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Abstract: Background/Objectives: Brown adipose tissue (BAT) plays a crucial role in energy ex-
penditure and thermoregulation and has thus garnered interest in the context of metabolic diseases.
Segmentation in medical imaging is time-consuming and prone to inter- and intra-operator variability.
This study aims to develop an automated BAT segmentation method using the nnU-Net deep learning
framework, integrated into the TotalSegmentator software, and to evaluate its performance in a large
cohort of patients with lymphoma. Methods: A 3D nnU-Net model was trained on the manually
annotated BAT regions from 159 lymphoma patients’ CT scans, employing a 5-fold cross-validation
approach. An ensemble model was created using these folds to enhance segmentation performance.
The model was tested on an independent cohort of 30 patients. The evaluation metrics included the
DICE score and Hausdorff Distance (HD). Additionally, the mean standardized uptake value (SUV) in
the BAT regions was analyzed in 7107 FDG PET/CT lymphoma studies to identify patterns in the BAT
SUVs. Results: The ensemble model achieved a state-of-the-art average DICE score of 0.780 ± 0.077
and an HD of 29.0 ± 14.6 mm in the test set, outperforming the individual fold models. Automated
BAT segmentation revealed significant differences in the BAT SUVs between the sexes, with higher
values in women. The morning scans showed a higher BAT SUV compared to the afternoon scans,
and seasonal variations were observed, with an increased uptake during the winter. The BAT SUVs
decreased with age. Conclusions: The proposed automated BAT segmentation tool demonstrates
robust performance, reducing the need for manual annotation. The analysis of a large patient cohort
confirms the known patterns of BAT SUVs, highlighting the method’s potential for broader clinical
and research applications.

Keywords: brown adipose tissue; BAT segmentation; deep learning; nn-UNet; TotalSegmentator;
lymphoma; PET/CT; automated segmentation

1. Introduction

Brown adipose tissue (BAT) is an important endocrine tissue primarily involved in
energy expenditure and non-shivering thermoregulation [1,2]. Unlike white adipose tissue
(WAT), which stores energy, BAT burns energy to produce heat. This function is especially
crucial in newborns to maintain body temperature. The primary regions of interest for
BAT are the supraclavicular and neck areas, as well as the perirenal and paravertebral
regions [3].
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While BAT is abundant in newborns, it is believed to regress with age. However,
studies using positron emission tomography (PET) have identified metabolically active
BAT in some adults, highlighting its potential role in adult metabolism [4]. The activation
of BAT is mediated by the tissue-specific uncoupling protein 1 (UCP1), which uncouples
oxidative phosphorylation in mitochondria, leading to an increased energy expenditure.
This process has been shown to lower the plasma glucose and lipid levels in the blood,
thereby improving metabolic homeostasis. Consequently, BAT has garnered significant
attention for its potential therapeutic effects on various metabolic diseases, including
diabetes [5–9]. Therefore, BAT has become an increasingly important area of research, as its
unique properties open possibilities for future diagnostic opportunities and therapies, such
as the transplantation or stimulation of BAT regeneration.

However, the accurate and consistent identification and quantification of BAT in
imaging studies remains challenging. The manual segmentation of BAT is time-consuming,
operator-dependent, and prone to variability, which motivates the use of standardized
and automated segmentation methods [10]. Early efforts to segment BAT predominantly
utilize simple thresholding techniques to define BAT based on a range of Hounsfield units
(HUs) from computed tomography (CT) scans in combination with standardized uptake
values (SUVs) from PET scans [11]. Typically, BAT is characterized as tissue with HU
values ranging from −190 to −10 and exhibiting an elevated FDG uptake (SUV > 1.2) [12].
Although these methods are relatively straightforward, they are limited by the inherent
subjectivity in selecting HU and SUV cutoff values [13], the latter influenced by a variety of
biologic and technologic factors [14,15].

