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Abstract: Congestion represents a defining hallmark of heart failure (HF) leading to in-
creased morbidity and mortality in HF patients. While it was traditionally viewed as a
simple and uniform state of volume overload, contemporary understanding has empha-
sized its complexity, distinguishing between intravascular, interstitial, and tissue congestion.
Congestion contributes to overt clinical manifestation of HF. However, subclinical conges-
tion often goes undetected, increasing the risk of adverse outcomes. Residual congestion, in
particular, remains a frequent and challenging issue, with its persistence at discharge being
strongly linked to rehospitalization and poor prognosis. Clinical evaluation often fails to
reliably identify the resolution of congestion, highlighting the need for supplementary di-
agnostic methods. Improvement in imaging modalities, including lung ultrasound, venous
Doppler, and echocardiography, have significantly enhanced the detection of congestion.
Moreover, biomarkers such as natriuretic peptides, bioactive adrenomedullin, soluble
CD146, and carbohydrate antigen 125 offer valuable, complementary insights into fluid
distribution and the severity of HF congestion. Therefore, a comprehensive, multimodal
strategy that integrates clinical evaluation with imaging and biomarker data is crucial for
optimizing the management of congestion in HF. Future approaches should prioritize per-
sonalized decongestive therapy, addressing both intravascular and tissue congestion, while
aiming to preserve renal function and limit neurohormonal activation. Refinement of these
strategies holds promise for improving long-term outcomes, reducing rehospitalizations,
and enhancing overall patient prognosis.

Keywords: congestion; heart failure; intravascular congestion; tissue congestion

1. Introduction
In the 17th century, following Harvey’s discovery of blood circulation, clinicians

started connecting the pathological signs of enlarged heart chambers and lung congestion
with the clinical symptoms of dyspnea and edema [1].

In this narrative review, we evaluate the current understanding of congestion in heart
failure (HF), emphasizing its heterogeneity and the value of a multimodal diagnostic and
therapeutic approach.
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HF is a clinical syndrome arising from structural or functional abnormalities of the
myocardium that impair cardiac output and increase ventricular filling pressures. Con-
gestion is the most common consequence of HF, with 83% of patients hospitalized with
acute decompensated heart failure (ADHF) presenting with clinical signs or symptoms
of congestion [2,3]. Identifying and the early management of congestion is crucial, as it
is a powerful predictor of poor outcomes, including decompensation, rehospitalization,
and death [4].

Congestion is the consequence of the accumulation of extracellular fluid, associated
with specific signs and symptoms. Historically, fluid overload was considered a uniform,
single-compartment fluid accumulation associated with advanced HF. However, contem-
porary evidence highlights the complexity of fluid and sodium retention in HF, revealing
significant variability in both the amount and distribution of fluid accumulation [5].

Traditionally, the symptoms of congestion in HF were divided into left-sided and right-
sided signs and symptoms, but current research now advocates for a more refined and
complex classification of congestion in HF, including the onset (acute or chronic), regional
distribution (systemic or pulmonary), fluid compartment (intravascular, interstitial, or
third-space), and its clinical or subclinical presence. Recognizing these distinct congestion
phenotypes could lead to more precise diagnostic and therapeutic approaches, ultimately
improving HF management [5].

2. Pathophysiology of Congestion
Congestion usually begins in the intravascular compartment with increased hydro-

static capillary pressure, finally leading to tissue congestion. Most patients with ADHF
have a combination of both types of congestion, although one form may predominate [6].

2.1. Regional Distribution

The distribution of congestion in HF is heterogeneous, varying across different organs
and regions.

2.1.1. Pulmonary

In patients with predominantly left-sided HF, pulmonary congestion prevails, driven
by increased left atrial pressure and impaired pulmonary venous drainage. The fluid accu-
mulation within the pulmonary interstitium and alveoli causes dyspnea, orthopnea, and,
in severe cases, acute pulmonary edema. Splanchnic vascular redistribution is particularly
relevant, as sympathetic activation induces venoconstriction, shifting the blood volume
centrally and triggering pulmonary congestion [5,7].

2.1.2. Systemic

Systemic congestion in HF results from elevated right atrial and central venous pres-
sures, leading to fluid accumulation in peripheral tissues and organs [7]. Intravascular
volume expansion depends on venous capacitance and does not always correlate with
increased filling pressures [7]. The increase in central venous pressure and impaired venous
return promotes fluid accumulation in dependent tissues and organs including liver, gas-
trointestinal tract, and lower extremities, causing jugular venous distension, hepatomegaly,
peripheral edema, and ascites [5].

2.2. Fluid Compartment

Contraction of the left ventricle (LV), especially LV torsion, is influenced by preload,
enabling healthy hearts to handle increased volume through greater systolic twisting and
more rapid diastolic untwisting. In HF, however, LV twisting is impaired, and untwisting
is both diminished and delayed, which restricts the LV’s capacity to accommodate preload
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volume at rest or during physical activity. As a result, pulmonary capillary wedge pressure
increases. Additionally, pulmonary pressures may rise due to ventricular interdependence,
especially in cases of right-sided HF [6].

2.2.1. Intravascular Congestion

Intravascular congestion represents the accumulation of fluid within the vascular com-
partment, leading to increased pressures in the heart and lungs. A hallmark of intravascular
congestion is the rapid elevation of pulmonary and cardiac filling pressures [5,8].

In ADHF, reduced cardiac output combined with neurohormonal activation—including
the renin–angiotensin–aldosterone system, sympathetic system, and natriuretic peptides—
promotes sodium and water retention [9]. The venous system plays a key role in regulating
intravascular volume distribution, with blood separated into stressed volume (which di-
rectly contributes to preload and venous return) and unstressed volume (which is stored in
the capacitance veins). Autonomic regulation, particularly sympathetic activation, shifts
blood from the unstressed compartment into central circulation, acutely rising the central
venous pressures and contributing significantly to congestion in HF, irrespective of total
blood volume expansion [5]. The splanchnic veins, due to their large blood volume ca-
pacity, play a major role in intravascular congestion through venoconstriction, a process
augmented by sympathetic activation [10].

2.2.2. Tissue Congestion

Tissue congestion develops gradually when hydrostatic pressure exceeds oncotic
pressure, leading to fluid accumulation. This is driven by a sustained rise in venous
pressures caused by impaired sodium and water excretion, which is in turn mediated
by neurohormonal activation and cardiorenal dysfunction. As extracellular fluid volume
expands, the resulting elevation in venous pressure disrupts Starling forces, favoring
net capillary filtration. Initially, the interstitial glycosaminoglycan (GAG) network and
lymphatic system effectively drain excess fluid, preventing overt edema. However, once
lymphatic capacity is overwhelmed, fluid begins to accumulate in the interstitial space [6].
In left-sided HF, even a small increase in pulmonary capillary pressure can trigger severe
pulmonary edema. This helps explain why some patients can tolerate high pulmonary
pressures with few symptoms, while others develop marked congestion from only modest
pressure increases [6].

