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Abstract: Over the past decade, the use of AR has significantly increased over a wide range of
applications. Although there are many good examples of AR technology being used in engineering,
retail, and for entertainment, the technology has not been widely adopted for teaching in university
engineering departments. It is generally accepted that the use of AR can complement the students’
learning experience by improving engagement and by helping to visualise complex engineering
physics; however, several key challenges still have to be addressed to fully integrate the use of AR
into a broader engineering curriculum. The presented paper reviews the uses of AR in engineering
education, highlights the benefits of AR integration in engineering curriculums, as well as the barriers
that are preventing its wider adoption.
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1. Introduction

XR, also known as extended reality, refers to a combination of real and virtual environ-
ments where interaction between humans and machines is established through computer-
generated technology and compatible hardware [1]. Currently, the most common “X” repre-
sentations are virtual reality (VR), augmented reality (AR), and mixed reality (MR). VR creates
a digital environment where the user is wholly immersed in a virtual world. AR overlays
(augments) digital content into the user’s real-world environment. MR aims to blend both
virtual and real-world environments where both coexist and interact with each other [2].

In recent years, significant commercial and academic attention has been focused on the
use of XR technologies across many different industries. These applications cover a wide
range of sectors from retail [3] and gaming [4] to critical applications such as medical [5],
manufacturing [1], and maintenance [6] where the health and safety of humans are often
the primary concerns. This focus has also driven the research and development of XR
technologies, potentially creating new opportunities in engineering education.

This paper reviews the development of AR technology and its application with a
particular focus on engineering education to identify the main strengths, weaknesses, and
potential future improvements. The main questions to be investigated are “How is AR
presently used in engineering education?”, “What are the benefits of AR for engineering
education?” and “What are the barriers to the wider use of AR technology in engineering
education?”.

In engineering, the use of AR has been a key part of the industry 4.0 concept that
focuses on advanced technologies in manufacturing systems and factories [7]. The use
of AR has been utilised in many ways by industry including visualising complex assem-
blies, facilitating training programmes, and developing maintenance programmes and
manufacturing lines [8].

In education, one of the early adopters of AR were researchers developing medical and
surgical training technologies. AR is being used in surgical training for the automation of
repetitive tasks needed to be perfected [5]. It has also been trialled in STEM subjects when
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teaching K-12, higher education, and adult education [9], in science laboratories [10], and
for initial teacher training [11]. The volume of academic publishing in AR in engineering
education has been gradually increasing over the past 10 years.

For this review, Scopus and Google Scholar search engines were used. The search
syntax for Scopus was: TITLE-ABS-KEY (“Augmented Reality” AND “Engineering Edu-
cation”) AND PUBYEAR > 2010 AND PUBYEAR < 2023 AND (LIMIT-TO (SUBJAREA,
“ENGI”)) AND (LIMIT-TO (LANGUAGE, “English”)) AND (LIMIT-TO (SRCTYPE, “p”)
OR LIMIT-TO (SRCTYPE, “j”)) AND (LIMIT-TO (PUBSTAGE, “final”)).

For Google Scholar, the syntax was:
Allintitle: Augmented reality engineering education.
In addition to the research syntax, inclusion and exclusion criteria were defined. The

inclusion criteria included:

• Articles that include “Augmented reality” or “AR” and “Engineering Education” in
their titles, keywords, or abstract.

• Articles written in English.
• Articles available in full text.
• Articles published in conferences and journals.
• Articles published between 2011 and April 2022
• Articles with focus on the use of augmented reality in engineering education.

The exclusion criteria included:

• Articles not written in English.
• Articles that mentioned AR but focused on VR technologies.
• Articles that mentioned engineering education but focused different subjects.
• Articles that mentioned university education but focused on any other level.
• Any duplicates among the searches were removed.

A total of 85 articles were reviewed, 55 articles described how AR was used to deliver
teaching material to engineering students, and the remaining were reviews, frameworks,
and evaluations. Figure 1 shows journal and conference proceedings articles published
between 2011 and 2022 that meet the inclusion and exclusion criteria above. Santi et al. [7]
reported that from 2017 to 2021, 26,621 articles included the keywords “Augmented Reality”
on the Scopus database. Approximately 2500 of these articles also listed “Engineering”
or “Education” in the keywords. After applying the inclusion and exclusion criteria for
the same time period, the engineering education AR content was less than 2.6% of the
engineering or education AR content.
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Figure 1. AR literature in engineering applications subjected to inclusion and exclusion criteria.

In engineering education, the use of AR is significantly increasing compared to other
STEM subjects [12]. AR is being used as part of course material (i.e., [13,14]), to visualise
engineering laboratories (i.e., [15,16]), in collaborative projects [17], for communication
skills such as industry presentations [18], and to enhance students’ spatial cognition [19,20].
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In the past ten years, several forms of AR have been studied: using handheld (i.e., [21,22]),
handsfree (i.e., [23,24]), and special hardware kits [25,26]. In addition, AR can be integrated
with several digital technologies such as gamification [27,28], IOT [29,30], machine learn-
ing [31], FEA [32], and CFD [13] to produce more realistic, interactive, and scientifically
credible AR experiences.

