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Abstract: Backgroud: The use of dynamic computed tomography angiography (dCTA)
for the detection of endoleaks in patients who underwent endovascular repair of abdom-
inal aortic aneurysms is gaining interest. This study aims to provide an overview of the
current applications of dCTA technologies in vascular surgery. Methods: We performed a
comprehensive review by searching in the PubMed database and Cochrane Library (last
search: 1 November 2024). We included studies considering endoleak investigation after
endovascular aneurysm repair (EVAR). We included papers that reported the outcome
of applications of dCTA, excluding case reports or very limited case series (<4). Finally,
14 studies regarding 377 computed tomography angiographies (CTA) were included and
evaluated. Results: Persistent perfusion of the aneurysm sac is the most common compli-
cation after EVAR. Imaging-based surveillance post-EVAR is essential with the aim of early
detection, characterization, and localization of endoleaks to guide therapeutic intervention
or follow-up. dCTA detected 36 type I endoleaks versus 16 identified with standard CTA
and 138 versus 95 type Il endoleaks. Conclusions: The emergence of dCTA offers a promis-
ing solution through enhanced temporal resolution, allowing the visualization of real-time
flow dynamics within the aneurysmal sac essential to establishing endoleak treatment or
post-EVAR follow-up.

Keywords: endoleak; EVAR; four-dimensional computed tomography; 4D; dynamic
computed tomography

1. Introduction

The abdominal aortic aneurysm (AAA) is one of the major vascular diseases with a significant
mortality risk associated with its rupture [1]. Endovascular aneurysm repair (EVAR) has revolu-
tionized the treatment of AAA, offering a less invasive alternative to traditional open surgery [2].
This technique has gained popularity due to its lower perioperative mortality, faster recovery,
and fewer complications, making it suitable for elderly patients or those with comorbidities [3-5].
Patients undergoing EVAR have a higher risk of reintervention than patients treated with open
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surgery [6], primarily for the management of complications such as endoleaks, defined as persis-
tent blood flow within the aneurysm sac after EVAR [7]. For complex aortic anatomy chimney
EVAR (CHEVAR), fenestrated or branched EVAR are being used more frequently [8]. Imaging-
based surveillance after EVAR is therefore essential for the early detection, characterization, and
localization of endoleaks to guide therapeutic intervention. It is crucial to identify endoleaks
early to prevent the risk of rupture [9]. In most cases, endovascular techniques are the primary
treatment approach for managing endoleaks [10,11]. Conventional imaging modalities, such as
duplex ultrasound (DUS), contrast-enhanced computed tomography angiography (CTA), and
magnetic resonance angiography (MRA), exhibit limitations in dynamic flow assessment, type
differentiation, and sensitivity to low-flow endoleaks [12,13]. CTA with three phases (unen-
hanced, arterial, and delayed) is the main modality of surveillance with excellent sensitivity for
detecting endoleaks [14]. However, this method may miss low-flow leaks, especially during the
late arterial phase [15]. On the other hand, dynamic computed tomography angiography CT
angiography (dCTA), also defined as four-dimensional computed tomography (4D-CT), closely
follows the contrast bolus at multiple timepoints and may allow better characterization and
localization of difficult-to-diagnose endoleaks. Dynamic CTA seems to be associated with the
precise characterization of expanding aneurysmal sacs [16] and may offer a promising solution
for the visualization of real-time flow dynamics within the aneurysmal sac. Moreover, in cases
of complex fenestrated and/or branched repairs, multiple potential sources of endoleaks may
exist and dCTA could identify the origin of the endoleak with the potential of simplifying the
treatment [17]. This study aimed to consolidate the existing literature on the use of dCTA in
detecting endoleaks, as well as its role in EVAR follow-up and its possible application for endoleak
management. Finally, the goal is to offer a comprehensive review of the current applications
of dCTA for endoleak detection and characterization after EVAR, aiding vascular specialists in
selecting the most appropriate imaging modality for EVAR follow-up.

2. Materials and Methods
2.1. Data Sources, Search Strategy and Selection Criteria

This study was conducted in accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) statement [18]. Papers on dCTA for the detection of
endoleaks in patients who underwent endovascular repair of abdominal aortic aneurysms were
searched in PubMed. We performed the last search on 1 November 2024, with no restrictions
on the initial dates of the included studies. The following words were searched in PubMed:
(“endoleak” or “endoleaks” or “evar”) and (“four-dimensional computed tomography” or “4d
ct” or “4d computed tomography” or “dynamic cta” or “dynamic ct” or “dynamic computed
tomography”). We included papers that reported the outcome of dCTA applications, excluding
case reports or very limited case series (<4). Articles in which dCTA was used to characterize
different aortic neck dilatations or wall thickness changes were excluded. Two investigators (A.C.
and C.B.M.) screened all titles and retrieved abstracts through the search strategy for relevance.
The full texts of all relevant articles were obtained and reviewed for suitability independently by
both reviewers (A.C., C.B.M.), and any disagreement in study inclusion was resolved by consensus
and was also resolved by the senior author (PP.) The studies included were full English texts. The
references of all the included articles were reviewed to identify additional relevant studies for the
comprehensive review. All studies reporting the (i) diagnostic imaging follow-up post-EVAR to
rule out the presence of endoleaks, (ii) technical methodologies used to detect endoleaks, and (iii)
performance of dynamic CTA in characterizing endoleaks in advanced endovascular aortic repair
were included.
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2.2. Data Extraction and Outcome

