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Abstract: Screening for osteoporosis is crucial for early detection and prevention, yet it faces chal-
lenges due to the low accuracy of calcaneal quantitative ultrasound (QUS) and limited access to
dual-energy X-ray absorptiometry (DXA) scans. Recent advances in AI offer a promising solution
through opportunistic screening using existing medical images. This study aims to utilize deep
learning techniques to develop a model that analyzes chest X-ray (CXR) images for osteoporosis
screening. This study included the AI model development stage and the clinical validation stage. In
the AI model development stage, the combined dataset of 5122 paired CXR images and DXA reports
from the patients aged 20 to 98 years at a medical center was collected. The images were enhanced
and filtered for hardware retention such as pedicle screws, bone cement, artificial intervertebral discs
or severe deformity in target level of T12 and L1. The dataset was then separated into training, vali-
dating, and testing datasets for model training and performance validation. In the clinical validation
stage, we collected 440 paired CXR images and DXA reports from both the TCVGH and Joy Clinic,
including 304 pared data from TCVGH and 136 paired data from Joy Clinic. The pre-clinical test
yielded an area under the curve (AUC) of 0.940, while the clinical validation showed an AUC of 0.946.
Pearson’s correlation coefficient was 0.88. The model demonstrated an overall accuracy, sensitivity,
and specificity of 89.0%, 88.7%, and 89.4%, respectively. This study proposes an AI model for oppor-
tunistic osteoporosis screening through CXR, demonstrating good performance and suggesting its
potential for broad adoption in preliminary screening among high-risk populations.

Keywords: osteoporosis; bone mineral density (BMD); chest X-ray; artificial intelligence; deep learning

1. Introduction

Osteoporosis is a chronic skeletal disease characterized by low bone mineral density
(BMD) and microarchitectural deterioration of bone tissue, leading to more porous bone
and an increased risk of fractures [1–4]. It is often referred to as a “silent disease” as there are
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typically no symptoms until a fracture occurs [2,5]. Fractures associated with osteoporosis,
particularly spine and hip fractures, impose a substantial burden on healthcare systems due
to hospitalization, long-term care, and disability [2,6,7]. Worldwide, osteoporosis is a major
public health concern with a growing prevalence due to the aging population [8]. It affects
a significant portion of the population, particularly postmenopausal women and older
adults [5,9]. In Taiwan, data from the Nutrition and Health Survey in Taiwan (NAHSIT
2004–2008) indicate a concerning statistic of osteoporosis, with a prevalence of 22.57% in
men and 41.17% in women over 50 years old when osteoporosis is defined as having at
least one of the lumbar spine, femoral neck, or forearm meeting the diagnostic criteria [10].
Despite this, screening rates remain suboptimal, partly due to the lack of awareness about
the disease and accessibility issues [11].

Osteoporosis screening is crucial for identifying individuals at risk of fractures and
implementing preventive measure. Dual-energy X-ray absorptiometry (DXA), typically
conducted on the lumbar spine and hip bones, is the current gold standard for BMD
assessment and serves as the primary tool for osteoporosis diagnosis [1,5,11–13]. However,
the limited availability of the scanners and their relatively high cost have limited more
widespread adoption in screening and post-treatment monitoring [12,13]. Alternatively,
calcaneal quantitative ultrasound (QUS) is another common method for assessing BMD [14].
While less expensive and portable compared to DXA scans, QUS generally exhibits lower
accuracy [15–19]. A previous study has indicated a sensitivity of 70% and specificity of 73%
for QUS in predicting osteoporosis of the lumbar spine when compared with DXA [20].
Another study in the Taiwanese population revealed that the sensitivity and specificity
of QUS when compared with DXA are 67.2% and 64.9%, respectively [19]. As a result,
a significant portion of the population remains undiagnosed, highlighting the need for
improved screening strategies.