2. Augmented Reality: History

The first augmented reality system was developed by Sutherland [33] in 1967. The
system consisted of an optical see-through head-mounted display, two 6DOF trackers,
a mechanical tracker, and an ultrasonic tracker. In 1972, the first tablet computer was
proposed by Kay [34] as a personal computing device for children. The term augmented
reality that referred to “overlaying computer material on top of the real world” [35] was
proposed by Thomas and David [36] in 1992. In 1994, Milagram and Kishino [37] defined
the reality–virtuality continuum shown in Figure 2, which was a significant milestone in
the AR development history. The continuum consists of a real environment, augmented
reality, augmented virtuality (a higher level of virtuality than augmented reality used for
the visualisation of new products [2]), and virtual environment. Arth et al. [35] documented
these major milestones among others in the history of mobile augmented reality starting
in 1967 and finishing in 2014. The report includes major achievements in the history of
AR hardware and software. Edward-Stewart et al. [38] summarised the types of AR and
then divided them into two categories: triggered and view-based (marker-less), and Pooja
et al. [39] compared both categories’ use in education. Triggered augmentation relies on
using a “trigger” or stimuli to initiate the augmentation. The trigger can be a marker such
as a 3D target or a 2D image. Two-dimensional targets are widely used in engineering
education (i.e., [21,29,40,41]). Triggered augmentation can also be initiated using faces (i.e.,
Instagram filters), surfaces (i.e., Ikea AR), and location (Google Maps) [42]. View-based or
marker-less AR includes real-time augmentation regardless of the location with no stored
view to be triggered. It allows real-time interaction with the camera view [38].
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Figure 2. Milgram and Kishino [37] reality–virtuality continuum.

Apple released the ARKit SDK [43] in 2017, quickly followed by Google releasing its
ARcore [44] SDK in 2018. The release of these software development kits significantly im-
proved the quality of AR experiences consumed by users through smart handheld devices
(HHDs) and head-mounted devices (HMDs). Over the past decade, AR hardware com-
ponents have become more portable with better performance and more accessibility [40].
This has led to an increase in the utilisation of AR-based technologies. Today, the most
common ways to consume AR experiences are by using HHDs such as smartphones and
HMDs such as the Microsoft HoloLens. The main difference between the two methods
is the user input: an HHD uses multi-input touch, whereas an HMD uses gaze, eye, and
finger tracking. Both systems share the use of screens, sound input/output cameras, and
moving trackers [42].

3. AR in Engineering and Education: A Review

As augmented reality is being used over a wide range of applications, AR review arti-
cles have adopted different categorisation approaches. Alvarez-Marin et al. [45] reviewed
AR in engineering education for 52 articles in terms of: engineering studies, educational
activities, applications assessment, application characteristics, and degree of interactivity.
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Garcia et al. [46] reviewed the use of augmented reality in engineering classrooms in Latin
America; the review targeted: software, hardware, educational applications, advantages,
disadvantages, and research, and their results were compared to international reviews.
Merino et al. [47] reviewed mixed and augmented reality research for 458 papers in six
categories: publisher, type of paper (i.e., technique, design), topic (i.e., tracking, application,
display technology), evaluation scenario (i.e., user experience and user scenario), cognitive
aspects, and configurations. Santi et al.’s [7] review of AR in Industry 4.0 used categories of
application, software, hardware, and limitations. Di Lanzo et al. [48] reviewed the use of
VR in engineering education for 17 studies in six categories: class format, justification of
use, learning outcomes, evaluation metrics, teaching discipline, and software and hardware
used. Doolani et al. [1] reviewed the use of AR for training, particularly in manufacturing.
The article focused on defining XR usage at different manufacturing phases, XR technolo-
gies implemented for these phases, and the gaps and limitations of the used technologies.
Diao et al. [49] reviewed the use of AR in civil and architecture engineering education. They
reviewed 21 papers and focused on application domains, software, hardware, learning
outcome, user feedback, advantages, and challenges.

This review article focuses on the use of augmented reality-based technologies in
engineering education applications. The structure of this article is shown in Figure 3. The
review categories are the application of use, continuity and commercialisation, software,
hardware, and evaluation methods.
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4. AR in Engineering Education Applications

Figure 4 shows the engineering fields where AR has been implemented in an engineering
curriculum. Most of the uses were in mechanical, electrical, and civil engineering. Table 1 sum-
marises the use of AR in engineering education. The use of AR to date can be divided into three
categories: first, delivering principles of engineering in selected topics within the curriculum,
for example, HVAC systems [50,51], hydraulic transmission [52], Unified Modelling Language
(UML) [53], hydraulics laboratory [29], CAD design [20,41,54–57], manual material handling
(MMH) laboratories [23,24], oscilloscope training [58,59], or circuit analysis [28,31]. Such
studies focus on developing AR experiences and then finding the impact the experience
has on the student’s understanding. AR also allows users to observe an internal structure
that cannot be observed in standard laboratory environments such as the simulation of
electron movements [60] or the behaviour inside a nuclear core that students would usually
have to imagine from limited observable data [14].
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Table 1. Applications of AR in engineering education.