The extracted data included the first author, year of publication, study type, number
of analyzed examinations, indications for endovascular procedures, type of procedure
[endovascular aortic repair (EVAR), chimney endovascular aortic repair (CHEVAR), tho-
racic endovascular aneurysm repair (TEVAR), and fenestrated or branched endovascular
aortic repair (FB-EVAR)], methodology used to detect endoleaks (dCTA), types of detected
endoleaks, radiation, and/or contrast media dose for dCTA examinations. The data that
could not be inferred were labeled “not extractable” (NE) or “not reported” (NR), as appro-
priate. We focused on the applications of dCTA in vascular surgery. Therefore, the main
aspects and outcomes considered were as follows:

- Endoleak detection rates

- Characterization of endoleaks
- Technological advantages

- Radiation dose

- Contrast agent used

2.3. Definitions

Endoleaks were defined according to the most recent European Society for Vascular Surgery
(ESVS) Clinical Practice Guidelines and also from the Italian Society of Vascular and Endovascular
Surgery (SICVE) as the presence of flow in the aneurysm sac outside the stent graft after EVAR
and were classified as primary (present at the time of repair) or secondary (occurring after prior
negative post operative imaging), as well as on the cause of peri-graft flow in five types [19-21].
The classification of endoleaks presented in our comprehensive review integrates the standard
system outlined in the ESVS Clinical Practice Guidelines together with an alternative classification
proposed by Oderich at.al, which is commonly employed in the literature for complex endo-
grafts [22]. The standard classification distinguishes endoleaks into five types: Type I (proximal or
distal attachment site failure), Type II (retrograde flow into the aneurysm sac via branch vessels),
Type LI (fabric or modular disconnection failure), Type IV (graft porosity), and Type V (endoten-
sion) [19,23]. We also included a classification that refines the approach for complex endografts,
defined as junctional failure in the modular components of branched or fenestrated devices [22].
We included the analysis of gutters after alternative treatment for complex thoraco-abdominal
aneurysms, including CHEVAR and F-BEVAR. The gutters are due to a geometric mismatch
between the endograft and additional side branch grafts and are a site of potential early type Ia
endoleaks [8]. By combine the above classification, we aim to achieve a more comprehensive
understanding of endoleak behavior and outcomes, thereby enhancing both diagnostic precision
and therapeutic decision-making. We integrated the above-mentioned classifications, specifying
the different causes of endoleaks after TEVAR [24] and complex EVAR (Table 1).

Table 1. Comprehensive classification of endoleaks after EVAR.

Endoleak Type Subtype Description
Tvoe Ia Perigraft flow due to an incomplete seal at the proximal attachment site
e
P Ib Perigraft flow due to an incomplete seal at the distal attachment site
Type I for Ic Perigraft flow due to an incomplete seal at the sidebranch attachment

F-BEVAR or TEVAR

Type Il

Retrograde flow from collateral vessels, such as the lumbar or inferior
mesenteric arteries

Type III

Graft material failure or modular disconnection, resulting in leakage through defects
in the prosthesis/junctional failure in modular components
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Table 1. Cont.

Endoleak Type Subtype Description
IMa Junctional failure in aortic—aortic or aortic—bifurcated or bifurcated-iliac
Type III for modular components
F-BEVAR or TEVAR b Junctional failure in fabric tear or fracture
IIIc Junctional failure in attachment aortic side branch-side branch component
Type IV Porosity of the graft material, typically transient and observed early postoperatively
Type V Characterized by sac expansion without radiologically visible endoleaks (also

known as endotension)

F-BEVAR, fenestrated-branched endovascular aortic repair; TEVAR, endovascular thoracic aortic repair.