Deep learning methods have become invaluable for medical segmentation tasks, as
they can directly map image data to segmentation masks without the need for handcrafted
features. Among these methods, deep convolutional neural networks (CNNs) have shown
exceptional performance in medical image analysis [16,17]. One of the most successful
architectures is the U-Net, which has proven to be highly effective in a range of medical
imaging applications, including image segmentation and synthesis [18]. Building on this,
the nnU-Net extends the U-Net framework to create a fully automated and adaptive
segmentation tool. Unlike traditional models, nnU-Net eliminates the need for the manual
tuning of hyperparameters or architecture adjustments for each specific task. Instead,
it automatically configures itself based on the dataset’s characteristics, making it highly
adaptable across diverse medical imaging tasks [19]. An example of its application is
TotalSegmentator, a popular open-source tool capable of segmenting over 100 different
body parts from CT images. TotalSegmentator leverages nnU-Net models to perform
these segmentation tasks [20]. However, most research on BAT segmentation combines
imaging modalities like a PET/CT or a PET/MRI. PET imaging with a glucose tracer, such
as 18F-FDG, is especially effective at highlighting metabolically active BAT, which can
then be co-registered with CT anatomical data [21]. In contrast, methods that use PET for
segmentation risk biasing the SUV analysis, as the segmentation depends on the very SUV
activity being analyzed. While segmenting BAT from CT images alone is challenging due
to the lack of specific contrast distinguishing it from other adipose tissues, CT images still
provide sufficient information for BAT identification by physicians.

In this study, we propose a supraclavicular BAT segmentation model based on a
3D nnU-Net ensemble that utilizes only the anatomical information from CT images for
the segmentation. The method integrates seamlessly with the existing TotalSegmentator
software (version: TotalSegmentator 2.4.0), facilitating integration into the established
workflows. This software already segments a wide range of anatomical regions from a
CT alone, including subcutaneous and visceral fat. This suggests that BAT should also be
segmentable without relying on PET data.

To demonstrate the practicality of our method, we applied it to segment a large cohort
of over 7000 PET/CT scans from patients diagnosed with lymphoma. Our automated
segmentation procedure efficiently generated BAT segmentation masks, which enabled
the extraction of mean BAT SUVs from the corresponding PET scans. This facilitated the
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identification of demographic trends in the BAT SUVs with high confidence, highlighting
the potential of our segmentation tool for use in BAT research and related studies.

2. Materials and Methods
2.1. Patient Cohorts

This retrospective study included 7296 whole-body FDG-PET/CT scans from
2752 patients with lymphoma undergoing staging, an interim treatment assessment, and
an end-of-treatment evaluation, acquired during clinical routine at Rigshospitalet, Copen-
hagen, Denmark. All scans were performed between September 2017 and September
2022, and the 189 most recent scans from different patients were used for developing a
segmentation model. Of these, 30 studies were kept for testing, and the remaining 159
were used for training, utilizing a 5-fold cross-validation split. The remaining 7107 scans
were used for subsequent descriptive analyses of BAT. We will refer to this latter cohort as
LymphBAT-7107. Patient demographics for the training and test cohorts are presented in
Table 1. All patient-specific data were annomymized and managed in accordance with the
Danish Data Protection Agency Act No. 502. The project was approved by the National
Ethics Comité (Reference No.: 2213953).

Table 1. Patient demographics (mean ± SD) for training and testing cohorts. BAT Volume refers
to the manually annotated BAT volume. We do not have manually annotated BAT volumes for the
LymphBAT-7107 cohort used for descriptive analysis.