Author Field Topic

Borrero and Marquez [15] Electrical Electrical engineering labs
Dinis et al. [21] Civil Design AR experiences for younger students

Gutierez and Fernandez [61] General Learning industrial elements
Gutierez et al. [62] General AR textbooks

Neges et al. [29] Mechanical Virtual labs
Opris et al. [63,64] Power Laboratories

Sahin et al. [30] Electrical Wireless communications
Tsujita et al. [14] Nuclear Reactor core simulation

Yuzuak and Yigit [60] Electrical N-Type MOSFET
Zoghi et al. [50] Mechanical HVAC

Behzadan and Kamat [65] Civil Construction management
Borgen et al. [66] Aeronautical Cockpit simulator

Theodossiou et al. [25] Civil Hydrology
Louis and Lather [26] Civil Mass haul diagrams

Waters et al. [67] Civil Fundamentals, soil, and hydrology
Alanis and Tejeda [40] Industrial Decision trees

Alptkien and Temmen [58] Electrical Oscilloscope training
Alptkien and Temmen [68] Electrical Lab training

Calderon et al. [69] Mechatronics Industry 4.0 applications
Pan et al. [22] Mechanical Mechanical manufacturing

Pogodaev et al. [70] Electrical Asynchronous electric motor
Solmaz and Gerven [13] Mechanical Computational fluid dynamics

Yazykova et al. [16] Electrical Electrical engineering labs
Guo and Kim [23] General Manual material handling

Guo et al. [24] General Manual material handling
Reuter et al. [53] Software Unified modelling language
Daling et al. [71] Mining Mixed reality books

Cukovic et al. [41] CAD/CAM Visualise 3D CAD models
Alvarez-Marin et al. [72] Electrical Digital current (DC)

Criollo-C et al. [73] Network Various topics
Schiffeler et al. [17] General Project management

Liu et al. [52] Mechanical Hydraulic transmission
Xie and Yang [51] Civil HVAC

Hung and Weinman [57] CAD Technical drawing
Matsutomo et al. [32] Electrical Magnetic field

Alvarez-Marin et al. [74] Electrical DC current
Tumkor and El-Sayed [55] CAD Drawings visualisation

Bairaktarova et al. [75] General Freshmen engineering course
Liu et al. [76] Mechanical Lathe turning

Odeh et al. [77] Electrical Remote labs
Wang et al. [56] CAD Assembly training
Kaur et al. [78] Electrical Linear control systems

Urbano et al. [28] Electrical DC circuits
Shirazi and Behzadan [79] Civil Interactive books

Singh et al. [59] Electrical Oscilloscope and function generator
Phade et al. [80] Electrical Personal electronics components
Kumar et al. [81] Electrical Embedded systems
Dong et al. [82] Civil Collaborative visualisation
Chen et al. [83] CAD Visualisation and assembly

Topal and Sener [18] General AR Industry presentations
Tirado-Morueta et al. [84] Electrical Remote Lab

Alhalabi et al. [31] Electrical Circuits solver
Dakeev et al. [20] CAD Design and spatial skills
Jacob et al. [85] Electrical Interactive books

Shretha [86] Mechanical Car engine model

Unlike VR, the use of AR allows students to simultaneously interact with real-world
objects. This makes explicit the relationship between virtual augmentations and the real
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devices or phenomena under consideration. It also avoids the risk of collisions with real
world objects as the digital data are directly augmented to the physical objects [87] as
opposed to the student operating within a virtual environment. Secondly, AR experiences
can be used to visually enhance the engineering learning material and make the laboratory
components and some equipment more portable and accessible [71,88–90]. These studies
tend to focus on enhancing the teaching material and evaluating the students’ interest and
motivation towards the lectures. Thirdly, AR can be used to display digital instructions to
physical spaces to teach students how to complete a task using hands-free mixed-reality
AR devices [23,24,66,91].

Integration to Taught Course and Continuity

Most of the papers listed in Table 1 contain an introduction to AR in education or
their respective industry, and details about the developed augmented reality followed by
students’ feedback/ performance measures for the time when the technology was used in
the classroom. While extensive data have been generated on the short-term usage of AR for
a particular test group, there is very little literature investigating the long-term integration
of AR-based technologies into engineering education. Urbano et al. [28] taught their AR
experience for 3 consecutive years and reported feedback from 440 students in total. Zoghi
et al. [50] suggested that the “WOW factor” can affect users’ reaction to technology and that
these effects might wear out over time. Thus, it is essential that long-term effects of the use
of AR be tested over longer periods and with full integration in the curriculum. Arashpour
and Aranda-Mena [92] and Vassigh et al. [93] proposed the use of AR to visualise Building
Information Modelling (BIM) for engineering and construction education. Arashpour and
Aranda-Mena [92] concluded that the use of AR + BIM will make BIM more relevant to
on-site operations and improve collaboration and communication at different project stages
that employ architecture and engineering BIM models.