2.3. Third-Space

In HF, fluid accumulation in third-space compartments, such as the pleural, peri-
toneal, and pericardial cavities, is a known but not fully understood phenomenon. The
shift from interstitial to third-space congestion is thought to result from a combination of
increased vascular permeability, disrupted oncotic pressure, and inflammatory processes.
Persistent third-space congestion is often associated with more severe fluid overload and
is commonly associated with ongoing symptoms that are resistant to standard deconges-
tive treatments [5].

2.4. Subclinical Congestion

Subclinical congestion refers to persistent volume overload in HF patients without
overt clinical signs of congestion [11]. Clinical bedside evaluations frequently overlook
subclinical congestion, a condition associated with increased risks of rehospitalization
and death. Subclinical congestion differs from residual congestion in that it lacks de-
tectable clinical signs, while residual congestion can still exhibit clinical symptoms even
after treatment [11].
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Residual congestion at discharge affects up to 50% of patients hospitalized with
ADHF and is linked to increased risk of rehospitalization and mortality within six months,
regardless of the underlying condition [12,13]. Current guidelines lack defined target levels
for congestion at discharge, highlighting a gap in current management strategies [4].

3. Clinical Assessment of Congestion Status
HF commonly presents with shortness of breath and signs of fluid overload, partic-

ularly in individuals with a history of myocardial infarction, atrial fibrillation, or poorly
controlled hypertension (Table 1). However, it can go unrecognized in patients who exhibit
only mild symptoms such as fatigue or reduced exercise capacity [2].

Table 1. Signs and symptoms of heart failure based on contemporary pathophysiological mechanisms
of congestion.

Compartment
Regional Distribution Pulmonary Systemic

Intravascular

Symptoms
Dyspnea

Orthopnea
Paroxysmal nocturnal dyspnea

Bendopnea
Dry cough

Symptoms
Abdominal symptoms

Loss of appetite
Abdominal discomfort

Signs
S3 and/or S4 (gallop rhythm)

Signs
Jugulary vein distension (elevated JVP)

Extravascular (Tissular) and
Third-space

Signs
Inspiratory crackles at lung bases

Pleural effusion (bilateral or
right-sided)

Signs
Ankle and/or sacral edema

Hepatomegaly
Ascites (sometimes)

3.1. Symptoms

Although nonspecific, dyspnea is the primary symptom of HF, mainly resulting
from pulmonary congestion. Orthopnea indicates elevated pulmonary pressures and
reflects the severity of congestion. Paroxysmal nocturnal dyspnea suggests more severe
congestion involving alveolar edema and is linked to higher mortality [2]. Bendopnea,
which occurs within seconds of bending forward, is frequently seen in advanced HF and
signals significant congestion [14,15].

Fatigue, though nonspecific, affects around 90% of HF patients [2]. Cardiac cachexia—
characterized by appetite loss and muscle wasting—is mainly linked to right-sided HF
and hepatic congestion. Cognitive impairment and mood disorders, seen in up to 25% of
patients, are associated with worse clinical outcomes. Sleep-disordered breathing, present
in more than 70% of HF patients, worsens prognosis despite initial symptom improvement
with CPAP therapy [16].

3.2. Clinical Evaluation of ADHF

Jugular venous distension is a reliable indicator of right atrial pressure and the severity
of systemic congestion. While pulmonary rales are uncommon in chronic HF due to
adaptive lymphatic mechanisms, their presence suggests acute pulmonary congestion
during decompensation. Pleural effusions, often more prominent on the right side, are
also indicative of systemic congestion. Key cardiac findings include a loud P2, suggesting
pulmonary hypertension, a S3 gallop sound, associated with severe systolic dysfunction,
and arrhythmias such as tachycardia or atrial fibrillation. Abdominal signs of congestion
may include hepatomegaly, a pulsatile liver due to severe tricuspid regurgitation and ascites.
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Peripheral edema, though nonspecific, is commonly observed in advanced stages of HF [2].
The abdominojugular test evaluates elevated cardiac filling pressures by detecting a rise in
jugular venous pressure during sustained abdominal compression, a finding commonly
seen in advanced heart failure. The Valsalva maneuver identifies abnormal hemodynamic
patterns suggestive of elevated filling pressures, particularly by the absence of phase 4
overshoot or the presence of a sustained “square wave” blood pressure response [15,17,18].

3.3. Quantification of Congestion in HF Based on Clinical Parameters

Congestion scores are valuable tools for assessing and monitoring the severity of
congestion in patients with HF. These scores integrate clinical signs, such as dyspnea,
orthopnea, edema, and jugular venous distension, and are commonly used to predict HF
prognosis and the risk of recurrence (Table 2) [11].

Clinical scoring systems have demonstrated greater accuracy in assessing congestion
than isolated clinical signs

The EVEREST trial (Efficacy of Vasopressin Antagonism in Heart Failure Outcome
Study with Tolvaptan) was the first and largest study to assess the effects of tolvaptan, a
V2 receptor antagonist, in patients with HF [19]. While the trial did not demonstrate a
significant benefit in primary outcomes, such as all-cause mortality, cardiovascular death, or
heart failure-related hospitalization when comparing tolvaptan to placebo, it did highlight
some favorable short-term effects. Tolvaptan treatment specifically improved dyspnea and
clinical signs of congestion, while also promoting favorable reductions in body weight and
net fluid loss [19].

The EVEREST score (developed for the EVEREST trial) assesses symptoms such as
dyspnea, orthopnea, fatigue, jugular venous distension (JVD), rales, and edema, assigning
specific point values to the severity of each symptom. Dyspnea was scored on a scale from
0 (none) to 3 (continuous), while orthopnea was similarly evaluated, ranging from no pillow
use (0 points) to requiring elevation greater than 30◦ (3 points). Jugular venous distention
(JVD) was measured in cm H2O, with higher readings indicating greater congestion. Rales
were scored from 0 (absent) to 3 (present in more than 50% of the lung fields) [4].

The EVEREST score is associated with an increased risk of HF mortality, especially in
patients with overt clinical congestion [4].

The OPTIMIZE-HF (Organized Program to Initiate Lifesaving Treatment in Hospi-
talized Patients with Heart Failure) score is similar to the EVEREST score but approaches
fatigue, JVD, and rales differently, using a binary assessment for fatigue and simplified
grading scales for JVD (0–3 points) and rales (0–2 points) [20].

In contrast, the PROTECT score excludes fatigue and rales, placing greater emphasis on
physical signs such as orthopnea, JVD, and edema. Orthopnea was graded on a 0–3 point
scale, while edema is scored from 0 (absent) to 2 (severe), offering a less detailed evaluation
of certain findings like rales and heart sounds [21].

The DOSE-HF (Diuretic Strategies in Patients with Acute Decompensated Heart
Failure) score emphasizes congestion by incorporating factors such as recent increases
in diuretic dosage and weight gain, underscoring the dynamic nature of fluid status and
diuretic response [22].

The Lucas score evaluates symptoms like orthopnea (scored from 0 to 2 points) and
edema (scored from 0 to 4 points) but does not include rales and fatigue. Instead, it included
a more subjective assessment of respiratory distress [4].