Patient Cohort Age [Years] Weight [kg] Height [m] BMI BAT Vol. [mL]

Train (n = 159)
Men (n = 75 (47%)) 63.5 ± 15.3 83.1 ± 14.4 1.80 ± 0.08 25.3 ± 4.7 117.0 ± 66.3
Women (n = 84 (53%)) 63.4 ± 16.0 77.5 ± 16.2 1.64 ± 0.06 24.9 ± 5.4 86.0 ± 72.1

Test (n = 30)
Men (n = 16 (53%)) 57.3 ± 20.3 74.1 ± 11.7 1.79 ± 0.07 22.6 ± 3.7 97.0 ± 47.9
Women (n = 14 (47%)) 55.3 ± 20.2 74.7 ± 21.6 1.66 ± 0.06 27.8 ± 6.8 101.4 ± 66.7

LymphBAT-7107 (n = 7107)
Men (n = 4011 (56%)) 62.2 ± 16.2 81.9 ± 15.8 1.79 ± 0.07 25.4 ± 4.5 -
Women (n = 3096 (44%)) 63.2 ± 17.0 68.4 ± 16.0 1.66 ± 0.6 24.9 ± 5.5 -

2.2. PET/CT Acquisition Parameters

Whole-body (WB) CT scans, 89% of which were contrast-enhanced, were acquired
using various scanners. The majority of the scans (~82%) were obtained from a Siemens
Biograph 64 Vision 600 (Siemens Healthineers, Erlangen, Germany). However, multiple
scans were acquired using a Biograph 128 Vision 600 Edge (~10%) and a Biograph 64 mCT
Flow (~8%). Most of the scans covered the region from the mid-thigh to the top of the head,
with some scans extending to include the lower extremities. Images were reconstructed
with a spacing of 2.0 × 0.98 × 0.98 mm, corresponding to a median CT volume resolution
of 471 × 512 × 512 voxels. All PET scans were reconstructed using point spread function
(PSF) technology.

2.3. Manual BAT Annotation Procedure

The manual segmentation of supraclavicular BAT was performed on 189 CT images
by a single reader using Mirada Medical DBx software version 01 R2 (Mirada Medical
Ltd., Oxford, UK) on axial slices. The use of a single reader eliminated inter-observer
variability. An experienced physician supervised the quality of the segmentations to ensure
accuracy. These three-dimensional segmentation masks were used as ground truth for both
the training and testing of the segmentation model.
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2.4. Automated BAT Segmentation Using nnU-Net

The CT and BAT segmentation pairs were employed in a supervised training scheme
using the nnU-Net v2 model (version: nnunetv2==2.5.1) [19], integrated within the TotalSeg-
mentator framework (version: TotalSegmentator==2.4.0) [20]. A 5-fold cross-validation was
conducted, resulting in five distinct models. Optimal preprocessing steps were automati-
cally determined by the nnU-Net framework, utilizing the 3D full-resolution configuration.
Preprocessing included intensity normalization through z-score standardization [19]. Each
model was trained for 1000 epochs with a batch size of 2 using a joint DICE and cross-entropy
loss function with deep supervision enabled, operating on patches of 112 × 128 × 128 vox-
els. Data augmentation included elastic deformations, random rotations, scaling, gamma
adjustments, and intensity shifts as per the default nnU-Net settings; however, mirroring
augmentations were disabled to maintain consistency with the TotalSegmentator framework
settings. Model checkpoints were selected based on performance on the corresponding val-
idation set, which may have introduced optimistic bias into the cross-validated validation
metrics. This underscores the importance of the acquired independent test set.

The five models from the cross-validation were subsequently combined into an ensem-
ble model by averaging their logits. This final ensemble model was then used for inference
on the independent test set.

2.5. Evaluation
2.5.1. BAT Segmentation Quality

The predicted BAT masks were evaluated against the ground truth BAT masks using
three metrics: DICE, Intersection over Union (IoU), and Hausdorff Distance (HD) [21–23].
The DICE score, ranging from 0 to 1, measures the overlap between the predicted and
actual BAT regions. Higher values indicate better prediction accuracy. IoU, which also
ranges from 0 to 1, is defined as the ratio of the intersection to the union of the predicted
and ground truth masks:

DICE =
2 × |A ∩ B|
|A|+ |B| =

2 × TP
2 × TP + FN + FP

, IoU =
|A ∩ B|
|A ∪ B| =

TP
TP + FN + FP

(1)