One main success factor for any technology to grow is continuity. Most of the available
research by the authors did not continue after the development of their first AR experience.
Approximately six authors [23,24,55,58,63,64,68,72,74,94–97] from this review produced
follow-up studies after publishing their first works on implementing AR experiences in
an engineering education context. One of the reasons behind this observation might be
the lack of distribution of the AR applications on application stores and the lack of data
on how much time, effort, and knowledge are required from non-experienced educators
to develop a usable AR experience and then integrate it into the teaching plan. Another
factor is the technical challenges associated with the integration of AR-based technologies
into university data management systems and the technical difficulties for developing the
digital assets [92,98].

The relative sparsity of current data on the long-term integration of AR into engineer-
ing courses suggests the need for further research to determine how content, learners, and
the learning context affect, and are affected by, the use of AR technology. AR in STEM
research addressed some questions raised in Mystakidis et al. [12] such as the most relevant
STEM topics, and the most frequent instructional methods to be used with AR in higher
education. Still, a number of research questions may be posed: “Is AR most effectively
utilised when new content is first introduced or to consolidate existing knowledge and
skills?”, “To what degree should AR experiences be scaffolded to enable students to address
learning objectives?”, “Is the knowledge gained from the use of AR easily translated to
other contexts and tasks or are supporting activities required to achieve this?”, and “What
is the role of formative assessment, group work, and discussion before, after, and during
AR experiences?”. Answers to these questions would better allow educators to successfully
integrate AR experiences and tools into existing and future courses and to assist those
developing these tools to adapt them for educational use. Not only may this allow for the
better achievement of current learning outcomes, but also, as AR expands the available
modes of assessment, the intended outcomes may themselves be reimagined.
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5. Tools and Technology

Table 2 shows a list of the software and hardware used to create AR experiences for en-
gineering education. Out of 55 AR application articles, 52 included the software/hardware
tools used in developing the experiences. For software, the options for developing AR
experiences in an engineering context can be divided into three categories: (i) the use
of mobile application development and 3D modelling tools [99] (such as Unity, Vuforia,
Arkit, or ARcore), (ii) the use of in-house development tools, and (iii) the use of already
developed AR experiences [90]. For hardware, the use of AR experiences can also be di-
vided into three categories: (i) handheld smart devices shown in Table 2, (ii) head mounted
devices [23,24,50,53,66], and (iii) special hardware kits [14,25,26,77,78,81–83,100].

Table 2. Software and hardware used of AR experiences in engineering education.

Author Software Hardware AR Type IOT

Borrero and Marquez [15] Unknown Unknown Image marker No
Dinis et al. [21] Unity Handheld Image marker No

Gutierez and Fernandez [61] Build AR Handheld Image marker No
Gutierez et al. [62] Build AR Handheld Image marker No

Neges et al. [29] Unknown Handheld Various Yes
Opris et al. [63,64] APRE Handheld Various No

Sahin et al. [30] Unity/Vuforia Handheld Image marker Yes
Tsujita et al. [14] Unknown Hardware Kit Image marker No

Yuzuak and Yigit [60] Unity/Vuforia Handheld Image marker No
Zoghi et al. [50] Unity HoloLens Hologram No

Behzadan and Kamat [65] Unknown Hardware Kit Image marker No
Borgen et al. [66] Unity HoloLens Hologram Yes

Theodossiou et al. [25] In-house Hardware kit Surface marker No
Louis and Lather [26] In-house Hardware Kit Surface marker No
Alanis and Tejeda [40] Unity/Vuforia Handheld Surface marker No

Alptkien and Temmen [58] Unknown Handheld Unknown No
Alptkien and Temmen [68] Unknown Handheld Unknown No

Calderon et al. [69] Unknown Handheld Image marker Yes
Pan et al. [22] Unity/Vuforia Handheld Image marker No

Pogodaev et al. [70] Unknown Handheld Image marker No
Solmaz and Gerven [13] Unity/Vuforia Handheld Image marker Yes

Yazykova et al. [16] EV Toolbox Handheld Image marker No
Guo [24] Unknown HoloLens Hologram No

Guo and Kim [23] Unknown HoloLens Hologram No
Reuter et al. [53] Unity HoloLens Hologram No
Daling et al. [71] Unknown Handheld Image marker No

Cukovic et al. [41] Unity/UbiTrack Handheld Image marker No
Alvarez-Marin et al. [72] Unity/Vuforia/Blender Handheld Image marker No

Criollo-C et al. [73] Unity/Vuforia Handheld Image marker No
Schiffeler et al. [17] Vuforia Handheld Image marker No

Liu et al. [52] Unity/Vuforia Handheld Image marker No
Xie and Yang [51] Unity/EasyAR/OpenCV Handheld Unknown No

Hung and Weinman [57] Autodesk/ENTiti Handheld Image marker No
Alvarez-Marin et al. [74] Unity/Vuforia Handheld Image marker No

Tumkor and El-Sayed [55] SolidWorks/Google SketchUP Handheld Image marker No
Bairaktarova et al. [75] Spatial Vis/Vuforia Handheld Image marker No

Liu et al. [76] Unity/Vuforia Handheld Image marker No
Odeh et al. [77] Lab server/Web browser Hardware Kit Unknown No
Wang et al. [56] Unity 3D Handheld Image marker No
Kaur et al. [78] Unity/Vuforia Hardware kit Image marker No