The Rohde score was more focused on JVD, scoring it from 0 to 4 points. It did not
include fatigue or rales, but did assess respiratory distress through orthopnea grading [4].

Although these scoring systems often assess similar symptoms, they differ in complex-
ity and the specific clinical parameters they emphasize. Scores like EVEREST provide a
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more detailed evaluation by incorporating heart sounds and fatigue, whereas tools such as
LUCAS and DOSE-HF prioritize signs like edema and account for therapeutic interventions
such as changes in diuretic therapy. The Rohde score notably focuses on JVD, offering a
detailed grading approach. This diversity in scoring systems enables clinicians to tailor
assessments to individual patient needs. However, it also highlights the fact that no single
score is universally suitable, reinforcing the importance of clinical judgment in selecting
the most appropriate tool for each patient’s clinical context and stage of treatment [4].

Scoring systems such as the Lucas and Rohde scores, along with the EVEREST score de-
veloped by Ambrosy et al. in 2013 [23], provide prognostic insight and support congestion
evaluation during hospitalization [4].

Although the routine application of these scores in clinical practice is yet to be firmly
established, the EVEREST score currently stands out as the most evidence-based tool for
managing ADHF, highlighting its potential for broader clinical implementation [4].

Two clinical scoring systems (Ambrosy score, Rubio score) have been developed
specifically to assess congestion in patients with heart failure and reduced ejection fraction
(HFrEF), both showing significant prognostic value (Table 3) [11].

In a study involving 2061 patients with HFrEF, Ambrosy et al. evaluated a compre-
hensive congestion score that included dyspnea, orthopnea, asthenia, crackles, edema, and
jugular venous distention. Their findings demonstrated that elevated congestion scores
were significantly associated with increased mortality and higher rates of heart failure
readmissions, emphasizing the clinical impact of persistent congestion [13].

In a subsequent study, Rubio et al. proposed a more simplified scoring system that
focused on just three signs: orthopnea, jugular venous distention, and edema. In a cohort
of 1572 HFrEF patients, they observed that residual congestion at discharge, even when
subtle, was prevalent and strongly predictive of adverse outcomes. Only 23% of patients
were free of congestion at discharge, whereas 48% had mild and 29% had moderate to
severe congestion. Both groups experienced significantly higher rates of rehospitalization
and mortality [12].

Table 2. Commonly used clinical congestion scores.

Clinical Congestion EVEREST OPTIMIZE-HF [20] PROTECT [12,21] DOSE-HF [22] LUCAS [4] Rohde

Dyspnea

0 p—none;
1 p—seldom;
2 p—frequent;

3 p—continuous

0 p—none;
2 p—on exertion;

3 p—at rest
Not included Not included Not included Not included

Orthopnea

0 p—none;
1 p—seldom;
2 p—frequent;

3 p—continuous

0 p—none;
2 p—yes

0 p—none;
1 p—2 pillows;
2 p—3 pillows;

3 p—>30◦

0 p—<2 pillows;
2 p—≥2 pillows;

1 p—any respiratory
distress associated
with lying down or
perceived need to
use > 1 pillow to
avoid respiratory

distress

Graded form 0 to 4
0 p—no more than
1 pillow needed;

4 p—at least 1 night
spent sleeping in a

sitting position

Fatigue

0 p—absent;
1 p—slight;

3 p—moderate;
4 p—continuous

0 p—none;
2 p—yes Not included Not included Not included Not included

JVD (cm H2O)

0 p ≤ 6 cm H2O;
1 p 6–9 cm H2O;

2 p 10–15 cm H2O;
3 p ≥ 15 cm H2O

0 p—<6;
1 p—6–9;

2 p—10–15;
3 p—>15

0 p—<6;
1 p—6–9;

2 p—10–15;
3 p—>15

Not included 1 p—≥10 cm H2O

Graded from 0 to 4
0 p—jugular veins

not visible
4 p—crests visible at
the earlobe with the

patient at 30–40◦ .

Rales

0 p—none;
1 p—bases;

2 p—up to <50%;
3 p > 50%

0 p—none;
1 p—<1/3;
2 p > 1/3

Not included Not included Not included

0 p—none;
1 p—<25;

2 p—25 to 50%;
3 p > 50%;

4 p—entire lung
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Table 2. Cont.

Clinical Congestion EVEREST OPTIMIZE-HF [20] PROTECT [12,21] DOSE-HF [22] LUCAS [4] Rohde

Edema

0 p—absent;
1 p—slight;

2 p—moderate;
3 p—marked

0—absent;
1 p—slight;

2 p—moderate;
3—marked

0 p—absent;
1 p—slight;

2 p—moderate;
3 p—marked

0 p—trace;
1 p—moderate;

2 p—severe
1 p = Yes

0 p—none;
1–4 p—according to

the indentation at
the ankle

Other Not included Not included Not included Not included

1 p—diuretics
increased over the

past week;
1 p ≥ 1 kg increase
since the last visit

1 p—3rd heart sound

Strengths
Easy to apply,

frequently used in
trials

Simple, applicable at
discharge

Well-structured,
JVD-based

Good stratification
for diuretic therapy

trials

Includes clinical
trajectory, weight

Detailed severity
assessment
(0–4 scale)

Dependence on
operator skill

Low (subjective
scoring) Low Low Low Medium (JVD eval.) Medium

Pulmonary vs.
Systemic Congestion

Both—slightly
favors systemic Both Favors systemic Favors systemic Both Both

p—point(s); JVD = jugular venous distension.

Table 3. Other clinical congestion scores.

Signs and Symptoms
Points

0 1 2 3

Ambrosy Score [13]

Dyspnea Absent Minimal Frequent Continuous

Orthopnea Absent Minimal Frequent Continuous

Asthenia Absent Minimal Frequent Continuous

Jugular vein distension (cm H2O) <6 6–9 10–15 >15

Pulmonary crackles Absent In base <50% >50%

Leg edema Absent Mild Moderate Pronounced

Rubio Score [12]

Orthopnea Absent 1-Pillow 2-Pillow >30

Edema Absent Mild Moderate Pronounced

Jugular vein distension (cm H2O) <6 6–10 >10 -

4. Biomarkers as Adjuncts to Clinical Assessment in Congestion
4.1. Natriuretic Peptides
4.1.1. Natriuretic Peptides and Congestion

Natriuretic peptides (NPs) are the most widely used biomarkers for evaluating con-
gestion in HF, as they are released in response to myocardial stretch and elevated intracar-
diac pressures [5].

The synthesis of brain natriuretic peptide (BNP) and its inactive fragment, N-terminal
pro-BNP (NT-proBNP), is triggered by biomechanical stress resulting from volume overload
and increased pressure within the heart [24]. Once secreted into the bloodstream, these
markers reflect overall cardiac stress, with elevated levels corresponding to higher left-sided
filling pressures [5].