The emergence of artificial intelligence (AI) offers promising opportunities to overcome
these challenges and improve osteoporosis screening. Several studies have explored the
use of AI for opportunistic screening of osteoporosis, which aims at using medical images
already acquired for other indications to screen for osteoporosis [21]. This concept enables
an increase in screening rates without adding to radiation exposure, costs, or time. Of these
studies, research groups have focused on applying deep learning to analyze hand and
wrist X-ray images [22], chest X-ray (CXR) images [23–28], lumbar X-ray images [29,30],
and pelvic X-ray images [29,31,32] for BMD prediction and osteoporosis screening. These
studies demonstrate the potential of AI to improve screening efficiency and accuracy.
Nevertheless, none of these AI models have been validated in a pivotal clinical study
approved for regulatory clearance by national regulatory agencies. In this study, we present
the development of VeriOsteoTM OP (Acer Medical Inc., New Taipei City, Taiwan), an
AI-assisted screening software (version 1.00.3000) that uses deep learning to analyze the
thoracolumbar region (T12–L1) of CXR images for BMD abnormality. We further present
the results of the pivotal study that validated the performance of VeriOsteoTM OP, now
approved by Taiwan Food and Drug Administration (TFDA) and commercially available
in Taiwan as a Class II medical device, by comparing the results with DXA at a medical
center and a community clinic.

2. Materials and Methods

This study was approved by the Institutional Review Board at the Taichung Veter-
ans General Hospital (TCVGH, https://www.vghtc.gov.tw (accessed on 1 May 2024)),
Taichung, Taiwan (IRB Nos: CE21372A for the AI model development, SE23143B for the
clinical validation). It was conducted in accordance with the principles of the Declara-
tion of Helsinki and was performed in accordance with current scientific guidelines. The
requirement for informed patient consent was waived because the data used were fully
de-identified to protect patient confidentiality.

https://www.vghtc.gov.tw
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2.1. Imaging and Data Collection

In the AI model development stage, the study data for developing the current product
model were sourced from the medical database of TCVGH, a medical center in central
Taiwan. The study population consisted of 5122 cases with paired CXR images and lumbar
spine DXA reports from 1 January 2016 to 31 December 2020 and were aged 20–98 years
on the chest index examination date. The data were de-identified and de-linked to ensure
anonymity and privacy. Each CXR image was captured under standard clinical conditions
following the protocol for posteroanterior (PA) view CXR imaging with a resolution of
1024 × 1024 pixels or higher. Additionally, each image underwent quality assurance by a
board-certified orthopedic specialist with over twenty years of experience, ensuring image
quality, confirming the presence of complete imaging of the target areas such as the last
thoracic vertebra and the first lumbar vertebra, and ensuring no hardware retention or
severe deformity in that area. Included participants had DXA bone density reports for
lumbar vertebrae taken within 6 months before or after the CXR imaging. The lumbar spine
DXA report should include BMD measurement value and T-scores for individual L1, L2, L3,
L4 vertebrae. Additionally, each T-score difference between adjacent vertebrae should be
≤1. If participants have multiple CXR images and DXA reports, we select data pairs with
the closest temporal difference in their acquisition times. The 5122 cases were randomly
allocated into the training, validation, and test sets using simple random sampling, where
each case had an equal probability of selection, and sampling was performed without
replacement. The training set comprises 4188 pairs of data, the validation set consists of
400 pairs, and the test set comprises 534 pairs of data.

In the clinical validation stage, we collected 440 CXR and DXA paired data from both
the TCVGH and Joy Clinic, including 304 pared data from TCVGH and 136 paired data
from Joy Clinic.

2.2. BMD Measurement

Both in TCVGH and Joy Clinic, the lumbar spine DXA scans were conducted using
the GE Lunar iDXA system revision 9 (Madison, WI, USA). The scans were analyzed
according to guidelines provided by the Taiwan Radiological Society, which were adapted
from the International Society for Clinical Densitometry (ISCD). Due to the absence of an
international standard reference for lumbar spine BMD, lumbar T/Z-scores were computed
utilizing the manufacturer’s reference values (X-ray Bone Densitometer with enCORE v17
software—User Manual). The T-score compares a patient’s bone density to the average
peak bone density of a healthy young female adult (ages 20 to 29), expressed in standard
deviations from this average. The Z-score compares a patient’s bone density to the average
bone density of a healthy individual of the same age and gender, also expressed in standard
deviations from this average. For patients under the age of 50, osteoporosis is determined
using the Z-score. For patients aged 50 and older, the T-score is used for this determination.
The WHO diagnostic category for osteoporosis is defined as a value for BMD 2.5 standard
deviations or more below the young adult mean [12].