3. Results

Fourteen full texts of all relevant articles were obtained and reviewed. This study identified
33 papers. Of these, 12 were excluded based on title and abstract. Considering the remaining
21 papers, 20 were retrievable and were therefore reviewed in full-text form. After the exclusion
of reviews (1 = 1), case reports (1 = 2), or small case series (3), 14 studies on the role of dCTA in
endoleak detection and classification after aortic endovascular procedures were finally included in
the comprehensive review (Figure 1). Detailed data regarding these results are reported in Table 2.
All the analyzed studies were retrospective. Overall, 377 computed tomography angiographies
were performed in 14 studies [8,12,17,25-35]. In three studies [17,25-35], aortic aneurysms treated
with endovascular exclusion were thoraco-abdominal; these cases were managed using complex
endografts, including fenestrated (FEVAR) and branched (BEVAR) endografts [17,25-35]. In
one case, a juxtarenal aortic aneurysm was treated with chimney endovascular aneurysm repair
(CHEVAR) [8]. In the studies considered, the first diagnostic examination following EVAR was
standard CTA, followed by dynamic CTA to complete the diagnostic assessment. In only two
studies, it was not explicitly reported whether CTA was employed as the initial diagnostic modality
during follow-up after EVAR [8,26]. An example of the utility of dCTA in the research and analysis
of endoleaks following endovascular treatment with the implantation of a thoraco-abdominal
stent-graft (TEVAR and BEVAR) in a symptomatic Type B aortic dissection is shown in Figure 2.

[ Identification of studies via databases and registers }
s
?‘5 Records identified through ?Ce;:ﬁ;grgmoved before
= database searching (Cochrane — Lol
£ Library=33, PubMed= 33) E;lg)llcate records removed (n
3
— !
Records screened Records excluded
(n=33) (n=12)
Reports sought for retrieval Reports not retrieved
g! (n=21) (n=1)
=
: !
»n
Reports assessed for eligibility Rt
(n=20) Case report (n =2)
Case series (n =3)

A4

Studies included in review
(n=14)

[ Included ] [

Figure 1. PRISMA flow diagram showing the identification process of the included studies. PRISMA,
Preferred Reporting Items for Systematic Reviews and Meta-Analysis.
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Table 2. Detailed data about results.
. Radiation Radiation Total Total
A Number Aneurysm Standard EL EL Type Different EL EL Type Software Dose with Dose with Contrast Contrast
uthor Year Type Analyzed T Procedure Image Ac- Detected Image Ac- Detected N N
; ype Lo (n) Lo (n) Used CTA dC- Used with Used with
AngioTC quisition (n) quisition (n) mGylem TAmGy/cm CTA dCTA
Somatom
Force,
Syngo.via® 1063.8 50 mL 50 mL of
Apfaltrer [27] 2020 R 19 AAA EVAR CTA 9 I dCTA 11 I SYE;SE’S (5%23394 3 (1063.6— IOFQOI 10?3;’501
Healthineers, 1064.9) mgl/mL) mgl/mL)
Forchheim,
Germany
Somatom
Force
syngo.via®, 20 mL
Berczeli [28] 2021 R 4 AAA EVAR CTA 5 1 dCTA 5 1-(3) VB30, 1238+ 9001+ 126 Todixanol NR
I1(1)-101(1) Siemens 384.1 (320 mg/ml)
Healthineers, e
Erlangen,
Germany
Somatom
Force
syngo.via®, 77 mL
) 1(4),11(16), 1(4)-11(16)- VB30, iodixanol
Berczeli [29] 2022 R 24 AAA EVAR CTA 23 11 (2) dCTA 23 11 3) Siemens 1038 + 533 NR NR (320
Healthineers, mg/mL)
Erlangen,
Germany
Somatom
Force
syngo.via®, 1520 mL 70-90 mL
Berczeli [25] 2023 R 5 AAA, EVAR, CTA 19 @04, grea 19 T, 1(14) VB30, 16123 + 1445£5505  iodixanol iodinated
AATA FEVAR 1 (1) elll(1) Siemens 5303 (30mg/ml)  (not ified)
Healthineers, g Ot St
Erlangen,
Germany
Revolution
GSI, AW
Charalambous Server3.2; io 6?0rrrr‘1];de
[12] 2020 R 9 AAA EVAR CTA 9 11 dTCA 9 11 GE Medical NR NR NR }I)ne dia
System,
Chicago, (370 mg/mL)
llinois
Haubenreisser 555 R 54 AAA EVAR CTA NR suspected dTCA 19 I NR NR NE NR NR

[30]

I
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Table 2. Cont.