However, NPs primarily indicate intravascular and intracardiac congestion, making
them less effective in detecting tissue or systemic congestion [25,26]. This limitation derives
from the fact that NP secretion is mainly driven by left ventricular wall stress, whereas
systemic congestion involves fluid accumulation outside the vascular space, a process not
accurately captured by NP levels [27].
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4.1.2. Variation in Natriuretic Peptides and Decongestion Monitoring

Monitoring natriuretic peptide (NP) levels over time has been suggested as a method
to assess the resolution of congestion. A decrease in NP concentrations correlates with
improvement in hemodynamics, such as lower pulmonary capillary wedge pressure,
reduced jugular vein distension, and smaller inferior vena cava diameter [6]. Nonetheless,
a single NP measurement may not accurately reflect the congestion status, and its changes
should be evaluated alongside cardiac structural and functional assessments [28]. While a
drop of 30% or more in NT-proBNP from the time of admission is generally considered a
sign of effective intravascular decongestion, studies have shown inconsistencies in their
ability to predict clinical congestion severity or right-sided HF involvement [25,26].

4.1.3. Prognostic Role of Natriuretic Peptides in Ambulatory HF

In outpatient HF management, repeated measurements of NPs have shown prognostic
significance, with changes of 50% or more correlating with significant shifts in LV filling
pressures [29]. However, despite their predictive value, NP-guided decongestion strategies
have not been consistently associated with better clinical outcomes. Clinical trials have
failed to demonstrate significant reductions in hospital readmissions or mortality rates with
such approaches [28].

4.1.4. Limitations in Interpretation of Natriuretic Peptide Variation in HF

Interpreting changes in NP levels in HF is difficult due to several factors. One major
limitation is the significant intra-individual variability in NP levels, which reduces their
reliability for serial monitoring [30]. Additionally, NP concentrations are affected by
comorbid conditions such as atrial fibrillation, renal impairment, aging, and body weight.
Their effectiveness is further reduced in patients with predominantly right-sided HF, where
systemic venous congestion is more prominent [27,29].

While trends in NP levels can offer valuable information regarding decongestion, they
should not be the sole basis for therapeutic decisions. Instead, NP variations should be
interpreted alongside clinical evaluations and imaging-based markers of congestion to
guide effective heart failure management [29].

4.2. Hemoconcentration

Hemoconcentration, defined as a relative increase in hemoglobin levels due to reduced
plasma volume, has been suggested as a marker of effective decongestion [31,32]. In
patients with ADHF, hemoconcentration has been linked to more substantial decongestion,
as evidenced by improvements in clinical signs and symptoms. Moreover, it has been
associated with better outcomes, including a lower risk of HF readmission [33–36].

Plasma Volume Variation

Variations in estimated plasma volume (∆ePVS) can serve as a surrogate marker for
hemoconcentration, reflecting the shifting of fluid from the interstitial to the intravascular
space [36]. Monitoring changes in plasma volume during decongestive therapy has been
proposed as a method to evaluate a patient’s progression toward achieving euvolemia [37].
While radioisotope-based assays remain the gold standard for measuring plasma vol-
ume, their high cost and need for repeated blood sampling make them impractical for
routine use [38]. As an alternative, non-invasive formulas have been developed to esti-
mate ∆ePVS [37]. These formulas are based on the assumption that shifts in hemoglobin
concentration are inversely related to changes in total blood volume [39].

Despite its potential, the prognostic value of plasma volume changes in ADHF re-
mains insufficiently supported by robust evidence. Most studies on ∆ePVS have been
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retrospective and primarily centered on patients with chronic HF, with limited prospective
data available for ADHF populations [37,39]. Among the various estimation formulas,
the Strauss equation stands out as the only one validated against the radiolabeled gold
standard and has been reliably used for decades, particularly in patients undergoing
plasma exchange [40,41].

In a study involving 111 patients with ADHF, ∆ePVS emerged as a reliable predictor
of decongestion, showing a strong correlation with NT-proBNP decrease and improved
clinical outcomes. This highlights its value as a cost-effective and complementary tool for
monitoring decongestive therapy alongside NP levels [36].

4.3. Other Biomarkers
4.3.1. Biologically Active Adrenomedullin

Bioactive adrenomedullin (bio-ADM) has gained attention as a potential biomarker for
assessing congestion and predicting outcomes in patients with cardiovascular disease [42].
This biologically active peptide plays a critical role in maintaining endothelial barrier
integrity. When this barrier is disrupted, it can lead to vascular leakage and subsequent
pulmonary and systemic edema [43].

Elevated plasma levels of bio-ADM are indicative of increased interstitial fluid ac-
cumulation. Such elevations are commonly observed in patients with HF and are even
more pronounced in those with sepsis [44,45]. In individuals with ADHF, persistently
high bio-ADM levels after seven days of decongestive therapy are closely associated with
ongoing clinical signs of residual congestion [21,45,46].

In a study involving 85 patients with a systemic right ventricle, plasma levels of
bioactive adrenomedullin (bio-ADM) were assessed using a novel immunoassay. The
primary outcome was a composite of all-cause mortality and HF events, defined as new
or worsening symptoms requiring hospitalization or intensified therapy. Patients with
elevated bio-ADM levels were more frequently treated with diuretics (p = 0.007), indicating
a higher degree of congestion. During a median follow-up of 10.2 years, 33.7% of the
patients reached the composite endpoint. After adjusting for age and NT-proBNP, higher
bio-ADM concentrations were significantly associated with an increased risk of the compos-
ite endpoint (hazard ratio: 2.09, 95% CI: 1.15–3.78). After adjusting for age and NT-proBNP
levels, higher bio-ADM concentrations remained significantly associated with increased
risk of adverse outcomes (hazard ratio: 2.09, 95% CI: 1.15–3.78). Furthermore, the inclusion
of bio-ADM in a risk model alongside NT-proBNP and age enhanced predictive accuracy,
with the C-statistic improving from 0.748 to 0.776 (p = 0.03) [42].

These findings suggest that bio-ADM can serve as an independent prognostic marker
for mortality and HF events and adds incremental value to risk stratification beyond
established biomarkers like NT-proBNP [42].

4.3.2. Soluble CD146

Soluble CD146 (sCD146), a protein released by venous wall tissue in response to
stretching, is found at elevated levels in HF patients compared to healthy individuals or
those with non-cardiac dyspnea [47,48]. In ADHF, higher plasma concentrations of sCD146
are associated with more pronounced clinical signs of severe congestion, as confirmed
through chest radiographs [48].

Furthermore, although sCD146 shows potential in differentiating between central and
peripheral congestion in clinical settings, current evidence is limited, and this distinction
remains to be clearly validated in clinical studies [47]. However, its utility in predicting
hospitalizations and monitoring decongestion warrants further research.
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4.3.3. Soluble ST2

Soluble ST2 (sST2), part of the interleukin-1 receptor family, acts as a decoy for IL-33,
thereby diminishing its cardioprotective effects [49,50]. Elevated levels of sST2 are linked
to poor outcomes in both ADHF and chronic HF [51,52].

In ADHF, increased sST2 reflects endothelial and pulmonary inflammation caused by
congestion [53–55]. It correlates with echocardiographic signs of right-sided HF and central
venous pressure, indicating pulmonary and vascular congestion [56]. Moreover, sST2 has
been identified as a marker for predicting diuretic resistance, particularly in ADHF patients
with impaired kidney function [57].