2.3. Image Acquisition and Pre-Processing

Images were acquired from the Picture Archiving and Communication System (PACS)
and anonymized before being used in this study. In TCVGH, the CXR images were gener-
ated using radiography systems from Siemens Healthineers AG (Forchheim, Germany),
FUJIFILM Corporation (Tokyo, Japan), and Canon Medical Systems Corporation (Tochigi,
Japan). In Joy Clinic, the CXR images were produced using a radiography system from
Konica Minolta (Tokyo, Japan). All acquired images are stored in Digital Imaging and Com-
munications in Medicine (DICOM) standard version 3.0 format. The acquisition module
verifies that the image resolution is higher than 1024 × 1024 pixels to preserve essential
bone texture details.

The pre-processing stage is to enhance the usability of the acquired images for further
diagnostic assessment and analytical procedures. This study employs the contrast limited
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adaptive histogram equalization (CLAHE) algorithm, a sophisticated method used widely
in medical imaging to improve contrast while retaining essential details within the images.

2.4. Image Quality Assessment

This study emphasizes the region of the last vertebra of the thoracic spine and the first
vertebra of the lumbar spine (typically T12 and L1). Our automated quality assessment
procedure for radiographs is conducted by a dedicated spinal detection module, ensuring
the inclusion of these critical regions in the X-ray images.

The spinal detection module identifies vertebrae within thoracic cavity X-ray images
using the SCN (Spatial Configuration-Net) module, which outputs a heatmap indicating
the position of each vertebra (Figure 1). Counting from the top vertebra downwards, the
module determines whether the critical vertebrae—12th and 13th vertebra (assumed to be
typically T12 and L1 in the content of this report)—are present in the image. Following the
localization of these vertebrae, the module segments the image at these specific regions,
which are then used for further analysis by a BMD screening AI model (Figure 2).
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Figure 1. The process from the original image to landmark localization is illustrated. Starting with the
original CXR image, the image is resized to fit subsequent processing steps. The resized image is then
processed by the Spatial Configuration-Net (SCN) module, which generates heatmaps indicating
vertebral locations. Each heatmap corresponds to a specific vertebra, and the local maxima in each
heatmap are identified to locate the landmarks. (The network predicts simultaneously 13 heatmaps,
i.e., a single heatmap ĥi for each individual vertebra vi. For visualization, the predicted heatmaps are
combined into a single image.) These landmarks are then scaled back to the original image size for
precise vertebral localization.
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Figure 2. The process of identifying and cropping the T12–L1 region from CXR images. The steps are
as follows: (1) Landmark Identification: The T12 and L1 vertebrae are identified on the CXR image;
(2) Center Calculation: The center point (Cx, Cy) between T12 and L1 is calculated; (3) Distance
Calculation: The distance d between the T12 and L1 points is calculated; (4) ROI Determination: A
region of interest (ROI) is defined around the center point. The ROI’s horizontal boundaries are set to
1.5 times d on each side of the center point, and the vertical boundaries are set to 1.6 times d above
and below the center point. The defined ROI is cropped from the original CXR image, resulting
in a focused image of the T12–L1 region; (5) Cropped Image: The final cropped image containing
the T12–L1 region. (The blue box in the leftmost image indicates the range of the area shown in
image (1)).

2.5. Algorithm Development

A deep learning algorithm designed to assess the BMD from specified regions of
interest (ROIs) was developed. This neural network processes ROI images, which are based
on the locations of the last thoracic and first lumbar vertebrae as detailed in Section 2.4



Diagnostics 2024, 14, 1208 5 of 12

and utilizes fully connected layers with ReLU activation functions to estimate the BMD.
During our initial testing phase, we evaluated several backbone networks such as VGG-16,
DenseNet-121, ResNet-50, and EfficientNetV2S using data from a pilot study with 2002
training samples. We used the Area Under the Curve (AUC) as the primary metric for
model selection. The AUC results were as follows: VGG-16 (0.89), ResNet-50 (0.90), Ef-
ficientNetV2S (0.90), and DenseNet-121 (0.92). DenseNet-121 was determined to be the
most effective at predicting spinal BMD. Given the robust performance of the model when
solely utilizing image-based features, DenseNet-121 was chosen as our primary backbone
network for further development of the model. The output of the model consists of the
estimated BMD values for vertebrae L1–L4. In the training phase, the ROI is subject to
random affine transformations and resized to a resolution of 512 × 512 pixels. The training
loss is calculated using the mean square error (MSE) between the BMD values predicted by
the model and those measured by DXA scans.