Urbano et al. [28] Blender Handheld Image marker No
Shirazi and Behzadan [79] Unknown Handheld Image marker No

Singh et al. [59] Unity/ARLE Handheld Image marker No
Phade et al. [80] Unknown Handheld Image marker No
Kumar et al. [81] Unity Vuforia Hardware Kit Image marker No
Dong et al. [82] ARToolKit/ARvita Hardware Kit Image marker No
Chen et al. [83] Unknown Hardware kit and handheld Image marker No

Topal and Sener [18] Metiao Creator/Juniao Browser Handheld Image marker No
Alhalabi et al. [31] Unknown Handheld Unknown No
Dakeev et al. [20] Unity/Vuforia/Creo Handheld Unknown No
Jacob et al. [85] Unity/Vuforia/Blender Handheld Image marker No
Shrestha [86] Unity/Vuforia/C# Handheld various No

5.1. Software

Most of the presented literature relied on the use of free software to develop AR
experiences, as shown in Table 2. These tools are easy to access, offer plenty of educational
material, and are accessible to end users due to their compatibility with most common
operating systems including HHDs and HMDs. It should be noted that none of the
reviewed papers mentioned commercialising the AR tools developed or using them outside
the context of academic research. Another way is to develop in-house AR experiences
that make use of applications such sandbox AR [25,26,67] or the image tracking graphics
visualisation system developed in C# by Aher et al. [101]. Using third-party applications
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is another way to access AR experiences. Fuchsova and Korenova [90] tested the Brain
iExplore and Anatomy 4D with students in the classroom. Although there are several
commercially available applications on the Apple App Store and Google Play Store for AR,
there are no reports in the literature that these applications have been used in engineering
education.

Around 67% of the analysed literature used image markers to implement their aug-
mentations. These augmentations either use a barcode to launch the AR experience or are
in the form of AR textbooks. This is due to how easy it is to use and support image markers
with all commercial AR SDKs. The use of surface markers and holograms (images pro-
duced using holography, which is a photographic method that records the light dispersed
from a body to produce realistic images in 3D [102]) is less common compared to image
markers and, in this context, was mostly used with HMDs or special hardware kits, as
shown in Figure 5. HHDs can support different types of targets such as surface recognition
targets [40] and model targets that detect edges and the construction of physical 3D models
and then adds the 3D augmentation to the physical surface [103]. Several commercial
SDKs do support these types of more advanced tracking such as Unity 3D, Vuforia, ARKit,
and ARcore.
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Although the use of AR mainly focuses on visually enhancing the student learning
experience, recently, the use of AR is being associated with another industry 4.0 technology,
the internet of things (IOT). Around 10% of the analysed literature [13,29,30,66,69] added
an IOT element to their AR experiences. Apart from Sahin et al. [30], who published in
2016, all other IOT/AR works were published after 2019. The attention to the AR-IOT in
engineering education is consistent with the attention these two technologies are receiving
in the industry for various applications [104–107]. A summary of the software technologies
used in this review is shown in Figure 5.

5.2. Hardware

The hardware technology used to experience AR content has significantly improved
over the past decade. Experiences constructed between 2010 and 2012 [15,100] required
several trackers, an HMD, a personal computer (PC), and a camera to view an image
marker experience. Today, users can view high-quality image marker experiences only
using their smart devices. While the use of handheld smart devices is most common among
AR education applications, as shown in Figure 5, the use of hands-free AR is becoming
more popular as the Microsoft HoloLens 2 availability is increasing. Guo et al. [23,24] used
the Microsoft HoloLens 2 to develop AR modules for manual material handling as part
of an ergonomics class. The AR experience consisted of a job analysis work sheet, main
animated hologram, and a contents blackboard where the students can view and interact
with the course material and complete tasks via the AR technology. Borgen et al. [66] used a
HoloLens device combined with IOT to display a flight deck hologram to start an auxiliary
power unit (APU) and compared the procedure with the traditional paper-based teaching.

The use of AR HMDs has shown great benefits in terms of safety, cost, and engineering
training. In the aviation industry, for example, the use of HMDs can save manufacturers
significant amounts of money and provide an updated safe training experience. However,
in engineering education, the use of AR HMDs can still be considered expensive especially
if more than one headset is needed for each laboratory session. The augmented reality
sandbox [25,26,67] is an example of using specialist hardware to generate a mixed reality
experience. The sandbox hardware [25,26,67] consists of a computer with a high-end
graphics card running Linux, a Microsoft Kinect 3D camera, a digital video projector with
a digital video interface, and a sandbox with a Kinect camera mounted above the box.
Theodossiou et al. [25] used the sandbox to teach concepts of hydrology to civil engineering
students. The use of the hardware and the continuous development of the software allowed
the students to better understand concepts of watershed, flooding, and the impact of
constructions on rainwater management.

6. Users’ Feedback
6.1. Feedback from Students

Feedback from students is a key factor to assess the success of the implementation of
AR experiences as they are the primary users of the proposed technology. In the literature
the students’ feedback has been assessed from different perspectives. The studies assessed
the motivation to learn [108], performance after using AR, and cognitive load [23,59].