A single measurement of sST2 offers independent prognostic value in HF and its
predictive ability is not influenced by renal function [58,59].

Recent data indicate that sST2 is strongly associated with elevated LV filling pres-
sures, improving the ability to predict diastolic dysfunction and providing a non-invasive
alternative to cardiac catheterization for evaluating LV diastolic function [60].

However, additional research is required to better understand the kinetics of sST2 and
its usefulness in monitoring congestion and in guiding therapeutic decisions.

4.4. Carbohydrate Antigen 125

Carbohydrate antigen 125 (CA125) is secreted by serosal tissues, including the
pericardium and pleura, in response to mechanical stretch or inflammation caused by
edema [61]. Elevated CA125 levels are commonly seen in patients with peripheral or
pulmonary edema and are even higher in those presenting with serosal effusions in
ADHF [62,63]. Up to two-thirds of hospitalized HF patients have increased CA125 levels,
which have been associated with higher rates of morbidity and mortality [64]. These eleva-
tions reflect underlying tissue congestion and elevated cardiac filling pressures and can
occur in patients with peripheral edema, pleural effusion, intrarenal venous congestion,
and elevated intra-abdominal pressure [65–69].

However, the usefulness of CA125 for the short-term monitoring of HF patients is
limited due to its prolonged half-life [68,70].

5. The Role of Imaging in Evaluating Congestion
Clinical signs of congestion, such as elevated jugular venous pressure, orthopnea,

peripheral edema, and abdominojugular reflux, appear at an advanced stage of the dis-
ease [71,72]. By the time these signs become evident, congestion has likely been long-
standing, leading to significant intravascular and interstitial fluid accumulation [72]. There-
fore, early and accurate detection of subclinical congestion is crucial, necessitating imaging
modalities that can identify congestion before overt clinical manifestations.

5.1. Intravascular Pulmonary Congestion
5.1.1. Lung Ultrasound (LUS)

Lung ultrasound (LUS) is a simple, fast, and non-invasive point-of-care tool that allows
for the detection and quantification of pulmonary congestion and pleural effusions [73].

In interstitial edema, the ultrasound beam reflects off edematous interlobar septa,
generating comet-tail artifacts known as B-lines. Their number indicates edema severity:
fewer than five B-lines in a full anterolateral scan (28 chest regions) suggests no edema,
while >30 indicates severe edema [74]. B-lines correlate moderately with pulmonary
capillary wedge pressure and radiographic congestion score [75].

B-lines can be quantified using two main approaches: score-based and count-based
methods. Score-based method: A zone is considered “positive” if it contains at least three
B-lines, and the total number of positive zones is summed. Count-based methods: First,
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B-lines are counted within each intercostal space and then summed across all zones; second,
in the percentage–count method, if B-lines are confluent, their percentage of the scanned
zone is divided by 10 [73].

LUS is more sensitive than clinical examination or chest radiography for detecting
pulmonary congestion in acute dyspnea. In the emergency setting, a threshold of ≥3 B-lines
in at least two zones per hemithorax (from 6 to 8 assessed zones) improves the identification
of ADHF compared to physical examination, chest radiography, or NT-proBNP [76]. A
high B-line count at hospital discharge or in chronic heart failure patients correlates with
an increased risk of readmission or mortality [77].

The LUS-HF trial showed that lung ultrasound-guided follow-up in HF patients reduced
urgent visits and hospitalizations compared to standard care (HR 0.52; p = 0.049). The
benefit was linked to earlier diuretic adjustments based on B-line counts. LUS also improved
functional capacity and proved to be a safe, non-invasive tool for guiding decongestion [78].

The BLUSHED-AHF trial evaluated whether a 6 h LUS-guided strategy improves
pulmonary congestion compared with usual care in the emergency department. This
multicenter, single-blind pilot study randomized 130 patients, assessing B-lines reduction
at 6 h as the primary outcome and days alive and out of hospital (DAOOH) at 30 days
as an exploratory endpoint. No significant differences were observed between groups in
achieving B-line reduction at 6 h or in DAOOH. However, LUS-guided management led to
a faster resolution of pulmonary congestion within the first 48 h [79]. These findings suggest
that while LUS guidance does not confer a very short-term advantage in decongestion, it
may facilitate earlier improvement during hospitalization [79].

Integrating both systemic and pulmonary imaging modalities enhances the accuracy
of congestion evaluation, guiding individualized therapeutic strategies in ADHF.

Pleural Effusion

Pleural effusions can be detected laterally in each hemithorax at the level of the
diaphragm. An approach to quantify the pleural effusion involves measuring the distance
between the collapsed lung and the diaphragm, as well as the height of the lateral chest
wall [73]. This method has shown an 83% correlation with thoracentesis-obtained pleural
effusion volumes [80]. However, their prognostic significance at discharge remains unclear.
Unlike simple anechoic effusions, complex fluid collections should raise suspicion for
alternative causes, such as empyema [80]. Similarly to B-lines, pleural effusions tend to
decrease with decongestive therapy in ADHF.

5.1.2. Thoracic Computer Tomography and Chest Radiography

Thoracic computed tomography (CT), particularly high-resolution scans, provides a
strong correlation between increased pulmonary density and lung weight, and is considered
a gold standard for assessing interstitial pulmonary edema in selected cases. However,
its clinical use is limited due to low availability and exposure to ionizing radiation. In
contrast, chest radiography is more widely available but remains less sensitive and specific
in detecting pulmonary congestion, particularly in early or mild cases [6].

5.1.3. Echocardiography

Echocardiography is the main imaging modality for the initial assessment of HF and
can be performed both as a point-of-care ultrasound (POCUS) for rapid bedside evaluation,
and as a comprehensive study for the detailed assessment of left ventricular size, systolic
function, and valvular abnormalities [81]. However, a normal ejection fraction (EF) does
not rule out a cardiac cause of dyspnea, as nearly 50% of HF patients present with either
mildly reduced EF (HFmrEF) or preserved EF (HFpEF) [82].
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A hallmark of HF is elevated LV filling pressure, a compensatory mechanism aimed at
preserving cardiac output, irrespective of LVEF [81]. This parameter is essential not only
for confirming HF but also for assessing disease severity and therapeutic response [81].
Although cardiac catheterization remains the gold standard for measuring filling pressures,
its invasive nature makes it impractical for routine evaluation of patients presenting with
dyspnea and suspected HF [81].

Exertional dyspnea is one of the most frequently encountered symptoms in daily clinical
practice. Diastolic dysfunction plays a major role in the evolution of HF [83]. It is the cause
of up to 50% of HF cases, with the hemodynamic correlate being increased filling pressures.
However, this abnormality is often overlooked, as it is commonly found incidentally, especially
in elderly patients or those with hypertension or left ventricular hypertrophy [84].