Here, TP denotes true positive pixel predictions, FN represents false negatives, and
FP indicates false positives. While DICE provides a measure of overlap, IoU focuses on the
ratio of correctly predicted pixels to all pixels in the combined regions. The two metrics are
complementary: DICE is particularly sensitive to small regions and balanced segmentation,
while IoU emphasizes overall pixel-level accuracy. The Hausdorff Distance, ranging from
0 to infinity, measures the greatest distance from any point in a set A (predicted mask) to
the closest point in another set B (ground truth mask) with smaller values indicating better
prediction accuracy [21]. It is calculated as follows:

H(A, B) = max(h(A, B), h(B, A)),where h(A, B) = max
a∈A

min
b∈B

∥a − b∥2. (2)

HD is particularly useful for identifying cases where false positive predictions occur
far from the expected neck regions. For example, a small false positive prediction in the
abdominal area will significantly affect HD but may have a negligible impact on DICE
or IoU. These metrics were chosen due to their complementary strengths in evaluating
segmentation accuracy. DICE and IoU assess the pixel-level overlap and accuracy, while
HD captures spatial errors, providing a comprehensive evaluation of BAT segmentation
performance. This combination ensures robustness in detecting both the precise alignment
and outlier predictions.

2.5.2. Descriptive Analyses

A statistical analysis of the standardized uptake value (SUV) signal in BAT was conducted
on the LymphBAT-7107 cohort described in Section 2.1. Using the trained segmentation model,
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BAT masks were inferred from the CT scans, and mean BAT SUVs were extracted from the
corresponding PET scans. The SUV is calculated using the following formula:

SUV =
cimg

ID
× BW. (3)

In this equation, ID represents the injected dose in Becquerels (Bqs), BW refers to the
patient’s body weight in kilograms, and cimg is the activity concentration in the image mea-
sured in Bq/mL. Our goal was to compare the mean SUV in BAT across four different
patients and the following study features: patient sex (M/F), patient age (Young Adults
(0–39)/Middle-Aged Adults (40–59)/Older Adults (60–79)/Elderly (80+)), scan time (morning
[AM]/afternoon [PM]), and season (winter/spring/summer/fall). We calculated the mean
and standard error of the mean (SEM) for each subgroup and used Welch’s T-Test to determine
significant general patterns in BAT SUVs across the demographic and temporal factors. We
applied three thresholds for statistical significance: p < 0.05, p < 0.01, and p < 0.001.

3. Results
3.1. Assessment of BAT Segmentation Performance

The evaluation metrics, DICE, IoU, and HD, for both the cross-validation (CV) models
and the final ensemble model are summarized in Table 2. The DICE and HD metrics are
visualized as violin plots in Figure 1. When using individual fold models, some patients
obtained poor DICE and HD scores due to false positive BAT predictions far from the neck
region. This issue is not observed in the combined ensemble model, which brings a drastic
reduction in HD from 60.7 to 29.0 and an improvement in the DICE score from 0.749 to
0.780. The IoU also improved from 0.613 to 0.646 in the tabulated results, reflecting the
enhanced pixel-level accuracy achieved by the ensemble.

Table 2. Evaluation metrics based on validation splits and the ensemble model in the independent
test set. Metrics are reported as mean ± SEM.

Model Evaluation Set DICE↑ IoU↑ HD↓ [mm]

Single fold model Validation Fold 0 (n = 32) 0.750 ± 0.022 0.613 ± 0.025 61.2 ± 13.0
Validation Fold 1 (n = 32) 0.749 ± 0.021 0.611 ± 0.024 48.4 ± 6.6
Validation Fold 2 (n = 32) 0.732 ± 0.028 0.598 ± 0.030 82.0 ± 24.4
Validation Fold 3 (n = 32) 0.764 ± 0.017 0.627 ± 0.021 72.1 ± 20.6
Validation Fold 4 (n = 31) 0.749 ± 0.023 0.614 ± 0.026 38.9 ± 4.7