To analyse the effect of using AR-based technologies, two approaches are generally
used: first and foremost is the use of surveys to collect the student’s feedback on their
experiences. This approach covers a wide range of questions and allows the researchers
to seek suggestions for enhancements and to evaluate the impact of AR technology from
different perspectives, such as the motivation to learn [108,109], ease of use, and enter-
tainment value. The second approach is the evaluation of the students’ performance with
and without the use of AR. Guo et al. [24] observed that 53% of the students who had an
AR-based lecture received a perfect mark compared to only 23.3% of students without
the use of AR. Borgen et al. [66] evaluated the effectiveness of an AR experience based
on the time required by students to complete certain tasks, with and without AR support.
Although the use of AR helped the students to complete the tasks quicker, the authors
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acknowledged that the students required a significant period of time to learn how to use
the AR technology. Liu et al. [52], Bairaktarova et al. [75], and Shrestha [86] integrated
quizzes into their AR application. Dakeev et al. [20] assessed the amount of time required
by students to perform tasks with and without AR. While these methods quantify to some
extent the impact of AR in terms of a student performance and understanding, they do not
provide any evaluation of the overall learning experience, motivation, or cognitive load
associated with the use of hands-free or hand-held AR devices.

Borrero and Andujar [15], Gutierez et al. [95,96], and Omar et al. [110] used both
surveys and marking to evaluate the use of AR. Shirazi et al. [79] tested the students’
knowledge one month after the AR experience was used to analyse their ability to remember
the material compared to a control group who did not use AR. In addition to questionnaires
and evaluations, Reuter [53] conducted personal interviews with the students to collect
feedback on the use of the AR technology. The interviewees were mainly asked about
their opinions on the use of AR, any suggestions for further development, and to rate
their own performance out of 100 on the performed AR task. The surveys developed to
garnish the feedback presented in the STEM education literature were diverse and focused
on the school level. For example, Da Silva et al. [111] proposed general guidelines for the
educational evaluation of AR tools at the school level; Marin et al. [72] used the technology
acceptance model, first proposed by Davis [112]; Reuter et al. [53] used taxonomy SOLO
by Biggs [113] and Brabrand [114] for self-assessment and the MUSIC model of academic
motivation [115]; Criollo et al. [73] used the IBM computing system usability questionnaire
(CSUQ); and Schiffeler et al. [17] used both the technology acceptance model [112] and the
task technology fit model [116]. However, there are no reported guidelines or standards to
evaluate AR content for higher education. As shown in Table 3, 29 articles used surveys to
evaluate the students’ reaction to the use of the AR experience. For most papers, the survey
questions can be categorised as follows:

• Motivation and interest: how did the AR material affect the student motivation toward
the presented material?

• Learning material: is the presented material suitable for AR and does it improve the
student’s understanding?

• Ease of use for the whole AR experience in classroom and remotely.
• Educational added value.
• Overall experience, and positive/negative attitude toward the use of the technology.

In addition to the previously listed categories, particular attention to other aspects
of the AR experience was given by authors. These survey elements could significantly
enhance the overall evaluation methods for AR-based technologies. These categories are as
follows:

• Previous knowledge: questions to indicate users’ familiarisation with the proposed
technology [15,60].

• UI/UX: to test interface appearance [15], on-screen dimensions [61], navigation and
interaction [50].

• Software solutions: installation and running [15], third-party providers [90], applica-
tion stability [61].

• Digital Assets: feedback on the produced AR media [15,41,90,108].
• Hardware used: hands-free, hand-held, and eco-system.
• Comparative analysis between hands-on and AR lab [77].

In addition to the survey questions throughout the reviewed literature, the data sample
size was variable and there was no clear measure of how many students/educators should
test AR to evaluate the use of the technology. The average number of participants for
studies was 100. For the case where handheld AR devices were used, the average number
of participants was approximately 110, which is significantly higher than the average
number of participants for the cases where a mixed reality glass was used, which was
approximately 27, as shown in Figure 6. This is likely due to hands-free AR being more
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available and affordable. It also suggests that the use of hands-free AR might be a better
option for teaching larger groups, whereas the use of mixed reality devices might be more
suitable for teaching small groups.

Table 3. Methods of evaluation.

Author Evaluation Method Performance Measure Number of Participants

Borrero and Marquez [15] Performance measures and survey Marks 20 students
10 teachers

Dinis et al. [21] Survey N/A 14 students
Gutierez and Fernandez [61] Performance measures and Survey Marks 47 students

Gutierez et al. [62] Performance measure Marks 47 students
Opris et al. [63,64] Survey N/A 34 student

14 teachers
Sahin et al. [30] Survey N/A 55 students

Yuzuak and Yigit [60] Survey and students’ evaluation N/A 51 students
Zoghi et al. [50] Survey N/A 10 students

Behzadan and Kamat [65] Survey N/A 63 students
Borgen et al. [66] Performance measure Experiment time 36 students

Alanis and Tejeda [40] Survey N/A 39 students
Alptkien and Temmen [58] Survey N/A 44 students
Alptkien and Temmen [68] Test by [111] N/A Unknown