LV filling pressures can be estimated using mitral inflow velocities and the E/A
ratio. An E/A ratio of 0.8, accompanied by an E velocity below 50 cm/s—reflecting a low
transmitral pressure gradient—suggests normal filling pressures. Conversely, an E/A ratio
exceeding 2, characterized by a high E wave, low A wave, and a short E wave deceleration
time (<160 ms), indicates a restrictive mitral filling pattern, consistent with elevated LV
filling pressures, particularly in patients with HFrEF, where it is especially useful for
identifying the most severe form of diastolic dysfunction [85].

For cases with intermediate values, additional criteria are required to refine the assess-
ment. These include the E/e’ ratio, the left atrial (LA) maximum volume index, and peak
tricuspid regurgitation velocity [85].

The E/e’ ratio rises with increasing LV filling pressures, driven by an elevated mitral
E peak velocity and low e’ velocity due to LV impaired relaxation. An E/e’ ≥ 14 indicates
elevated LV filling pressures [86]. Although it correlates well in patients with HFpEF,
the association is weaker in those with HFrEF, or undergoing cardiac resynchronization
therapy, where a septal E/e’ > 15 demonstrates a reduced concordance with invasive
hemodynamic measurements [87,88].

The maximal LA volume index (LAVI) > 34 mL/m2 by 2D echocardiography is used
in estimating LV filling pressures and is associated with higher cardiovascular risk in
HFpEF [86,89]. However, LA enlargement has limitations: it does not reflect instantaneous
pressure changes, has low sensitivity for detecting early LV filling pressure elevation, and
LA volume can be increased in highly trained athletes [86,90].

A systolic pulmonary artery pressure (sPAP) increase suggests elevated LV filling
pressures, if non-cardiac causes are excluded. sPAP is derived from peak TR velocity and
IVC-based RA pressure, with TR > 2.8 m/s strongly indicating high filling pressures [91,92].

Many patients show Doppler echocardiographic evidence of impaired diastolic func-
tion, but do not present symptoms of HF at rest. In some cases, symptoms arise only
during exercise, where LV filling pressure remains normal at rest but increases during
physical exertion. These patients are unable to increase cardiac output without raising
filling pressure [93].

Therefore, it is essential to measure LV filling pressures during exercise, as patients
with significant heart disease may have normal diastolic hemodynamics when assessed
at rest [93]. The diastolic stress test, which evaluates diastolic function during exercise,
whether invasively or non-invasively, can uncover diastolic abnormalities that may not be
evident under resting conditions [93].

Recent studies have highlighted the utility of advanced echocardiographic techniques,
such as peak atrial longitudinal strain (PALS), for assessing congestion in HF. PALS shows a
significant correlation with NT-proBNP levels in both acute and chronic HF, providing addi-
tional prognostic value. Left atrial reservoir strain cut-off of <18% has been associated with
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worse cardiovascular outcomes in patients with HF. Combining PALS with NT-proBNP
can further enhance risk stratification and guide therapeutic management decisions [94].

The ratio of tricuspid annular plane systolic excursion (TAPSE) to pulmonary arterial
systolic pressure (PASP) has emerged as a valuable non-invasive marker of right ventricular–
pulmonary artery (RV-PA) coupling. Recent data suggest that a reduced TAPSE/PASP
ratio independently predicts in-hospital mortality in patients hospitalized with acute heart
failure and reduced ejection fraction (HFrEF), highlighting its potential utility for early
risk stratification. A TAPSE/PASP ratio cut-off value of <0.4 mm/mmHg demonstrates a
sensitivity of 79.17% and a specificity of 47.74% for predicting in-hospital mortality [95].

Patterns of Congestion Across HFpEF and HFrEF

Although congestion is a unifying clinical manifestation of ADHF, its underlying patho-
physiology and clinical course may significantly vary depending on the etiological phenotype
of HF. While many studies have approached congestion as a homogenous target across the ejec-
tion fraction (EF) spectrum, growing evidence supports a more nuanced interpretation [84].

In HF with preserved EF (HFpEF), multiple pathophysiological mechanisms converge
to produce elevated filling pressures—often at rest or during exercise—even in the absence
of overt systolic dysfunction. These include left atrial myopathy, arterial stiffening, pul-
monary vascular disease, among others [96]. Restrictive and infiltrative cardiomyopathies,
such as cardiac amyloidosis, can also present with preserved EF along with severe diastolic
dysfunction and marked congestion, which is often underrecognized without specific
diagnostic tools [96].

Conversely, in HFrEF, congestion is more tightly linked to volume overload and sys-
tolic pump failure, with greater natriuretic peptide levels and more pronounced neurohor-
monal activation. HFmrEF appears to exhibit features from both ends of the spectrum [97].

Despite this heterogeneity, recent data suggest that the clinical trajectory of congestion
during hospitalization is broadly similar across EF groups in terms of physical signs, weight
change, and fluid loss. However, patients with HFpEF often show less natriuretic peptide
reduction and smaller symptomatic improvement, possibly reflecting different mechanisms
of congestion rather than treatment resistance [98].

Importantly, the prognostic impact of residual congestion may differ by EF. In the
Kyoto registry, for instance, residual congestion at discharge was strongly associated with
adverse outcomes in patients with LVEF ≥ 40%, but not in those with LVEF < 40%, highlight-
ing possible differences in the interplay between congestion and clinical trajectories [99].

These findings underscore the importance of phenotype-specific approaches to con-
gestion management. Recognizing distinct etiologies such as infiltrative cardiomyopathies
is important, as they may not only influence the pathophysiological drivers of congestion
but also dictate differential responses to therapy and long-term outcomes [96].

Representative images from two patients with ADHF of different etiologies—cardiac
amyloidosis with preserved ejection fraction and dilated cardiomyopathy with reduced ejec-
tion fraction—illustrating congestion are available in the Supplementary Materials (Figure S1).

5.2. Intravascular Systemic Congestion

Central venous pressure (CVP) serves as a key physiological parameter for evaluating
cardiac preload. In the absence of vena caval obstruction, CVP is equivalent to right atrial
pressure (RAP), and the two terms are often used interchangeably [100].

5.2.1. Ultrasound Assessment of Systemic Venous Congestion: Role of VExUS

Inferior vena cava (IVC) diameter and its respiratory variation are widely used echocar-
diographic markers of venous congestion in ADHF [4]. However, IVC diameter alone
shows limited correlation with invasively measured RAP and may not reliably stratify the
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risk of in-hospital adverse outcomes [97]. While IVC dilation has been associated with
poor prognosis in stable outpatients with HF, its predictive value in acute settings is less
robust [98]. For example, in a cohort of 290 patients admitted for ADHF, 248 had a dilated
IVC, yet only 114 met criteria for severe venous congestion based on the VExUS score,
underscoring the limitations of IVC-based assessment alone [72].

The Venous Excess Ultrasound Score (VExUS) has emerged as a more comprehensive
tool to grade systemic venous congestion, integrating Doppler evaluation of multiple
venous territories—namely the hepatic, portal, and intrarenal veins. Scoring is performed
only if the IVC diameter is ≥20 mm, indicating elevated right atrial pressure. If the IVC is
<20 mm, no further Doppler assessment is required, and the VExUS score is 0.

