
predefined standard protocol. Each scanning procedure was executed as a single-energy
CT scan, with operational parameters meticulously calibrated to 120 kVp and 247 mA,
incorporating a dose modulation with a 0.6 mm collimation. An effective pitch was firmly
established at 0.8, paired with the deployment of a B60 (sharp) reconstruction kernel.
Specifically, for the chest CT scans conducted in the absence of contrast, a consistent
reconstructed slice thickness of 5.0 mm was diligently upheld.

In the case of the DXA scans, a conventional apparatus was employed, executing
scans in strict adherence to a traditional protocol (GE Lunar Prodigy, GE Healthcare,
Wauwatosa, WI, USA). Subsequent reports were synthesized utilizing specialized vendor-
affiliated software (Physicians Report Writer DX; Hologic, Marlborough, MA, USA). Such
rigorous conformity to standardized imaging protocols underscores the replicability and
unwavering consistency integral to the outcomes of our investigative endeavor.

2.3. Regions of Interest

The specific areas targeted for statistical analysis within the bone images were meticu-
lously limited to the trabecular sections of the bone, a strategic move to curtail any potential
distortions in the ensuing measurements. Faced with multiple methodologies for the de-
marcation of these Regions of Interest (ROIs), our choice gravitated towards employing
the thresholding technique for the pursuits of this study. For each individual involved
in the study, a singular two-dimensional (2D) slice image was conscientiously chosen
from the CT axial cross-sections. These selected images predominantly featured the most
expansive axial trabecular regions either of the L1 spinal body or the femoral neck. Figure 2
illustratively encapsulates our process, showcasing the texture analysis unfolding primarily
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within a circular perimeter, which encompasses the vast majority of the trabecular space
under consideration.
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Figure 2. Schematic flow for BMC and BMD estimations from Computed Tomography. BMC, Bone
Mineral Content; BMD, Bone Mineral Density.

2.4. Feature Extraction

We meticulously extracted a compilation of 45 distinct features from the designated
Regions of Interest (ROIs), which encompassed five pivotal intensity-oriented attributes,
harvested via histogram analysis, in conjunction with 40 texture-centric features, cultivated
from a GLCM (Gray-level Co-occurrence Matrix) foundation [8,9]. These meticulously gar-
nered features were subsequently integrated into two predominant modeling paradigms: a
Linear Regression (LR) construct and an Artificial Neural Network (ANN) framework. The
LR construct was adept at prognosticating BMC and BMD, leveraging a linear amalgama-
tion of the 45 infused input parameters. Concurrently, the ANN model was architecturally
structured as a comprehensively interconnected neural network, comprising hierarchical
layers where the inaugural trio of hidden layers were characterized by configurations of
eight, eight, and two nodes, each synergistically interacting through a non-linear rectified
linear unit operator, as visually elucidated in Figure 2.

The intensity-focused attributes were ingeniously captured, utilizing the histogram
of the ROI imagery, encapsulating essential metrics such as mean, standard deviation,
skewness, kurtosis, and entropy. These cardinal parameters resonated with intrinsic bone
intensity characteristics, like luminance, asymmetry, randomness, homogeneity, and acute-
ness. Augmenting this, a suite of 40 textured attributes was unveiled through intricate
texture examinations, designed to unveil nuanced spatial interrelationships between con-
tiguous pixel entities within a 2D visualization. Originating from the foundational GLCM
as illustrated in Figure 2, and predicated on a spectrum of n grayscale gradients and a hori-
zontal orientation, the resultant matrix manifested dimensions of n × n. Each constituent
element within this matrix, demarcated as the (i,j)th element, echoed the cumulative oc-
currences of horizontally juxtaposed pixels, registering grayscale values of i and j within a
discretely normalized ROI imagery realm, characterized by an intensity gradient fluctuat-
ing between 1 and n. In our exploratory odyssey, an ensemble of eight multifaceted GLCMs
was meticulously crafted for each illustrative ROI instance, navigating across four distinc-
tive gradients (n = 16, 32, 64, 128) and bifurcating directional orientations (horizontal and
vertical), while encapsulating five intrinsic statistical metrics: entropy, contrast, correlation,
homogeneity, and variance. Each metric resonates with individual GLCMs.
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2.5. Estimation of BMD and BMC Change Using CT

Figure 2 visualizes our BMC estimation approach. From each CT scan, we picked
one slice that showed the largest view of the trabecular bone area. In each chosen slice,
45 different features were extracted. Five of these were based on intensity histograms,
while the remaining 40 utilized the Gray-level Co-occurrence Matrix (GLCM), a common
technique in texture analysis.