. Radiation Radiation Total Total
A Number Aneurysm Standard EL EL Type Different EL EL Type Software Dose with Dose with Contrast Contrast
uthor Year Type Analyzed T Procedure Image Ac- Detected Image Ac- Detected ) N ith
AngioTC ype uisition ) (n) isition W (n) Used CTA dc Used with Used wit
8 q q mGy/cm TAmGy/cm CTA dCTA
Somatom
Definition
Flash,
128-row CT 80 mL
Lehmkuhl [31] 2013 R 72 AAA EVAR CTA 24 11 dTCA 44 I-11-111 scanner, NR 1344 £ 131 NR iopremol
Siemens (400 mg/mL)
Healthcare,
Forchheim,
Germany)
Somatom
Definition
Flash, Flash, 80 mL
Lehmkuhl [26] 2012 R 21 AAA EVAR NR NR NR dTCA 26 1(1),11(25) ufc';gxe? NR 1293 + 104 NR 101?2%15‘01
Siemens, mg/mL)
Forchheim,
Germany
Aquilion
ONE,
320-row CT
ted scanner, the same as Iopamidol
Nishihara [32] 2020 R 10 AAA EVAR CTA NR S“SPIQIC € dTCA 10 I Canon NR standard NR (not
Medical CTA specified)
Systems,
Tochigi,
Japan
Brilliance
iCT, 256-slice Tobiditrol
AAA CT scanner, (350
Overeem [8] 2018 R 3 CHEVAR NR NR NR dTCA 12 Gutters Philips NR NR mg/mL),
Juxtarenal Heal
ealthcare, (not
Eindhoven, specified)
Netherlands
Mx8000IDT16,
16-channel
scanner, .
Rvdb 1(1), 11 (10), Philips 120 mL Topi-
ydberg [33] 2004 R 12 AAA EVAR CTA 12 01 (1) dTCA 5 11 (4), I (1) Medical NR NE NR damol(300
Systems, mg/mL)
Cleveland,

Ohio, USA
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Table 2. Cont.
. Radiation Radiation Total Total
Number Aneurysm Standard EL EL Type Different EL EL Type Software Dose with Dose with Contrast Contrast
Author Year Type Analyzed T Procedure Image Ac- Detected Image Ac- Detected d CTA dc d with d with
AngioTC ype quisition ) (n) quisition W (n) Use - Used wit Used wit
mGy/cm TAmGy/cm CTA dCTA
Aquilon One
Prism, 320
slice scanner, Io d2i2;§(1;1 or
11 (8), I Canon I id
. 11 (10), IT @,1(1) Medical opromide
Tarulli [17] 2022 R 13 AATA FB-EVAR CTA 16 . dTCA 12 Lo NE 4724 NR (320
4),1(2) uncertain Systems JmL
@O Corporation, mg 33(1) or
Otawara, mg/mL)
Tochigi, g
Japan
Aquilion
ONE,
320-row CT
EVAR- %2%;));11; scanner, 60-70 mL
Waldeck [35] 2022 R 69 AATA CTA 11 1(8),11(4), dTCA 44 e Toshiba NR 855.7 £54.2 NR Iohexol (350
TEVAR specifica- -
. Medical mg/mL)
tion (1) S
ystems,
Otawara,
Japan)
Siemens
Leonardo, 3= 395 4 599
dimensional . X
. (triphasic 60 mL
workstation, CTA) Tomeprol
Sommer [34] 2010 R 15 AAA EVAR CTA 6 I (3),1(3) dTCA 6 11 (3),1(3) Siemens 953 + 1213 902 + 63 NR ( 40%
Medical . .
Solutions, (biphasic mg/mL)
E ’ CTA)
rlangen,
Germany

NR, not reported; NE not extractable; R, retrospective; AAA, abdominal aortic aneurysm; AATA, thoraco abdominal aneurysm, EVAR, endovascular aortic repair; TEVAR, thoracic
endovascular aneurysm repair; CHEAVR, chimney endovascular aortic repair; FB-EVAR, Fenestrated or branched endovascular aortic repair; CTA, computed thomography angiography;

dCTA, dynamic computed thomography angiography; n, number.
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Figure 2. (A). 3D CT angiography (CTA) image of a 57-year-old man who underwent three-stage
thoraco-abdominal stent-graft aortic repair (TEVAR and BEVAR) for symptomatic Type B aortic
dissection. (B). At 3 month-follow-up, a CTA was performed for abdominal pain in the emergency
setting demonstrating the presence of a large endoleak with a significant increase in sac size from
53 mm to 71 mm in maximum anterior-posterior diameter. However, the standard static CTA,
including arterial and venous acquisitions ((B1) and (B2), respectively), was insufficient to further
characterize the endoleak type. (C). Dynamic or 4D CTA (4D-CTA) was performed using a second-
generation CT scanner (Somatom Definition Flash®, Siemens Healthineers, Forchheim, Germany),
which acquired multiple time-resolved contrast enhanced scans (11 scans in this specific case) during
table movement in shuttle mode. 4D-CTA three-dimensional reconstructions revealed a large type-2
endoleak (arrows) from the third lumbar arteries (arrowheads in (C1) and (C2)). Note that the
contrast opacification occurs earlier and is more pronounced in the right lumbar artery (arrowheads
in (C1)) compared to the left lumbar artery (arrowheads in (C2)). Additionally, observe the large
type II endoleak extending to the anterior aspect of the aneurysmal sac (arrows in (C1) and (C2)).
(D,E). 4D-CTA image dataset was evaluated qualitatively and quantitatively after motion correction
and 3D noise reduction using dedicated software VB60A_HF06 (syngo.via®, Siemens Healthineers,
Forchheim, Germany) that generates time-attenuation curves (TACs) for the analysis of the resulting
temporal changes in contrast enhancement within regions of interest (D). In (E), note the different
phenotype of the aortic TAC (orange curve) compared to the endoleak TACs (yellow and green
curves), the latter presenting a gradual upslope, a wide plateau, a low peak value, and gradual
endoleak washout due to slow outflow. TAC analysis, incorporating the peak value and time-to-peak
parameters, enhances the characterization of endoleaks type and their inflow and outflow patterns.
This approach overcomes the limitations of the standard thriphasic (non-contrast, arterial, and
delayed phases) CTA improving the sensitivity and specificity for the detection and characterization
of endoleaks, with a comparable or lower radiation dose profile (dose length product [DLP] of the
static thriphasic CTA acquisition of 1329 mGy*cm and of the 11-phase 4D-CTA of 835 mGy*cm).