• VExUS 0: IVC diameter < 20 mm; no additional Doppler evaluation is necessary.
• VExUS 1: IVC diameter ≥ 20 mm, with normal or mildly abnormal Doppler waveforms

in the hepatic, portal, and renal veins.
• VExUS 2: IVC diameter ≥ 20 mm, with one severely abnormal Doppler waveform

among the three veins assessed.
• VExUS 3: IVC diameter ≥ 20 mm, with two or more severely abnormal Doppler

waveforms [72].

VExUS has shown strong correlation with invasive RAP measurements and allows for
a more nuanced assessment of venous congestion severity in ADHF [101].

5.2.2. Technical Aspects of Doppler Evaluation

All Doppler measurements are ideally performed at end-expiration, with concurrent
ECG recording to ensure cardiac cycle phase identification [72].

IVC diameter is measured in the subcostal view, perpendicular to the long axis,
approximately 0.5–3 cm proximal to the right atrial ostium. A diameter ≥ 20 mm is
considered dilated [72].

Hepatic vein Doppler is obtained in the subcostal view, aligning the pulsed-wave
Doppler beam parallel to the hepatic vein draining into the IVC. Normal flow is character-
ized by systolic predominance. A mildly abnormal waveform shows diastolic predomi-
nance, while a reversed systolic wave indicates severe congestion [102].

Portal vein Doppler is evaluated from the posterior axillary view, with the vein
identified in the caudal liver. Portal vein pulsatility fraction (PVPF) is quantified using the
following formula:

PVPF = [(Vmax − Vmin)/Vmax] × 100.

A PVPF < 30% is considered normal, 30–49% mildly abnormal, and ≥50% severely
abnormal [102]. Increased pulsatility reflects elevated right-sided pressures [103].

Intrarenal venous Doppler is acquired with the patient in the left lateral decubitus posi-
tion, using a posterior approach through the 10th intercostal space. The color Doppler scale is
reduced (<20 cm/s) to identify low-velocity interlobar venous flow. A continuous monophasic
waveform is normal, a biphasic (systolic and diastolic) pattern suggests mild congestion, while
a monophasic flow present only in diastole indicates severe congestion [102].

While portal and renal venous Doppler measurements provide valuable data, renal
venous flow is technically more challenging to obtain. A recent study evaluated a mod-
ified VExUS score (mVExUS), excluding the renal Doppler component. The mVExUS
demonstrated similar performance to the traditional VExUS in detecting elevated RAP,
with high sensitivity and specificity, thus offering a more accessible alternative for broader
clinical implementation [104].
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The VExUS score is feasible for bedside application, including in emergency settings,
and provides incremental prognostic value compared to traditional congestion markers
such as IVC diameter [72].

5.2.3. Jugular Vein Ultrasound

Evaluating CVP through a clinical neck vein examination can sometimes be challeng-
ing and has low sensitivity, particularly in elderly, obese, and short-necked patients [105].
The reference standard for CVP measurement involves the insertion of a central venous
catheter into the superior vena cava; however, this approach is invasive, time-consuming,
and associated with potential complications [100]. Ultrasound evaluation of the internal
jugular vein (IJV) offers a non-invasive alternative for estimating RAP [100].

There are several methods for evaluating the IJV, and we will discuss the two most
commonly used techniques [100]. In individuals without HF or those with controlled
congestion, the IJV diameter is small at rest (0.10–0.15 cm) but increases during a Val-
salva maneuver (up to 1 cm) (Figure 1) [106]. In HF, IJV diameter at rest increases with
worsening congestion, lowering the JVD ratio. A JVD ratio < 4 is abnormal, with severe
congestion reducing it to <2 [106,107]. Using the IJV cross-sectional area instead of diameter
during a Valsalva maneuver helps identify patients with normal right atrial pressure and
better outcomes [106,108].

In a study of 100 patients, standard visual JVP and ultrasound JVP were measured
before right heart catheterization. A strong correlation was found between RA pressure
and ultrasound JVP. The optimal ultrasound JVP cutoff for predicting RA pressure > 10 mm
Hg was 8 cm, with 73% sensitivity and 79% specificity. Traditional JVP showed similar
predictive value but was not visible in 40% of cases [109].

5.2.4. Femural Vein

Femoral vein Doppler (FVD) is simpler than the multimodal VExUS score. A study
evaluated the relationship between FVD and VExUS in post-cardiac surgery patients, using
CVP as the gold standard. Among 107 patients, VExUS and FVD had accuracies of 80.4%
and 74.7%, respectively, for detecting venous congestion. In the intensive care unit (ICU),
a pulsatile femoral vein pattern is linked to venous congestion markers, independent of
volume status and ventilatory support (a IVC limitation). This suggests that FVD pulsatility
could serve as a useful parameter for assessing congestion in ICU patients [110]. Given its
accessibility and shorter learning curve, FVD may be a simple and useful tool for venous
congestion assessment [111].

5.3. Tissue Systemic Congestion
5.3.1. Peripheral Edema

Ultrasonography (US) is a valuable tool for assessing leg edema by analyzing sub-
cutaneous echogenicity, though interpretation can be subjective. A study introduced a
gel pad for echogenicity normalization, improving measurement accuracy. US identified
edema more accurately than limb circumference measurements, with high intra- and inter-
rater reliability. Moreover, ultrasonography can also aid in the differential diagnosis of
leg edema, helping to distinguish between congestion-related edema and that caused
by chronic venous insufficiency. These findings suggest that normalized subcutaneous
echogenicity could provide a reliable and objective method for assessing leg edema in
clinical practice [112].
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Figure 1. Sequential Doppler changes in different patients with ADHF. (a,b) Portal vein Doppler
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5.3.2. Ascites

Ultrasound is a reliable, non-invasive, and cost-effective method for detecting, charac-
terizing, and quantifying ascites. It may help differentiate transudate from exudate and
suggest the potential underlying cause. As a valuable complement to laboratory tests,
ultrasound provides a dependable diagnostic tool for assessing ascites with a high degree
of certainty [113].

6. Emerging Technologies for Congestion Monitoring in HF
6.1. Remote Dielectric Sensing (ReDS)

Remote Dielectric Sensing (ReDS) is a non-invasive electromagnetic-based technology
that quantifies lung fluid levels, offering an objective measure of pulmonary congestion. In the
ReDS-SAFE HF trial, 100 patients hospitalized for ADHF were randomized to either standard
care or a ReDS-guided discharge strategy, requiring ReDS values ≤ 35% before discharge.
At one month, the ReDS-guided group had significantly fewer adverse events—only 2%
compared to 20% in the control group (HR 0.094, p = 0.003)—primarily driven by a reduction
in HF readmission [114]. These findings support the clinical utility of ReDS in optimizing
decongestion and improving short-term outcomes following hospitalization.

6.2. HeartLogic™

HeartLogic™ is a Cardiac Implantable Electronic Device-based algorithm that remotely
monitors multiple physiological parameters to detect early signs of HF decompensation. In
a multicenter study, 29% of patients showed substantial clinical benefit, with a 92% positive
predictive value for detecting congestion. These patients typically had more advanced
HF. HeartLogic™ appears most effective in high-risk populations, helping guide timely
interventions and reduce HF events [115].