GLCM, as explained in Table 1, helps in understanding an image’s texture by consid-
ering the frequency of specific pixel pair values [8,9]. We used a combination of multiple
statistics in both histogram and GLCM, applying a specific formula to assign each a unique
feature index, _j. We ended up with 90 features per patient from two separate chest CT
scans. Using MATLAB, various mathematical operations were applied. Two linear regres-
sors were developed. The first regressor used the 45 features to estimate BMC and BMD
values, and the second used 90 features to monitor changes over time. The calculations
involved a mathematical formula that combined these features linearly.

Table 1. Gray-level Co-occurrence Matrix feature parameters.

Analytical Tool Parameter Value/Name/Function Feature #

Histogram Statistics (k)

mean (k = 1), standard
deviation (k = 2), skewness

(k = 3), kurtosis (k = 4),
entropy (k = 5)

5

Texture (GLCM)

Directions (l) horizontal (l = 1), vertical
(l = 2)

2 × 4 × 5 = 40
Levels (m) 16 (m = 1), 32 (m = 2),

64 (m = 3), 128 (m = 4)

Statistics (n)

contrast (n = 1), correlation
(n = 2), energy (n = 3),
homogeneity (n = 4),

variance (n = 5)

y_hat_j = sum (from j = 1 to J) of w_j ∗ x_j + b

To improve the model’s clarity and usability, the Least Absolute Shrinkage and Selec-
tion Operator (LASSO) method was utilized, incorporating a penalty term represented by
_λ in the model. The use of LASSO, governed by the equation below, allows the model to
be simplified based on the value of _λ.

{w_j*, b*} = argmin [sum (from i = 1 to I) of (y_i − y_hat_i)ˆ2 + lambda ∗ sum
(from i = 1 to I) of absolute value of x_i]

2.6. Correlation Assessment

We utilized Linear Regression (LR) and a comprehensive Artificial Neural Network
(ANN) to predict Bone Mineral Content (BMC) and Bone Mineral Density (BMD), and
to analyze the correlation between the predicted values and the actual DXA BMD values.
Let us consider x_ij as the i-th feature value for the j-th sample (case) and y_j as the BMD
reference for the j-th sample. During preprocessing, each sample was normalized: x_ij_new
= (x_ij − mean(x_i))/stddev(x_i), where mean(x_i) and stddev(x_i) are the average and
standard deviation of the i-th feature, respectively. Similarly, each reference was normalized
as y_j_new = (y_j − mean(y))/stddev(y), where mean(y) and stddev(y) are the overall
mean and standard deviation, respectively.

In the LR model, the BMD was estimated as a weighted sum of 45 features plus a bias:
y_pred_j = w_0 + Σ(w_i ∗ x_ij_new). Each weight, w_i, was determined by minimizing
the Mean Squared Error (MSE): MSE = Σ(y_j_new − y_pred_j)ˆ2. This was performed
using a pseudoinverse in a normal equation form. Since there were more samples than
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trainable parameters, overfitting was not a concern; therefore, there was no need to split the
data into training and test sets or to use regularization techniques such as ridge regression
or LASSO.

3. Results
Patient Demographics

This study encompassed an analysis of 806 samples from 379 participants, with
175 males and 204 females included. The average age and BMI of the subjects were
54.52 ± 7.56 years and 23.29 ± 5.65 kg/m2, respectively. Time intervals averaged
0.89 ± 5.22 days between chest CT and DXA scans, and 1.92 ± 6.89 days between APCT
and DXA scans. The average durations between the initial and final chest CT scans were
1412 ± 44.57 days, and between the first and last DXA scans, it was 1348 ± 31.68 days,
detailed in Table 2.

Table 2. Demographic data of study participants.