2.6. Clinical Validation

In the clinical validation stage, we also validated the model using a clinical dataset
collected retrospectively from the databases of TCVGH between 2021 and 2022 and Joy
Clinic, a community-based multi-clinic, between 2012 and 2021. We initially screened
1027 cases with lumbar DXA scans, comprising 507 scans from TCVGH and 520 scans
from Joy Clinic. These scans were then filtered based on a T-score difference > 1 between
L2-L1, L3-L2, and L4-L3. After filtering, 706 DXA scans remained, with 331 from TCVGH
and 375 from Joy Clinic. Subsequently, we screened CXR images taken within 6 months
of the same case ID (de-identified) for the remaining DXA scans. The CXR images that
matched with DXA data within 6 months were further filtered based on image view (PA
view) and resolution (1024 × 1024 pixels or higher). The remaining CXR images underwent
additional filtering by an experienced orthopedic physician to exclude images without the
last thoracic vertebra and the first lumbar vertebra, as well as those with implants in these
vertebrae. Following confirmation by the orthopedic physician, 440 eligible CXR images
were matched with DXA scans. Among these, 304 DXA data were from TCVGH, and 136
were from Joy Clinic.

2.7. Evaluation of BMD Prediction Performance and Statistics

Evaluation of all performance measures was performed on the test dataset in the
model development phase and the clinical validation dataset. Suspected abnormal BMD
(saBMD) is defined as T-score ≤ −2.5 for cases aged ≥ 50 years old or Z-score ≤ −2.0 for
cases aged < 50 years old. On the contrary, non-suspected abnormal BMD (non-saBMD)
is defined as T-score > −2.5 for cases aged ≥ 50 years old or Z-score > −2.0 for cases
aged < 50 years old. The overall discriminative ability to discern saBMD individuals was
evaluated using the methodology of area under receiver operating characteristic curve
(AUROC). Other measures were also calculated, including accuracy, sensitivity, specificity,
positive predictive value (PPV), and negative predictive value (NPV). The scatter plot
visualized the agreement between predicted and measured BMD scores, and Pearson’s
correlation coefficient was calculated. For the demographic comparison between the
populations from TCVGH and Joy Clinic, means were compared using Student’s t-test and
categorical variables were compared using a Chi-square test. For the comparison of the
clinical performance of VeriOsteoTM OP (Acer Medical Inc., New Taipei City, Taiwan) at
TCVGH and Joy Clinic, a two-proportion z-test was used. Two-sided p-values are reported
throughout the manuscript.

3. Results

3.1. The Design and Workflow of VeriOsteoTM OP

A schematic representation of the workflow of VeriOsteoTM OP is shown in Figure 3.
VeriOsteoTM OP takes CXR images as the input. It then enhances the images (using
CLAHE), detects the T12–L1 region of the spine, and crops the T12–L1 region for analysis.
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The T12–L1 region is resized to 512 × 512 pixels before being input into the AI model
for analysis. By analyzing the T12–L1 region of the spine, the AI model predicts the
BMD and converts the BMD to a T-score (for cases aged ≥ 50 years old) or Z-score (for
cases aged < 50 years old). It then categorizes the results into saBMD or non-saBMD as
the output.
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3.2. Characteristics of the Training/Pre-Clinical Dataset