6.3. CardioMEMS

CardioMEMS is a wireless implantable sensor that remotely measures pulmonary
artery pressure, serving as a surrogate for left ventricular filling pressures. Since hemo-
dynamic congestion often precedes symptoms by weeks, CardioMEMS enables the early
intervention and prevention of heart failure hospitalizations. Clinical studies have consis-
tently demonstrated its safety and efficacy, making it a valuable tool in the management of
patients with chronic HF [116].

7. Integrated Multimodal Assessment and Clinical Application
Integrating congestion markers allows stratified clinical management in HF. For exam-

ple, a patient presenting with exertional dyspnea but without significant venous congestion
(e.g., low VExUS score) may be safely managed in the outpatient setting, with periodic
reassessment of diuretic therapy based on symptoms, natriuretic peptides, or lung ultra-
sound. In contrast, a patient with severe congestion—reflected by a high VExUS grade,
markedly elevated biomarkers (e.g., NT-proBNP, CA125) and clinical signs of volume
overload—may require closer monitoring in an ICU. In such cases, diuretic resistance is
often present, and therapy may include sequential nephron blockade or ultrafiltration. This
stepwise, individualized approach ensures appropriate intensity of care and optimizes
decongestion strategies.

An integrated stepwise algorithm for the diagnosis of congestion, combining clinical
signs, biomarkers, and imaging, is presented in Figure 2.
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Figure 2. Integrated diagnostic algorithm for assessment of congestion related to fluid compartment
distribution using clinical evaluation, biomarkers, and multimodal imaging. LUS—lung ultrasound;
S3—third heart sound; S4—fourth heart sound; LVEF—left ventricular ejection fraction.

8. Intravascular vs. Tissue Congestion: Implications for Diuretic Strategy
and Resistance

Effective decongestion in HF relies on distinguishing between intravascular and tissue
congestion, as their management strategies differ. Intravascular congestion impairs fluid
mobilization from the interstitial space, requiring initial treatment with natriuretic agents
(loop diuretics—first-line treatment, thiazides, and mineralocorticoid receptor antagonists).
These promote sodium excretion, leading to a reduction in plasma volume. However,
excessive natriuresis can trigger neurohormonal activation and renal dysfunction [117,118].
Vasodilators are preferred in vascular redistribution to relieve central venous hypertension
without excessive diuresis [117].

In contrast, tissue congestion persists despite intravascular decongestion, necessitating
strategies that facilitate fluid translocation. Aquaretic agents, such as vasopressin V2
receptor antagonists, increase free water excretion, raise plasma osmolality, and facilitate
fluid shift from the interstitial space into the intravascular compartment. However, their
use in clinical practice remains very limited, being reserved for selected cases due to cost,
availability, and modest impact on long-term outcomes [119–121]. This mechanism avoids
neurohormonal activation and may better alleviate residual congestion [119–121].

Emerging therapies also target fluid redistribution. SGLT2 inhibitors combine mild
natriuresis with osmotic diuresis, potentially enhancing tissue decongestion [122–124]. Hy-
pertonic saline infusion theoretically increases intravascular osmotic pressure, promoting
interstitial fluid mobilization while preserving renal function [125–127].

A stepwise approach is recommended, initially targeting intravascular congestion to
facilitate interstitial fluid mobilization. If residual symptoms persist, therapy should then
be adjusted to address tissue congestion [6].

Diuretic Resistance in HF

Diuretic resistance represents a common and complex challenge in the management of
HF, affecting up to 50% of hospitalized patients [3]. This phenomenon reflects an attenuated
natriuretic response despite the use of appropriate or escalating doses of loop diuretics. This
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phenomenon is driven by multiple factors, including impaired renal perfusion, elevated
venous pressures, neurohormonal activation, and tubular remodeling—particularly in the distal
nephron—where enhanced sodium reabsorption blunts the diuretic effect [13,23,44,45,128].
These mechanisms shift the dose–response curve, making higher doses necessary to achieve
a meaningful response [17].

Loop diuretics play a major role in managing congestion associated with HF, having
the strongest natriuretic effect and are the first-line treatment option [13]. To improve
diuretic efficacy, a stepwise pharmacological approach is often required [3].

Thiazide diuretics are frequently added to loop diuretics in cases of diuretic resistance,
targeting distal tubular sodium reabsorption and enhancing natriuresis through a syner-
gistic effect [46]. Mineralocorticoid receptor antagonists are fundamental drugs in chronic
HFrEF treatment. However, in acute settings, the ATHENA-HF trial demonstrated that
high-dose spironolactone did not lead to improvements in NT-proBNP levels, dyspnea,
urine output, or weight reduction within 72 h [68]. Acetazolamide, which exerts its effects
at a more proximal site in the nephron, demonstrated benefits in enhancing decongestion
and sodium excretion in the ADVOR trial, being a safe and effective alternative [48]. In
contrast, while tolvaptan may facilitate fluid removal by increasing free water clearance, its
long-term clinical impact remains unclear [47,61–64].

Newer agents such as SGLT2 inhibitors have shown encouraging results. Early ad-
ministration of empagliflozin in ADHF was associated with increased urine output and
improved decongestion, without compromising renal function [6,50]. For patients with
persistent fluid overload despite intensive pharmacologic therapy, ultrafiltration may be
considered selectively, although current evidence supports its use only in carefully cho-
sen cases [6].

Monitoring urine sodium excretion and diuretic efficiency can offer early indicators of
an inadequate therapeutic response, enabling timely modifications to treatment [6,30,31].
Ultimately, effectively managing diuretic resistance in HF requires a personalized approach
that takes into account the patient’s clinical condition, renal function, and pharmaco-
logic factors [6].

A therapeutic approach based on congestion phenotype and response is outlined
in Figure 3.
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9. Conclusions
Congestion in HF remains a major contributor to disease progression and adverse out-

comes. Despite advances in diagnostic tools and therapeutic strategies, residual congestion
continues to be a challenge, increasing the risk of rehospitalization and mortality. Tradi-
tional clinical assessments alone are often insufficient for accurately evaluating congestion,
necessitating a multimodal approach that integrates imaging and biomarkers.

The combination of lung ultrasound, venous Doppler, and echocardiographic markers
with biomarkers such as natriuretic peptides, bioactive adrenomedullin, and carbohydrate
antigen 125 offers a more precise assessment of congestion severity. These tools facilitate the
early identification of subclinical congestion, allowing for timely and targeted interventions.
However, optimal decongestion strategies must balance effective fluid removal with the
prevention of renal dysfunction and neurohormonal activation.

Moving forward, individualized treatment approaches that address both intravascu-
lar and extravascular congestion are essential. Future studies should focus on refining
congestion phenotyping, establishing standardized treatment thresholds, and integrating
congestion-guided strategies into clinical practice. By improving diagnostic precision and
tailoring therapy, better patient outcomes can be achieved, reducing hospital readmissions
and enhancing long-term prognosis.
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