Combined Validation set (n = 159) 0.749 ± 0.010 0.613 ± 0.011 60.7 ± 7.2

Ensemble model Test set (n = 30) 0.780 ± 0.014 0.646 ± 0.019 29.0 ± 2.7
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Figure 1. Violin plots show the distribution of DICE and HD metrics for each individual fold model
in the CV, with a combined plot for full CV results. The last violin plots represent the ensemble
model’s performance on the independent test set.
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Figure 2 presents a visual comparison of the model-predicted BAT segmentations
against the ground truth annotations across the four representative test patients, which
were randomly selected. In general, there is a strong visual correspondence between the
predicted and ground truth segmentations, particularly in the regions with well-defined
BAT structures. However, some inconsistencies are observed, notably in the areas where
the ground truth annotations appear ambiguous or less defined. In these cases, the overlap
analysis highlights the discrepancies, with true positive pixels shown in green, while the
false negative (red) and false positive (blue) pixels reveal the regions where the model
either missed the BAT or over-segmented, respectively.
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Figure 2. Comparison of BAT segmentation across four test patients. Each column shows the CT
images, ground truth BAT annotations, model-predicted BAT segmentations, and agreement analysis
showing true positive pixels (green), false negative pixels (red), and false positive pixels (blue).

Figure 3 provides a detailed example of a single representative test patient, where we
display the contours of the manually annotated BAT region (blue) alongside the predicted
region (red). Additionally, the segmented regions are visualized as 3D structures to better
grasp the entire volume, rather than just the individual slices. For this test patient, we
observed that the predicted BAT volume aligns well with the ground truth, but there
are some predicted regions near the shoulders (indicated by green arrows) that were
not annotated as BAT in the manual segmentation. From the 3D structure, we can see a
relatively large, predicted BAT region that is disconnected from the rest of the remaining
BAT volume.
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3.2. Findings from the Descriptive Analyses in Patients with Lymphoma

The automated BAT segmentation in the LymphBAT-7107 cohort of lymphoma patients
predicted an average BAT volume of 73.3 mL with a standard deviation of 47.4 mL. Figure 4
and Table 3 contain the mean SUV in BAT across the different sub-cohorts. SUV uptake
is significantly higher in the females than in the males and is greater in the morning than
in the afternoon. Seasonal variations are evident, with the highest uptake observed in the
winter, followed by a decline in the spring, reaching its lowest point in the summer, and
rising again in the fall. Additionally, the mean SUV in BAT generally decreases with age,
except in the 80+ cohort, where a noticeable increase in SUV uptake is observed.
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Figure 4. Mean values across different subject groups in the LymphBAT–7107 cohort with 95%
con–fidence intervals (mean ± 1.96 SEM) shown.

Table 3. Comparison of mean SUV in BAT across different subject groups in the large LymphBAT-7107
(n = 7107) cohort. Statistically significant differences, p < 0.05, are marked with *, p < 0.01 are marked
with **, and p < 0.001 are marked with ***.

Grouping # Mean SEM Welch’s t-Test (p-Values)

Sex F

M 4011 0.623 0.004 *** 1.47 × 10−23

F 3096 0.703 0.007 –

Time of day PM

AM 2884 0.676 0.006 *** 9.44 × 10−5

PM 4223 0.645 0.004 –

Season Spring Summer Fall

Winter 1734 0.689 0.009 * 0.0132 *** 8.54 × 10−7 * 1.44 × 10−3

Spring 1740 0.660 0.007 – ** 5.93 × 10−3 0.4880
Summer 1896 0.633 0.007 – – * 0.0270

Fall 1737 0.653 0.006 – – –

Age group 40–59 60–79 80+
0–39 876 0.841 0.021 *** 7.08 × 10−19 * 2.49 × 10−23 *** 1.18 × 10−17

40–59 1570 0.642 0.007 – * 0.0448 0.4352
60–79 3938 0.625 0.003 – – ** 2.20 × 10−3

80+ 723 0.650 0.007 – – –
Note: No correction for multiple t-tests has been applied in this analysis.