3.1. Endoleak Detection and Characterization of Endoleaks

Overall, standard CTA detected 134 endoleaks [8,12,17,25-35]. In two cases the type
of standard image acquisition was not reported [8,26]. In four studies, the specific types
of endoleaks identified using standard CTA were not reported [8,26,30,32]. Among the
reported cases, 95 endoleaks were classified as type II [12,17,25,27-29,31,33,35]. Type II
endoleaks were suspected in two additional cases [30,32]. Type I endoleaks were detected
in 20 cases [25,28,33-35], and type III endoleaks were detected in 17 cases [25,28,33,34].
Dynamic CTA was consistently selected as the diagnostic imaging technique for further
assessment. Overall, with dCTA, 245 endoleaks were identified. Of these, 138 were
type II endoleaks [12,17,25,27-33,35], 17 were type III [25,28,29,33,34], and 36 were type
1[17,25,26,28,29,34,35]. One case reported an unspecified endoleak type [35], whereas
another described an uncertain classification [17]. One study reported 44 endoleaks but did
not specify the definition by type [31]. In particular, dCTA detected 36 type I endoleaks,
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compared with 16 identified with standard CTA; 138 type Il endoleaks were found with
dCTA, versus 95 with standard CTA; and 17 type Ill endoleaks and 12 gutters were detected
with dCTA, compared with 17 with standard CTA. In Overeem et al.’s study, dCTA noted
four gutters for each different endograft used. The gutters are a dynamic phenomenon,
with a volume that changes throughout the cardiac cycles [8]. In particular, in Tarulli et al.,
in five cases of complex endograft (F-BEVAR), a type II and/or type III endoleak was
suspected with standard CTA, but dCTA detected and confirmed type III endoleaks; in only
one case, a type IIl endoleak was suspected, but it was revealed to be a type Il endoleak on
dynamic CT [17]. In the only study reporting the analysis of endoleaks after TEVAR, dCTA
identified 16 endoleaks, compared to 7 detected with standard CTA. Among these, dCTA
revealed two additional type Ia endoleaks, one type Ib, and four type Illa endoleaks [35].
The same study reported that standard CTA identified fewer type II endoleaks after EVAR
compared to dCTA (sCTA: n =3 vs. dCTA: n =19; p = 0.002) [35].

Dynamic CTA might also be useful as a guide for the treatment of endoleaks, im-
proving the identification of target vessels in type II endoleaks and supported precise
image-guided embolization. In Berczeli et al., nine patients underwent d-CTA-guided
embolization with a median of 1 angiogram (range: 1-4) before the procedure [25].

3.2. Scanner Models Used for Image Acquisition

The studies employed a variety of CT scanner models from different manufacturers,
including the following: Somatom Force (syngo.via®, VB30, Siemens Healthineers, Erlangen,
Germany) was utilized in multiple studies [25,27-29]; Somatom Definition Flash (128-row CT
scanner, Siemens Healthcare, Forchheim, Germany)) was utilized in two cases [26,31]; Siemens
Leonardo (3-dimensional workstation, Siemens Medical Solutions, Erlangen, Germany) was
used in one study [34]; Revolution GSI (AW Server 3.2; GE Medical System, Chicago, Illinois)
was used in one study [12]; Aquilion ONE (320-row CT scanner, Canon Medical Systems,
Tochigi, Japan) was used in two papers [32,35]; Brilliance iCT (256-slice CT scanner, Philips
Healthcare, Eindhoven, Netherlands) was reported in one [8], in particular for dCTA; and
Philips Medical Systems was also reported in one case [33].