The characteristics of the training/pre-clinical dataset are listed in Table 1. Of the
4,188 cases (3263 women [78%], mean age, 64.2 [SD, 13.1] years) for training, 3,731 (89%)
were 50 years and over and 457 (11%) were under 50 years old. The mean BMD was 1.01
(SD, 0.20) and the mean T-score and Z-score were −1.44 (SD, 1.69) and 0.62 (SD, 1.59),
respectively. In terms of BMD categories, 1129 (27%) were saBMD (positive) and 3059 (73%)
were non-saBMD (negative). Of the 400 cases (326 women [82%], mean age, 62.1 [SD, 13.8]
years) for validation, 334 (84%) were 50 years and over and 66 (17%) were under 50 years
old. The mean BMD was 0.99 (SD, 0.18) and the mean T-score and Z-score were −1.57 (SD,
1.53) and 0.34 (SD, 1.42), respectively. In terms of BMD categories, 108 (27%) were saBMD
(positive) and 292 (73%) were non-saBMD (negative). Of the 534 cases (437 women [82%],
mean age, 60.7 [SD, 13.1] years) for pre-clinical test, 435 (81%) were 50 years and over
and 99 (19%) were under 50 years old. The mean BMD was 0.99 (SD, 0.18) and the mean
T-score and Z-score were −1.61 (SD, 1.53) and 0.26 (SD, 1.41), respectively. In terms of BMD
categories, 152 (28%) were saBMD (positive) and 382 (72%) were non-saBMD (negative).

Table 1. Image characteristics of the training and clinical validation datasets.

Training/Pre-Clinical Dataset Clinical Validation Dataset

Training Validation Test TCVGH Joy Clinic Overall p-Value *

Number, n 4188 400 534 304 136 440 –
Demographics

Female, n (%) 3263 (78) 326 (82) 437 (82) 250 (82) 101 (74) 351 (80)
0.0544Male, n (%) 925 (22) 74 (18) 97 (18) 54 (18) 35 (26) 89 (20)

Age (years), mean ± SD 64.2 ± 13.1 62.1 ± 13.8 60.7 ± 13.1 63.5 ± 12.5 60.1 ± 11.9 62.5 ± 12.4 0.0077
Age ≥ 50 years old, n (%) 3731 (89) 334 (84) 435 (81) 270 (89) 106 (78) 376 (85)

0.0028Age < 50 years old, n (%) 457 (11) 66 (17) 99 (19) 34 (11) 30 (22) 64 (15)
Bone Mass Density

BMD (g/cm2), mean ± SD 1.01 ± 0.20 0.99 ± 0.18 0.99 ± 0.18 0.90 ± 0.18 0.95 ± 0.18 0.92 ± 0.18 0.0074
T-score, mean ± SD −1.44 ± 1.69 −1.57 ± 1.53 −1.61± 1.53 −2.34 ± 1.49 −1.89 ± 1.48 −2.20 ± 1.50 0.0035
Z-score, mean ± SD 0.62 ± 1.59 0.34 ± 1.42 0.26 ± 1.41 −0.30 ± 1.29 −0.06 ± 1.13 −0.23 ± 1.25 0.0619
saBMD 1, n (%) 1129 (27) 108 (27) 152 (28) 184 (61) 69 (51) 253 (58) –
Non-saBMD 2, n (%) 3059 (73) 292 (73) 382 (72) 120 (39) 67 (49) 187 (43) –

Collected images, n (%)
Evaluable 3 4188 (100) 400 (100) 534 (100) 300 (99) 136 (100) 436 (99) –
Not evaluable 4 – – – 4 (1) 0 (0) 4 (1) –

* p-value between the Taichung Veterans General Hospital (TCVGH) group and the Joy Clinic group in the clinical
validation dataset. 1 saBMD: suspected abnormal bone mineral density. 2 Non-saBMD: non-suspected abnormal
bone mineral density. 3 VeriOsteoTM OP included two models. One is the spinal detection module. The other
is the BMD screening AI model. This represents the quantity of evaluable CXR by the spinal detection module.
4 The number of CXRs excluded by the spinal detection module.
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3.3. Pre-Clinical Performance of VeriOsteoTM OP