Figure 5 depicts the predicted segmentations and PET images for two example patients
with metabolically active BAT. Note that the areas of increased PET activity correspond to
the segmented BAT.
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4. Discussion

This study demonstrates the feasibility and effectiveness of an automated supraclav-
icular brown adipose tissue (BAT) segmentation model using the nnU-Net framework,
integrated within the TotalSegmentator tool. By leveraging only CT images, we have devel-
oped a robust method that bypasses the need for PET data. To the best of our knowledge,
this is the first CT-only BAT segmentation model. It achieved a mean Dice score of 0.780
and a Hausdorff Distance (HD) of 29.0 mm on the independent test set, underscoring its
potential for reliable and large-scale BAT segmentation.

While the reported DICE and HD scores may not seem immediately impressive com-
pared to other segmentation tasks involving more delineated organs, which often achieve
DICE scores above 0.9, it is important to consider the challenges unique to BAT. In partic-
ular, distinguishing BAT tissue from other adjacent adipose tissue is inherently difficult
due to the similarity in HU values. Zhao et al. proposed BAT-Net for BAT segmentation
on multi-modal magnetic resonance imaging (MRI) scans, achieving a DICE score of ap-
proximately 0.88 [24]. However, this is not directly comparable to our results, as an MRI
inherently offers better differentiation between soft tissues, making the segmentation task
easier. Yet, an MRI is often unavailable in many clinical settings, especially in combination
with a PET scan, where PET/CT scans remain more commonly used. Another model from
Wang et al., ICA-UNet which is a 2D convolutional model that takes both a CT and the
corresponding PET slices as inputs, reports a DICE score of 0.91 and a HD of 7.3. However,
since their model uses both a PET/CT and is evaluated on 2D slices and not the entire 3D
volume, these metrics are also not directly comparable to our results. To address the lack of
comparative studies in CT-only BAT segmentation, we propose our model as a baseline for
future research.

The visual inspection of the predicted BAT regions across several test cases generally
showed good correspondence with the ground truth. In the areas where inconsistencies
were observed, it was often challenging to determine whether the ground truth or the
predicted regions best represented the actual BAT. Some cases showed disconnected BAT
areas in the shoulder regions that were absent in the ground truth annotations. This
suggests that applying post-processing steps to retain only the largest BAT region on
each side could potentially improve the segmentation accuracy. Despite the challenges of
segmenting BAT from a CT, we consider the obtained performance sufficient for practical
use, and we view our model’s simplicity and potential integration as a plug-and-play
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addition to TotalSegmentator as a significant advantage over the more complex multi-
modal U-Net variations seen in related research. Furthermore, by excluding the PET as
input we also eliminate the risk of biasing the SUV analysis.

The performance across the individual fold models was consistent, demonstrating that
the training process is robust and does not heavily depend on the choice of seed or specific
training data. Building on this consistency, the real performance gain comes from the
ensemble model, which combines the predictions from all the fold models to mitigate the
outlier predictions and significantly improve the overall segmentation metrics. However,
this performance gain comes at the cost of approximately five times the inference time
compared to individual models. Despite this, the ensemble inference time remains short
(~1–2 min per scan), making it unlikely to pose a problem in most clinical or research work-
flows. Our model is freely available on https://github.com/depict-rh/bat-seg (accessed
on 11 November 2024).