3.3. Radiation Dose Analysis in CTA and dCTA Protocols

The radiation dose in CTA was not extractable in one article [17] and was not
reported in eight papers [8,12,26,30-33]. The radiation dose in dCTA was not reported
in three studies [12,27,29] and was not extractable in two articles [30,33]. In the studies
that reported the radiation dose for CTA, the values ranged from 829 mGy/cm [27] to
1612.3 £ 530.3 mGy/cm [25]. Similarly, for dCTA, the dose ranged from 855.7 + 54.2 mGy/cm [35]
to an exceptionally high value of 4724 mGy/cm [17], which reflects a combination of clinical,
technical, and procedural factors tailored to specific patient or diagnostic needs.

Berczeli et al. reported similar radiation doses for d-CTA (1445 + 550 mGy c¢m) and
CTA (1612 £ 530 mGy cm, p = 0.255), due to lower kV (80, 70-97.5 kV) and a smaller scan
range (23-33 cm), despite multiple scans with d-CTA [25].

3.4. Contrast Media Utilization: Volume and Composition in CTA and dCTA

Different types of iodinated and non-iodinated contrast agents were used across the
studies, where iodixanol 320 mg/mL, iomeprol 400 mg/mL, iobitridol 350 mg/mL, iopromide
370 mg/mL, and iopidamol 300 mg/mL. The contrast volume used for CTA ranged from as
low as 15-20 mL [25,27,28], but these data were reported in three articles only [12,25,27,28]. For
dynamic dCTA, higher contrast volumes were often used, with values up to 70-90 mL in some
cases [25,26,31] or higher as 120 mL [33]. Not all studies provided detailed data on the exact
type and volume of contrast media used in the dCTA [28,30], while data regarding CTA were
reported in only three papers [25,27,28].
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4. Discussion

Endoleak remains a critical post-procedural complication following EVAR for AAA. The
treatment of different types of endoleaks differs significantly, both in terms of technical approach
and clinical outcomes. Furthermore, the characterization of endoleaks may be particularly
challenging after complex aortic procedures such as FB-EVAR or CHEVAR, where multiple
grafts, branches, or fenestrations represent additional potential sources of endoleaks.

Therefore, accurate identification and characterization of endoleaks are essential to
guide subsequent planning and management and follow-up [36,37]. In this comprehensive
review, we analyzed 14 studies comparing dCTA with standard CTA imaging employing a
three-phase acquisition protocol.

Dynamic CTA identified a total of 245 endoleaks, compared to 134 detected by CTA,
suggesting that dCTA has a higher sensitivity for detecting endoleaks, potentially due to its
ability to capture the temporal dynamics of contrast flow. Notably, two cases were either
unspecified [35] or described as uncertain [17], and an additional study reported 44 endoleaks
without specifying their type [31]. Both imaging modalities identified all major endoleak types
(L 11, II), though dCTA reported higher numbers across all categories: dCTA detected 36 type
I endoleaks, compared to 16 identified with standard CTA; 138 type II endoleaks were found
with dCTA, versus 95 with standard CTA; and 17 type III endoleaks, and 12 gutters were
detected with dCTA, compared to 17 with standard CTA. Dynamic CTA demonstrated a slight
advantage in clarifying uncertain or unclassified endoleaks. This suggests that dynamic imaging
may be particularly beneficial for identifying low-flow or intermittent endoleaks that might be
missed on static imaging. These findings align with the current literature, which consistently
reports type II endoleaks as the most frequent [38]. Type II endoleaks, often attributed to
retrograde flow from collateral arteries, are typically considered less critical than type I or III
due to their lower risk of aneurysm rupture [36]. However, their high prevalence underscores
the need for meticulous surveillance, as persistent type Il endoleaks may eventually increase
the sac diameter and require intervention [39]. The limitation of standard CTA in detecting
slow flow type Il endoleaks further supports the use of dCTA during imaging follow-up after
EVAR, with the ability to identify slow flow endoleaks through changes in the blood volume
parametric map.

Berczeli et al. compared dCTA with standardized triphasic CTA in diagnosing endoleak
types after EVAR using digital subtraction angiography (DSA) as the reference standard, report-
ing that the number of vessels causing type Il endoleaks identified by dCTA, CTA, and DSA
were 23, 17, and 16, respectively. This demonstrated that for type II endoleaks, dCTA better
identified target vessels and enabled safe, targeted embolization [24].

In the majority of the studies included, the assessment of endoleaks using dCTA primarily
relied on the analysis of temporal Hounsfield unit (HU) changes within the time-attenuation
curves by drawing a region of interest [12,27,28,34]. This approach enables a precise evaluation
of contrast dynamics and enhances the ability to characterize endoleak behavior through
quantitative measurements. These measurements can be valuable in differentiating endoleak
types and in providing an objective approach to endoleak diagnosis.