The pre-clinical performance of VeriOsteoTM OP is summarized in Table 2. For de-
tecting saBMD, the algorithm of VeriOsteoTM OP achieved an AUC of 0.940 (95% CI:
0.923–0.957) (Figure 4a). At the optimal operating point, the algorithm had a sensitivity
of 86.2% (95% CI: 79.7–91.2%) and a specificity of 83.8% (95% CI: 79.7–87.3%). The overall
accuracy was 84.5% (95% CI: 81.1–87.4%). The positive and negative predictive values (PPV
and NPV) were 67.9% (95% CI: 62.5–72.8%) and 93.8% (95% CI: 91.1–95.8%), respectively.
The model exhibited good linear correlation of predicted BMD with regard to measured
BMD as depicted in the scatter plot in Figure 5a. The Pearson’s correlation coefficient
between DXA-measured and model-predicted BMD was 0.88.

Table 2. Pre-clinical and clinical performance of screening for saBMD by VeriOsteoTM OP.

Pre-Clinical Test Clinical Validation

Testing TCVGH Joy Clinic Overall p-Value *

AUC (95% CI) 0.940 (0.923–0.957) 0.948 (0.924–0.972) 0.938 (0.895–0.980) 0.946 (0.925–0.967) 0.6901
Accuracy (%) (95% CI) 84.5 (81.1–87.4) 88.3 (84.2–91.7) 90.4 (84.2–94.8) 89.0 (85.7–91.8) 0.5148
Sensitivity (%) (95% CI) 86.2 (79.7–91.2) 86.7 (80.9–91.3) 94.0 (85.4–98.4) 88.7 (84.1–92.4) 0.1072
Specificity (%) (95% CI) 83.8 (79.7–87.3) 90.8 (84.1–95.3) 87.0 (76.7–93.9) 89.4 (84.1–93.4) 0.4154
PPV (%) (95% CI) 67.9 (62.5–72.8) 93.5 (88.6–96.7) 87.5 (77.6–94.1) 91.7 (87.4–94.8) 0.1263
NPV (%) (95% CI) 93.8 (91.1–95.8) 81.8 (74.2–88.0) 93.8 (84.8–98.3) 85.7 (80.0–90.3) 0.0252
Pearson’s correlation
coefficient (95% CI) 0.88 (0.86–0.90) 0.88 (0.85–0.90) 0.88 (0.84–0.91) 0.88 (0.86–0.90) 0.8298

* p-value between the Taichung Veterans General Hospital (TCVGH) group and the Joy Clinic group in the clinical
validation dataset.
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3.4. Characteristics of the Clinical Validation Dataset

The characteristics of the clinical validation dataset are listed in Table 1. Of the
440 cases enrolled, 304 were from TCVGH and 136 were from Joy Clinic. Of the 304 cases
(250 women [82%], mean age, 63.5 [SD, 12.5] years) from TCVGH, 270 (89%) were 50 years
and over and 34 (11%) were under 50 years old. The mean BMD was 0.90 (SD, 0.18) and
the mean T-score and Z-score were −2.34 (SD, 1.49) and −0.30 (SD, 1.29), respectively. In
terms of BMD categories, 184 (61%) were saBMD (positive) and 120 (39%) were non-saBMD
(negative). In terms of image quality, four (1%) images from this group were not evaluable.
Of the 136 cases (101 women [74%], mean age, 60.1 [SD, 11.9] years) from Joy Clinic, 106
(78%) were 50 years and over and 30 (22%) were under 50 years old. The mean BMD was
0.95 (SD, 0.18) and the mean T-score and Z-score were −1.89 (SD, 1.48) and −0.06 (SD, 1.13),
respectively. In terms of BMD categories, 69 (51%) were saBMD (positive) and 67 (49%)
were non-saBMD (negative). No image from this group was not evaluable. Overall, of the
total of 440 cases enrolled (351 women [80%], mean age, 62.5 [SD, 12.4] years), 376 (85%)
were 50 years and over and 64 (15%) were under 50 years old. The mean BMD was 0.92
(SD, 0.18) and the mean T-score and Z-score were −2.20 (SD, 1.50) and −0.23 (SD, 1.25),
respectively. In terms of BMD categories, 253 (58%) were saBMD (positive) and 187 (43%)
were non-saBMD (negative). When comparing the demographics between TCVGH and Joy
Clinic, the mean age, percentage of cases 50 years and over, the mean BMD, and the mean
T-score were significantly different (p-value ≤ 0.05). But the percentage of female cases
(p-value = 0.0544) and the mean Z-score (p-value = 0.0619) were not significantly different
between the two subgroups.