This study also presents, to our knowledge, the largest retrospective analysis of SUVs
in BAT, providing valuable insights into the demographic and temporal factors influencing
BAT SUVs. Our findings corroborate the existing literature, showing that BAT uptake
was higher in women than in men [23,25]. This difference may be attributed to factors
like a higher sensitivity to cold and body composition, where women typically have more
subcutaneous fat, and hormonal influences, such as estrogen, and a greater sensitivity to
insulin, which may enhance thermogenesis [26–29]. Additionally, women may rely more
on non-shivering thermogenesis to regulate body temperature due to differences in the
thermoneutral zones [30]. Secondly, the BAT SUV was higher in the individuals scanned in
the morning, aligning with the research on circadian rhythms and metabolic processes [31].
The increased BAT SUVs in the morning may be driven by higher metabolic demands after
waking and the fasting state, along with the cooler ambient temperatures that stimulate
non-shivering thermogenesis. We also observed a higher BAT uptake during the colder
months, particularly in the winter, reflecting BAT’s role in generating heat to maintain
body temperature [32]. Cold exposure in the winter triggers an increased SUV uptake,
consistent with the well-established link between the temperature and BAT SUV. Lastly,
we found that BAT SUVs decreases with age, which is well documented [25]. This has
been attributed to factors like a reduced thermogenic capacity, a decrease in BAT mass,
and a reduced metabolic demand in older adults. However, an unexpected increase in
BAT SUVs was observed in the elderly cohort (80+), which may be due to survivor bias,
as older individuals with a higher BAT SUV likely represent a healthier subgroup [33].
These observations provide validation for our approach to quantifying BAT SUVs, as
they align with the established patterns of BAT SUVs related to temperature, age, and
metabolic demand.

This study has some limitations. Firstly, the automated BAT segmentation model
was trained and evaluated exclusively on the CT images from lymphoma patients. While
the presence of lymphoma is not expected to significantly influence BAT anatomy or
physiology, which suggests the model may generalize well to other patient populations,
further validation is necessary to confirm this. Additionally, the lack of PET images in the
model input may limit the segmentation performance, since metabolic activity is usually
a key indicator for BAT. This limitation confines our model to anatomical segmentation.
However, by segmenting BAT independently of its PET activity, we avoid the risk of biasing
the SUV analysis by potentially excluding the BAT regions with lower SUVs. This ensures
a more objective anatomical assessment, free from metabolic influence. Furthermore, due
to the time-consuming process of obtaining manual BAT segmentations, the test set was
limited to 30 patients, which may be insufficient for a robust model evaluation and the
identification of potential issues. Future work should include a larger test set and ground
truth BAT delineations from multiple experienced clinicians. To obtain such a dataset
efficiently, one could employ a human-in-the-loop approach where clinicians refine the
model-predicted segmentations of new CT images [34]. Importantly, this study focused
solely on the supraclavicular region for BAT segmentation, as it is a primary site for BAT
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deposits in adults and represents a practical starting point for developing automated
methods. However, BAT can be distributed across multiple anatomical regions, such as the
perirenal and paravertebral areas, which were not included in our segmentation. Future
efforts could extend the model to include these regions, providing a more comprehensive
BAT analysis.

Compared to the studies focused on BAT segmentation using an MRI, our study is
limited to CT images. Manual BAT segmentation on CT images is inherently challenging,
as certain regions can be difficult to classify as BAT. In contrast, an MRI offers better soft
tissue differentiation, which may make manual segmentation on an MRI slightly more
precise and potentially a more reliable gold standard for BAT segmentation. A future
validation approach could involve comparing manual BAT segmentations on an MRI with
the co-registered segmentations generated by our CT-based nnU-Net model. However, a
PET/CT is more commonly used than a PET/MRI, which strengthens the applicability of
our model. Furthermore, while currently limited to CT images, our model has the potential
to serve as a foundation for transfer learning in developing a BAT segmentation model
for an MRI. This would expand its applicability and contribute to the TotalSegmentator
software, which also supports an MRI [35].

5. Conclusions

In this study, we present an automated BAT segmentation tool that can be seam-
lessly integrated into the TotalSegmentator software, providing a robust alternative to
cumbersome manual segmentation. Our statistical analysis of the mean BAT SUV across
different demographic and temporal groups of a large patient cohort identifies the key
factors influencing BAT SUVs, aligning with the trends observed in the existing literature.
The introduction of this segmentation tool represents a significant advancement in the
standardization of a BAT analysis, facilitating more efficient investigations into BAT SUVs
and promoting further research in this field.
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