Case (number) 806 (379)

Mean age (years) 54.52 ± 7.56

The time between CT and DXA dates (days) 0.89 ± 5.22

The interval between the first CT and last CT (days) 1412 ± 44.57

The interval between the first DXA and last DXA (days) 1348 ± 31.68

Sex (male/female) 175/204

BMI (kg/m2) 23.29 ± 5.65

Figures 3 and 4 display the relationship between estimated and actual DXA measure-
ments of BMC and BMD at the L1 spine and hip, showcasing the correlation coefficients and
MSE values. The coefficients (MSE) from the LR model fluctuated between 0.760 (1.397) and
0.897 (0.856). A substantial correlation was discovered, not just in the absolute BMC and
BMD values, but also in their temporal alterations, with a Pearson correlation coefficient (r)
of 0.918 for BMC and BMD, and 0.654 for their temporal changes, as elucidated in Figure 5.
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Figure 5. Correlation between BMD and BMC, BMC change, and BMD change. A detailed statistical
view of the normalized feature samples utilized in texture analysis.

As per Section 2.3, estimates were exclusively obtained from CT images through
feature extraction and Linear Regression methodologies, as displayed in Figure 6. Here, the
correlation coefficient and mean absolute error for BMC change regression were 0.654 and
0.528 (g), respectively, and the paired t-tests gave p-values of 1, confirming the unbiased
nature of the LR model. Figure 6 also indicates that a higher l_1 penalty resulted in a
lower correlation coefficient and a higher mean absolute error, driving many weights to
zero. The BMC regressor exhibited a minor performance decrement due to the penalty,
attaining a correlation coefficient of about 0.65 with six features at a λ of 0.04, whereas a
more pronounced performance loss was seen in the BMC change regressor, emphasizing
the distinct contribution of each feature.
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4. Discussion

In a stride towards optimizing the precision and efficacy of osteoporosis detection, our
approach integrated machine learning techniques along with a straightforward LR model
applied to the texture analysis of CT HUs. Our endeavor led to the successful formulation
of LR models proficient in estimating the BMC and monitoring its temporal variations,
signifying a noteworthy progression in medical imaging domains.

To validate our outcomes, emphasis was placed on the robust correlation observed
between estimates derived from CT HUs and authentic measurements obtained via DXA.
Figures 3 and 4 lucidly present this association, showcasing the BMC and BMD estimates
procured from the L1 axial slices and the hip regions, respectively. A remarkable observation
was the superior correlation achieved when the estimations from these ROIs coincided
with the respective DXA measurement locales, manifesting correlation coefficients between
0.760 and 0.897, and MSE values, validating the competency of our LR model in BMC and
BMD prediction.

Our research not only elucidated a substantial correlation between the absolute BMC
and BMD values, with a correlation coefficient (r) of 0.918, but also unveiled a meaningful
association concerning their temporal changes, bearing a correlation coefficient of 0.654.
This insight is immensely valuable for it facilitates the continuous surveillance of osteo-
porosis evolution, a crucial aspect for the proficient administration and therapeutic strategy
concerning the ailment.

Expanding upon these findings, our study unveils promising directions for incorporat-
ing machine learning into medical imaging. Utilizing conventional radiomics procedures,
encompassing pre-processing, manual segmentation, and feature extraction, we achieved
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successful BMD predictions, indicating that CT HU texture analysis could emerge as a
potent tool for BMC estimations, presenting a viable alternative to traditional DXA imaging
methodologies.

In our research, we leveraged machine learning’s capabilities, particularly focusing on
Artificial Neural Network (ANN) and a direct Linear Regression (LR) model, aiming to
augment the accuracy and efficiency of our analysis. The advent of substantial advance-
ments in computational capabilities has positioned machine learning as a revolutionary
influence across various sectors, including its remarkable impact on enhancing diagnostic
precision in medical imaging [10,11].

Radiomics, a machine learning subset, has experienced substantial growth, attributed
to its ability to quantifiably extract features from designated Regions of Interest (ROIs)
within images, which are instrumental in accomplishing predictive or prognostic goals.
Our study employed fundamental radiomics procedures, including pre-processing, man-
ual segmentation, and feature extraction, focusing primarily on predicting Bone Mineral
Density (BMD). The features emphasized in our study comprised energy, kurtosis, and
skewness from intensity, alongside texture analysis utilizing the Gray-level Co-occurrence
Matrix (GLCM) [12].