Reuter et al. [53] Survey, performance measures and Interviews Various elements 14 students
Daling et al. [71] Survey N/A 120 students

Alvarez-Marin et al. [72] Survey N/A 173 students
Criollo-C et al. [73] Survey N/A 80 students
Schiffeler et al. [17] Survey N/A 13 students

Guo [24] Performance measure Test score 32 students
Guo and Kim [23] Performance measure Work loads 45 students

Mohammed et al. [89] Survey N/A 7 teachers
Liu et al. [52] Performance measure In application quizzes Unknown

Xie and Yang [51] Survey N/A Unknown
Hung and Weinman [57] Survey N/A 13 students
Alvarez-Marin et al. [74] Survey N/A 124 students
Bairaktarova et al. [75] Performance measure In application quizzes 119 students

Liu et al. [76] Survey N/A 1417 students
Odeh et al. [77] Survey N/A Unknown

Urbano et al. [28] Survey N/A 440 students
Shirazi and Behzadan [79] Survey N/A 166 students

Singh et al. [59] Survey and performance measure Marks
Kumar et al. [81] Survey N/A 20 teachers
Dong et al. [82] Survey N/A Unknown

Tirado-Morueta et al. [84] Survey N/A 98 students
Dakeev et al. [20] Performance measure Time to perform task 39 students
Jacob et al. [85] Survey and performance measure Marks 180 students

30 teachers

Shrestha [86] Survey and performance measure In application quizzes

34 students
2 educators

11 Industry professional
1 other
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Figure 6. Feedback on the use of AR from students and educators: (a) students vs. educators and (b)
hardware used to consume the AR experiences.

6.2. Feedback from Educators

The literature reports only limited feedback from educators, as shown in Figure 6.
Around 2% of the participants reported in the literature were educators, and most of the
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educators’ feedback was recorded from a student’s perspective when using the technology
and not from an educator’s point of view. For example, Borgen et al. [66] and Opris et al. [64]
surveyed 10 and 14 teachers, respectively. For every case, the teacher performed the same
tasks as the students and recorded their feedback. Mohammed et al. [89] conducted a
survey for educators to study their responses on using AR in electrical engineering courses
in terms of the effect of using AR on the lecture process. The survey included questions
about their background in terms of their years of experience as an educator, awareness
or previous knowledge on AR, usability, and interest in such technology. The survey was
given to seven educators, of which more than 50% were familiar with AR technologies.
The educators were as excited as the students about the use of AR technologies. Although
the overall reaction to the technology was positive, the educators were concerned about
the AR content loading time and video quality. Jacob et al.’s [85] teachers survey included
questions for teachers to evaluate the quality of their teaching after using AR and to evaluate
their students’ satisfaction levels after using AR. The authors conducted the experiment for
11 weeks and the teachers’ scores significantly improved by the end of the trial. Kumar
et al. [81] conducted an AR application usability test with educators and collected feedback
from 20 teachers using a questionnaire that included questions on: application ease of use,
need for technical support, application functions, and prerequisite knowledge required to
use the AR application. There remain many unknowns when it comes to the use of AR
technology in education including “How much time does it take a lecturer to develop an AR
experience [91]?”, “What previous knowledge is required to develop an AR experience?”,
“How much testing, debugging, and optimisation does an AR experience require”, and
“How does the use of AR affect lecturers’ work and cognitive loads?”.

7. The Future of AR in Engineering Education

The adoption of augmented reality-based technology could help tackle several chal-
lenges in engineering education [117]; namely student engagement, customisation of the
learning experience, visualisation of physics, encouragement of self-learning, access to
dangerous environments, and language barriers.

7.1. Student Engagement: Motivation, Engagement, and Achievement

The relationship between student engagement and achievement has been well docu-
mented [61,108,109]. Learning strategies such as problem and project-based learning have
been considered pedagogies of engagement for many years because they require students
to be actively involved in their learning [118]. It is hypothesised here that AR technology
could increase the engagement of students by adding a sense of fun to their studies and
provide a nonthreatening path for the students to find information and explanation.

7.2. Customisation of the Learning Experience: Learning at Your Own Pace

It is apparent to many educationalists that students learn in different ways. There
has been a general movement in engineering education toward active learning techniques,
which can broadly be described as learning by doing. This has led to engineering courses
using a mixed delivery approach with the most popular elements being lectures, laborato-
ries, tutorials, and self-learning resources, such as textbooks. AR introduces the potential
for learners undertaking laboratory sessions to receive supporting information during the
laboratory through links that signpost them directly to documents or multi-media files
obtained from the integration of other engineering technologies (i.e., IOT data, CFD/FEA
simulations).

7.3. Visualisation: Seeing the Invisible

Mathematics provides tools to engineers for modelling fluid flows, heat transfer, and
stress in materials. AR technology has the potential to visualise these parameters and
overlay them directly onto laboratory experiments. Tsujita et al.’s [14] nuclear reactor core
simulator and Solmaz and Gerven’s [13] use of AR to teach Computational Fluid Dynamics
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(CFD) are both good examples that demonstrate the visualisation principle. In addition to
enhanced visualisations, the use of AR technology can provide virtual access to dangerous
environments via simulating dangerous laboratory or real-life situations. Several papers
reported the use of AR-based technologies for safety training purposes. Examples of these
include: construction safety [119], fire safety [120], and occupational safety in industrial
environments [121].