3.5. Clinical Validation of the Performance of VeriOsteoTM OP

The clinical validation performance of VeriOsteoTM OP is summarized in Table 2.
When combining the performance results from the TCVGH and the Joy Clinic groups for
detecting saBMD, the algorithm of VeriOsteoTM OP achieved an AUC of 0.946 (95% CI:
0.925–0.967) (Figure 4b). At the optimal operating point, the algorithm had a sensitivity
of 88.7% (95% CI: 84.1–92.4%) and a specificity of 89.4% (95% CI: 84.1–93.4%). The overall
accuracy was 89.0% (95% CI: 85.7–91.8%). The positive and negative predictive values (PPV
and NPV) were 91.7% (95% CI: 87.4–94.8%) and 85.7% (95% CI: 80.0–90.3%), respectively.
The model remained robust with good predictive performance of predicted BMD with
regard to measured BMD as depicted in the scatter plot in Figure 5b. The Pearson’s
correlation coefficient between DXA-measured and model-predicted BMD was 0.88. When
comparing the performance between the two subgroups (TCVGH vs. Joy Clinic), the
AUC, accuracy, sensitivity, specificity, PPV, and Pearson’s correlation coefficient were
not significantly different (p-value > 0.05). Only NPV (p-value = 0.252) was significantly
different between TCVGH and Joy Clinic.

4. Discussion

Osteoporosis is a silent disease characterized by low bone mineral density (BMD)
that especially affects the elderly [2,5]. Due to the aging population, global osteoporosis
prevalence is on the rise. According to data from the National Health Insurance system in
Taiwan, the prevalence of osteoporosis among individuals aged 50 and over has increased
significantly from 17.4% in 2001 to 25.0% in 2011 [33]. Since osteoporosis is difficult to
reverse, it is imperative to detect the disease early so that preventive measures can be
taken to ameliorate the deterioration. However, the screening rate is in general low even
in developed countries [34]. This is mostly due to the disease’s lack of symptoms, lack of
awareness, and accessibility issues such as limited access to DXA scans. DXA scans can be
limited in availability, expensive, time-consuming, and involve radiation exposure [35,36].
As a result, expansion to population-based screening would be difficult to realize.

With the recent advancements in deep machine learning, many researchers have
proposed the idea of opportunistic screening using already acquired images as a potential
solution to expand screening to a wider population. Study on vertebral body fractures
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analysis on computed tomography (CT) utilizing AI models has yielded reliable results [37].
Typically, CT images are taken when the patient is undergoing treatment. There is potential
to advance the timing of osteoporosis screening. Several groups have developed AI-based
algorithms that analyze X-ray images of hand and wrist [22], lumbar spine [29], and
pelvis [29,31,32] to predict BMD. However, X-ray images from these regions are generally
not widely available. Therefore, when these solutions are implemented into the clinical
setting, patients may need to take a new X-ray image for the AI model to analyze, which
defeats the purpose of “opportunistic” screening. Here, we strategically chose CXR images
as the model input because this image modality widely used for various medical purposes
and easily accessible from routine health checks, especially in Asia. We further focus on the
T12–L1 as the region of interest as these are the vertebrae where compression fracture is
likely to occur. The VeriOsteoTM OP model was trained with the lumbar spine L1–L4 DXA
results as the gold standard reference, which is a clinically relevant measurement for the
diagnosis of osteoporosis. In comparison, VeriOsteoTM OP correlated well with the gold
standard DXA-measured BMD in both pre-clinical and clinical validation sets with good
performance to screen for saBMD (AUC = 0.940 and 0.946, respectively). Furthermore, in
our clinical validation, when compared with similar AI models that analyze CXRs to predict
lumbar BMD for the screening of osteoporosis [23,24,26–28], VeriOsteoTM OP exhibited the
highest correlation (R = 0.88) and its performance was either comparable or superior in
terms of AUC (0.946) and overall accuracy (89.0%). Since VeriOsteoTM OP is intended to be
used for preliminary screening purposes, we selected the optimal operating point so that
the model achieved a well-balanced level of sensitivity (88.7%), specificity (89.4%), PPV
(91.7%), and NPV (85.7%). From the public health point of view, with a relatively high
prevalence of osteoporosis among the elderly, the high PPV is of particular importance to
minimize an excessive number of false positives.