It is well-established in the literature that type I and III endoleaks can sometimes be
occult, leading to the misdiagnosis of type Il endoleaks that do not respond to treatment [40].
In some cases, type II endoleaks, which generally have a benign natural course, can
be associated with sac enlargement. However, when there is rapid aortic sac growth
(5 mm/year or more), or when attempts at treating type II endoleaks fail, the suspicion of
delayed or occult type I or III endoleaks should be raised [41].

Rydberg at al. reported five patients in whom the CTA surveillance protocol could
not differentiate between type II and type III endoleaks [33]. One of these cases involved a
type Il endoleak from a fabric tear that occurred where the lower part of the stent, near



Diagnostics 2025, 15, 370

11 of 17

the top of the aneurysm sac, was pushed into the upper part of the stent due to a large,
calcified plaque in the back of the aneurysm [33]. This highlights the importance of the
correct analysis of computed tomography images from dCTA, combined with an accurate
calcification measurement method, which could play an important role in decision-making
and facilitate precise surgical planning by providing information on plaque morphology
and its impact on the vessel lumen [42].

Failure of type II endoleak treatment in the presence of aneurysm sac growth or
delayed rupture has been attributed to incomplete embolization of target vessels or an
occult type I or III endoleak that was not initially diagnosed by imaging [43].

Dynamic CTA could be a useful adjunctive imaging modality for challenging or
recurrent endoleaks in patients with complex endovascular aortic repairs [44]. For example,
Tarulli et al. described how conventional CTA identified an endoleak of unclear origin
near a fenestrated abdominal aortic endograft. Using dCTA, the flow and progression of
contrast were clearly delineated, revealing a Type Illc endoleak directly inferior to the left
renal fenestration. With dCTA, it is possible to closely follow the contrast bolus at multiple
timepoints, allowing better characterization and localization. This precise characterization
facilitated accurate localization, aiding in targeted management [17].

After EVAR, one of the most clinically relevant procedure-related complications is
stent-graft migration that can lead to repressurization of the aneurysmal sac, type I en-
doleak, aneurysm growth, and even rupture. The analysis of the forces leading to migration
through dCTA is crucial for its prevention, diagnosis, and treatment [45].

Therefore, distal oversizing of up to 20% should be considered to reduce the risk of
type I endoleak [46].

In this clinical context, the dCTA'’s capability to capture continuous vascular dynamics
across multiple phases demonstrated superior sensitivity in detecting the type of endoleaks,
particularly in cases with unidentified or delayed filling and could offer enhanced visual-
ization of feeding and draining vessels, potentially improving diagnostic precision, which
is crucial for intervention or close surveillance.

Dynamic CTA was processed using scanners capable of rapid volumetric acquisitions
with detailed image quality. The studies employed a variety of CT scanner models from
different manufacturers, including: Siemens Healthineers (Somatom Force, Somatom Defi-
nition Flash, Siemens Leonardo), Canon Medical Systems (Aquilion ONE), GE Healthcare
(Revolution GSI), and Philips Medical Systems (Brilliance iCT). The predominant use of
Somatom Force and Somatom Definition Flash highlights a preference for high-end scan-
ners offering speed and precision in diagnostic imaging [47]. Devices such as the Somatom
Force and Aquilion ONE, specifically designed for dynamic imaging, facilitated higher sen-
sitivity in detecting endoleaks compared to standard CTA and were preferred for patients
with complex aneurysms as well [25,35,48]. This underlines the importance of technical
capabilities in identifying low flow or intermittent endoleaks [49]. These devices deliver
exceptional image clarity while minimizing artefacts, making them ideal for detecting
intricate vascular details [50,51]. Advanced algorithms enhance image quality by reducing
noise without compromising detail, enabling precise diagnostics even at low doses [47,52].

Features such as CARE Contrast optimize the use of contrast agents, ensuring better
visualization of vascular structures while mitigating risks for patients with sensitivity to
contrast media [47]. In the analyzed articles, different scanners with varying capabilities
and configurations were employed, which could impact image quality, radiation dose, and
the ability to acquire dynamic images. For instance, while the Somatom Force (Siemens
Healthineers) is optimized to reduce radiation dose while maintaining high-quality imag-
ing, other systems like the Brilliance iCT (Philips Healthcare) and Revolution GSI (GE
Healthcare) may have specific protocols that do not achieve the same level of efficiency [53].
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The adoption of newer technologies appears to enhance not only diagnostic sensitivity
but also dose management and patient comfort [54,55]. However, the variability in protocols
and systems used across studies highlights the lack of methodological uniformity while
pointing to a clear trend toward utilizing advanced technology for dCTA imaging.