GLCM has garnered extensive acceptance due to its proficiency in extracting diverse
tissue features by evaluating the occurrence frequency of pixel pairs in specified relation-
ships. The functions extracted from GLCM encapsulate a spectrum of texture attributes
such as energy, contrast, entropy, autocorrelation, correlation, inverse moment, and cluster
shade [13]. The convergence of machine learning with radiomics has witnessed recent
endorsements, particularly prevalent in Magnetic Resonance Imaging (MRI) studies [14].
For example, GLCM textures and logistic regression have been instrumental for researchers
in distinguishing specific brain tumor varieties. Numerous studies have diversified their
feature assortment utilizing approaches such as Gray-level Run Length Matrices (GLRLM)
and wavelet transformations [15]. Employing lower-dimensional handcrafted features
extracted from high-dimensional images as inputs for deep learning models facilitates
the model’s structural simplification, mitigating overfitting risks when image samples are
limited [16].

While our study illuminates the promise of CT HU texture analysis in forecasting
BMC and tracking its temporal variations, acknowledging certain limitations is essential
for a nuanced understanding. First and foremost, our research did not incorporate specific
osteoporosis risk factors or the impact of certain medications that might expedite changes in
BMC. Such omissions could influence the ultimate precision and relevance of our findings,
as these variables can considerably affect BMC values and their fluctuations.

Secondly, our Region of Interest (ROI) model predominantly centered on the L1 axial
cut obtained from chest CT scans. Even though the L1 axial cut is a customary component
in DXA scans for Bone Mineral Density (BMD) evaluations, our exclusive dependency on
this singular cut may curtail the all-encompassing nature of our conclusions. Our APCT
studies also specifically zeroed in on the femur neck, overlooking additional regions that
might have unveiled further valuable insights.

Moreover, in juxtaposing our outcomes with those from DXA measurements, our focus
remained narrowly confined to the L1 value, bypassing the conventionally assessed L1–L4
range intrinsic to DXA investigations. Also, the absence of a radiologist in our team may
have limited the scope of our radiological analysis. Future research could be enriched by
the inclusion of imaging experts to broaden the interpretive perspectives. Finally, a possible
inclination towards bias might permeate our study, attributed to the predominant reliance
on data sourced from a solitary institution. Such a factor could potentially circumscribe the
broader applicability and extrapolation of our results to diverse settings or demographic
groups. Compounding this, the relatively abbreviated follow-up durations featured in
our study might not be illustrative of protracted BMC alterations. A more extended
observation of these shifts could unveil insights of heightened pertinence for the meticulous
identification and continual observation of osteoporosis. Despite these limitations, our
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study provides an innovative approach to BMC estimation and can guide future research
towards refining and expanding this methodology. Further studies involving larger, more
diverse datasets and longer follow-up periods could potentially validate and enhance the
effectiveness of CT HU texture analysis in osteoporosis detection and monitoring.

In summary, our research successfully employs the texture analysis of CT Hounsfield
Units (HUs) to establish linear regression models for estimating Bone Mineral Content
(BMC) and monitoring its changes. Among the various factors analyzed, the 45 CT texture
analysis features stand out as a key single feature that plays a crucial role in effectively
representing the BMC equivalent value and its changes. These features are integral to the
model’s ability to mimic the BMC values and track their variations, thereby contributing
significantly to the model’s robustness and accuracy. The high correlation between these
estimates and actual DXA values testifies to the efficacy and precision of our approach.
Moreover, the relatively short scan interval between the CT and DXA, compared to previous
studies, further reinforces the reliability of our results. These findings lay the groundwork
for utilizing CT scans alone in predicting BMC, providing a fresh and efficient perspective
in the field of osteoporosis detection and monitoring.

5. Conclusions

In conclusion, our study unveils the potential of morphometric texture analysis us-
ing CT Hounsfield Units in indirectly screening for osteoporosis. The method offers
reliable estimates of Bone Mineral Density (BMD) and Bone Mineral Content (BMC),
as well as their temporal changes, establishing a novel framework that may enhance
osteoporosis management.
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