In the clinical validation, we selected two validation sites of different scale. TCVGH
is a large-scale comprehensive medical center in the central regions of Taiwan while Joy
Clinic is a smaller-scale community clinic focusing on chronic diseases. In our subgroup
analysis of the patients enrolled from these two sites, we found that the demographics of
the two populations from these subgroups were mostly significantly different. Neverthe-
less, when comparing the performance of VeriOsteoTM OP for detecting saBMD validated
using datasets from these two sites, we found that the AUC, accuracy, sensitivity, speci-
ficity, PPV, and Pearson’s correlation coefficient were not significantly different. These
results demonstrate that the performance of VeriOsteoTM OP is robust when the tool is
applied to different clinical institutions. The robustness of the performance of such AI-
based screening tools is critical to their subsequent wider adoption towards the concept of
population-based screening.

Despite the careful design of the development and clinical validation of VeriOsteoTM

OP, this study had several limitations. First, our training/pre-clinical dataset was solely
from TCVGH, which is a medical center that tends to have a more complex population
with a large proportion of patients with severe diseases. But when VeriOsteoTM OP was
validated using data from Joy Clinic, an external site with presumably patients with fewer
complications, the performance was comparable to that validated using data from TCVGH.
However, as mentioned earlier, the radiography systems used for CXR acquisition are from
Siemens Healthineers AG, FUJIFILM Corporation, and Canon Medical Systems, which are
different from the Konica Minolta system used in Joy Clinic. In the future, the model is
expected to be further optimized and become even more robust when more data from a
healthier population are added to fine-tune the model. Second, the sample sizes of both
the training/pre-clinical and clinical validation datasets are relatively small. As with many
other medical imaging-based projects, data availability is always a concern. The emergence
of foundation models offers a significant opportunity in addressing the problem using
minimal amounts of labeled data [38] during training. Applying such technology to our
future generations of models has the potential to make the models robust across different
real-world healthcare settings with diverse populations. Validations using real-world data



Diagnostics 2024, 14, 1208 10 of 12

are also planned as VeriOsteoTM OP is being deployed into real clinical settings. Third, in
all the datasets used in this study, female patients and patients 50 years and over comprise
the majority (over 70%) of the populations. As osteoporosis is associated with gender and
age, such a composition reflects the prevalence trend in the real world. However, since
only 64 patients under 50 years old were enrolled in the clinical validation with limited
positive (saBMD) cases, the final VeriOsteoTM OP model approved by TFDA was limited to
subjects 50 years old or over. Once more data of patients under 50 years old are available,
the model can further be fine-tuned to be applied to this younger population. Fourth, the
data collected and tested in this study are based on the population in Taiwan, which is
known for the lack of ethnical diversity. The performance of the AI model across other
ethnicities is yet to be determined. Finally, the ground truth of both the model training
phase and the clinical validation study was based on BMD measurements from a single
brand and model of DXA scanner. The effect of inter-model variation on predicted BMD
and T-score needs to be considered in future validation studies.

This study presented a robust opportunistic screening tool, VeriOsteoTM OP, that
utilizes AI to analyze CXR images for saBMD. It is the first AI-based software (version
1.00.3000) as a medical device (SaMD) of its kind to have been approved by a national regu-
latory agency. The implementation of such an AI-based tool has the potential to improve
the efficiency and accessibility of osteoporosis screening, ultimately contributing to earlier
diagnosis, better patient outcomes, and even lower incidence of osteoporosis-related frac-
tures. Some of the advantages of AI-based screening include lower cost, wider accessibility,
and integration into existing healthcare workflows. The deployment of VeriOsteoTM OP
into real clinical settings is expected to revolutionize the current practice of osteoporosis
screening by offering preliminary screening to a broader population.
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