Some authors emphasized the incremental radiation dose compared to standard CTA
if diagnostic yield was deemed clinically justifiable [56]. However, advancements in acquisi-
tion protocols and software optimization could reduce these concerns, achieving a balance
between diagnostic benefits and patient safety [55]. Dynamic CTA generally required
higher radiation doses than standard CTA, as seen in most studies that reported both val-
ues [25,27]. However, some studies reported lower doses for dCTA compared to CTA [28],
possibly reflecting protocol adjustments or scanner optimizations. Extended protocols
with multiple phases or prolonged acquisition times to enhance temporal resolution might
contribute to the higher dose. Specific diagnostic objectives like type III endoleak require
finer spatial and temporal resolution and might demand higher radiation exposure. In fact,
the highest ionizing radiation dose was observed in the article where the endovascular
treatment of the aneurysm was more complex with F-BEVAR [17].

Some studies did not provide specific data on radiation dose, complicating uniform
comparisons.

Different types of iodinated contrast agents were used across the studies. This indicates
heterogeneity in the choice of contrast agents, possibly reflecting institutional preferences
or availability. For many studies, the same contrast agent and similar volumes were used
for both standard CTA and dCTA, reflecting consistency in imaging protocols within
studies [27]. Not all studies provided detailed data on the exact type and volume of
contrast media used [25,30], which limits direct comparisons. This underscores the need
for standardization not only of the radiation dose but also of the quantity and quality of
the contrast agent, which could be included in specific protocols for performing dCTA.
The variability in contrast volume might impact diagnostic efficacy, especially for dCTA,
where higher volumes may enhance the detection of understated endoleaks. The use of low
volumes in certain studies could reflect efforts to minimize contrast-related complications
in patients with compromised renal function [25,57].

In the literature, alternative methods for identifying endoleaks are well documented.
Among these, angiography is a valuable diagnostic tool as it also enables immediate
treatment of endoleaks, such as embolization in type II endoleaks. However, angiography
is more invasive and carries higher risks for the patient. Among less invasive diagnostic
investigations, contrast-enhanced ultrasound (CEUS) is an option, but it requires specific
expertise in image interpretation. After conventional EVAR, the use of CEUS may offer
some advantages over dCTA, in particular, the absence of radiation and the use of a non-
nephrotoxic contrast agent. However, CEUS usage is limited during TEVAR or FB-EVAR
follow-up [58].

In patients with a hostile abdomen, it may not be conclusive, as it does not visualize
the structure of the endograft or assess the sealing zones. Nevertheless, this procedure is
feasible and could detect more endoleaks compared to dynamic CTA, particularly in type
II endoleaks [59,60].

A limitation of our comprehensive review is that the studies do not provide data
on the comparative sensitivity or specificity of dCTA versus ultrasound or other imaging
modalities, preventing a statistical comparison. However, as this is a relatively new imaging
modality, such studies may become available in the future.

This study has other limitations. It is only a comprehensive review and the included
papers present highly heterogeneous data regarding the main aspects and outcomes ana-
lyzed. There are only a few articles in the literature reporting case studies with large sample
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sizes, making it very challenging to standardize the results. Furthermore, the studies
utilized technologies and scanners that differed significantly from one another. Dynamic
TCA is a new and not widely adopted technique; consequently, the protocols used in the
centers where this diagnostic investigation is available vary significantly and are difficult
to compare. We created only a database summarizing the aspects and data most frequently
presented and discussed in the available literature.

The ability to correlate endoleak presence with aneurysm sac expansion helps to strat-
ify patients into those requiring urgent reintervention or continued surveillance. Dynamic
CTA findings often influence decision-making, such as identifying endoleaks requiring
embolization or reintervention, especially in challenging configurations involving fenes-
trated or branched endografts [61]. Incorporating dynamic CT into follow-up could reduce
the likelihood of missed or underestimated endoleaks, potentially minimizing the risk of
late rupture. However, this must be balanced with considerations of radiation exposure
and contrast-induced nephropathy [62,63]. This diagnostic investigation could play an
important role in cases of uncertain endoleaks before treatment or when the aneurysmal
sac continues to expand even after treatment. Further research in this area promises not
only improving the detection of endoleaks, which represent one of the most significant
complications both in the early and late period following EVAR, but also improving the de-
velopment of standardized protocols for the use of dCTA in the clinical practice. Enhanced
detection capabilities could lead to earlier interventions and better long-term outcomes for
patients.

5. Conclusions

In conclusion, dCTA emerges as a promising modality for the comprehensive eval-
uation of endoleaks following EVAR, particularly for complex cases requiring detailed
anatomical and hemodynamic insights. The enhanced detection capability of dCTA, par-
ticularly for type II and low-flow endoleaks, underscores its role as a valuable follow-up
imaging modality for patients undergoing EVAR. Its ability to identify additional en-
doleaks may influence patient management, such as the need for further intervention or
close surveillance. The lack of standardized reporting in retrospective analyses hinders
comparisons and emphasizes the need for uniform protocols. Future research should focus
on refining protocols and validating cost-effectiveness to establish this modality as a routine
diagnostic tool.
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