7.4. Self-Learning: Success for All

As a greater number of people enter further and higher education, courses will con-
tinue to grow, and the diversity of the student’s academic capabilities, educational back-
grounds, and cultural backgrounds will likely increase. This is exemplified by the number
of entry points into many engineering degrees—students who have studied school exams
in the home country, students who have studied other educational paths such as vocational
qualifications, students with overseas qualifications, or mature students with qualifications
and work experience. One trusted approach that helps students, whatever their profile,
on entering a course is for an educational establishment to facilitate and encourage a self-
discovery path. AR platforms have the potential to provide visually impressive material
that may encourage students to ask questions, collaborate with each other and be active in
their learning.

7.5. Language Barriers: Overcome Educational Difficulties

Language differences in combination with generational gaps between lecturer and
student can often lead to communication challenges. Tools such as AR that help students
to investigate phenomena and physics on their own will help to overcome some of these
barriers [122,123]. In recent years, augmented reality has been widely used in learning
languages. Indeed, Parmaxi and Demetriou [124] reviewed 54 papers published between
2014 and 2019, which made use of AR technologies to teach foreign languages. AR was
employed successfully to help teach vocabulary, reading, speaking, and writing. Therefore,
it is hypothesised that applying this approach to engineering education could significantly
improve the overall experience of international students, particularly in the early years
of study.

8. Future Research Directions

From reviewing the growing body of literature, several trends become apparent for
the future direction of research into the use of AR technology in engineering education.

8.1. Developing AR Experiences

The availability of AR experiences continues to be the principal barrier to the testing
and adoption of AR technology. The equipment and software needed to develop realistic
and high-quality experiences is often expensive and requires expertise. However, it is
essential to develop affordable experiences to encourage educationalists to test and adopt
the technology. An AR platform that allows lecturers to develop their own experiences
for a low cost may enable an accelerated uptake of the technology. It would also facilitate
students to participate in the development of the educational AR experiences [125,126].
Nesterov et al. [127] highlighted the importance of training learners and educators to
model, construct, and build AR experiences from different aspects and fields so they
integrate AR over a diverse range of subjects and restructure the educational process to
be more visual and interactive. Anastassova et al. [128] suggested that improvements
could be made to AR experiences by encouraging more user involvement in the design
of the learning experience and the evaluation of digital prototypes. They also suggested
improving the feedback obtained from users with more in-depth interviews, observations,
and extended questionnaires, such as the way AR technologies are being evaluated in
industry. Mystakidis et al. [129] developed an online professional development program
for K-12 teachers, which included AR and VR modules. Training educators in developing
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educational AR content can significantly ease the integration of the technology into the
engineering curriculum [130].

8.2. Developing Engineering Courses with Embedded AR Experiences That Have Meaning

While there is some work underway to develop AR experiences for engineering
education, little has been reported on the advantages of these experiences to support a
wider curriculum. As has been discussed in this review paper, AR technologies have
the potential to be engaging; however, a greater value is required if they are to become
a permanent fixture in engineering courses. The AR experiences need to add to the
curriculum content as well as the experience of the student.

8.3. Measuring the Impact of AR Technology on the Student Experience and Learning Outcomes

In the field of engineering education, very little evidence has been reported in the
literature on the long-term impact of AR technology on the student experience and learning
outcomes. Some researchers have surveyed students and staff to gather qualitative data
focused on the individual’s experience and the perceived value of the AR technology as
an educating tool. However, large, long-term trials [28,76] are needed to discover if AR
experiences motivate students to self-learn, continue to engage students after the novelty
has waned, and facilitate deep learning. Measuring these factors will be difficult; however,
a combination of surveys, quizzes and practical tests could be used to add to the growing
body of evidence.

9. Conclusions

This paper has presented an overview of the use of AR in engineering education. This
section summarises the findings in the form of a SWOT analysis.

Strengths

• AR technology uniquely provides students the ability to observe internal structure,
complex engineering physics (such as fluid flows, heat distributions, currents, and
magnetic fields), guidance to complete hands-on tasks, and link real-world applica-
tions with taught material in a safe interactive environment.

• Affordable software and hardware that can be used to develop and consume AR
experiences are increasingly available.

• The ‘WOW factor’ associated with the use of these technologies encourages student
engagement.

Weaknesses

• There is a lack of AR digital assets for engineering principals developed by educators.
• There has been very little integration of AR experiences into engineering curricula.
• There have been very few studies on the long-term educational impact on both stu-

dents and educators.

Opportunities

• Student achievement could be improved because of better engagement, motivation,
enhanced visualisations, and improving the students overall learning experiences.

• AR technology could be a vehicle for other industry 4.0 concepts to be included in
education.

• AR offers a means to customise the learning experience for students based on their
capabilities and their learning preferences.

Threats

• Lack of skills to develop AR experiences from engineering students and educators.
• Limited commercialisation of developed AR engineering applications.
• Educators not adopting the AR applications, due to the lack of AR digital assets.
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