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Abstract: In many host–parasite systems, overdispersion in the distribution of macroparasites leads
to parasite aggregation in the host population. This overdispersed distribution is often characterized
by the negative binomial or by the power law. The aggregation is shown by a clustering of parasites in
certain hosts, while other hosts have few or none. Here, I present a theory behind the overdispersion
in complex spatiotemporal systems as well as a computational analysis for tracking the behavior of
transmissible diseases with this kind of dynamics. I present a framework where heterogeneity and
complexity in host–parasite systems are related to aggregation. I discuss the problem of focusing
only on the average parasite burden without observing the risk posed by the associated variance; the
consequences of under- or overestimation of disease transmission in a heterogenous system and envi-
ronment; the advantage of including the network of social interaction in epidemiological modeling;
and the implication of overdispersion in the management of health systems during outbreaks.
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1. Introduction

In studying systems at the macroscale, often we use the average or mean dynam-
ics [1,2]. There are advantages in doing this in terms of efficiency and computational
tractability, especially if the average dynamics are too pronounced and minute deviations
from the average seem negligible. However, there are systems where if we miss important
details related to the variance and if we do not observe the dispersion in the dynamics,
it could be dangerous or misleading. One case is related to infectious diseases, in which
superspreading events are reflected not on the average dynamics but on the overdispersed
distribution of disease transmission in the host population [2–4]. A superspreading event
happens when a disease, such as COVID-19, is transmitted to many secondary cases more
than what is expected [5]. In macroparasite infections, hosts with a high parasite burden
can be a superspreader of more parasite infections in the host population [6].

In systems theory, we often deal with deterministic approaches. However, such
approaches might oversimplify the investigation of the system and often neglect to consider
heterogeneity in the environment and in the interaction among actors in the environment.
Environmental heterogeneity and the dynamic behavior of parasite transmission can lead to
overdispersion, and overdispersion is physically characterized in parasite aggregation or in
superspreading events during epidemics [6]. In host-parasite systems, parasite aggregation
is usually considered an ecological ‘law’ because it is very common in nature, especially if
we consider macroparasites such as worms and ticks [7–9]. This aggregation or clustering
of parasites in few hosts has an impact on statistical sampling (which means that the
normal distribution cannot be used), in estimating disease burden in the population, and in
designing mass or targeted interventions.

There are several studies that highlight the importance of spatiotemporal overdis-
persion in real-world systems, its causes, and its impact in the emergence of special pat-
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terns [10–12]. For example, the aggregation of Acanthocephalan parasites in fish popula-
tions is hypothesized to be due to spatial random foraging of fish [4]. Even if the parasites
are uniformly distributed in a lake, spatial random foraging of fish can still result in parasite
aggregation. The resulting pattern shows that only few hosts have a high parasite load, in
which they can be superspreaders of parasite eggs in the lake.

Various factors are involved in parasite load overdispersion and aggregation; the
stochasticity and complexity in host–parasite dynamics [13], the heterogeneity in host
and parasite populations [6], and the spatiotemporal changes in the environment [4] are
some of them. While overdispersion in infectious disease systems has been extensively
explored [6,14,15], integrating some of the factors and associated computational techniques
may be lacking. Evidently, the number of mathematical and computational papers consid-
ering aggregation in their dynamics is very few (e.g., in Susceptible-Infectious-Removed
systems) [2,16]. Here, I present a framework behind parasite aggregation in spatiotemporal
epidemiological systems. I also present a computational investigation for tracking the dy-
namics of such systems. This framework, alongside other available techniques [11,17–19],
could help researchers and practitioners in determining possible causes of clustering in the
parasite population as well as in tracking disease burden in the host population.

2. Framework

In this section, a proposed framework of spatiotemporal overdispersion in epidemiol-
ogy is presented. The framework consists of relationships among social network, power
law distribution, negative binomial distribution, heterogeneity, complexity, aggregation,
and risks in host–parasite systems (Figure 1). These concepts are related to the study of
systems with spatiotemporal overdispersion leading to parasite aggregation, and hence,
I propose that future studies should consider these concepts in their theoretical, experi-
mental, and computational frameworks [3,13,20,21]. Overdispersion is the link among the
concepts presented here. In many computational or experimental studies, overdispersion is
detected first (variance is greater than the mean) because this is apparent in the data, before
mechanisms and outcomes are identified (e.g., aggregation).

Network Science is one of the areas usually used in systems dynamics research. It
is now widely known that real networks are not Uniform nor Poisson (randomly) dis-
tributed [22,23]. That is, the edge connection between the nodes is not randomly con-
structed in the mathematical or statistical sense, which implies that the mean of the degree
distribution is not equal to its variance. One of the more appropriate distributions is to use
a long-tailed distribution, such as the Pareto and power law [17,22]. In many instances,
the variance could be large or could be infinite so that the power law distribution can
fit. This can be the case in social networks where a special person acting as a node in
the network has too many edge connections (referred to as the hub), which can lead the
degree distribution to have a huge variance. In epidemiology, social contact matrices used
in infectious disease modeling can exhibit this distribution [24,25]. As such, interactions
among age groups in various settings (home, work, and school) show heterogeneity that
leads to disease transmission with a variance greater than the mean transmission level. In
diseases, such as COVID-19, this can be the case as shown by superspreading events [26].
This is an example of spatiotemporal overdispersion, as characterized by the social network
(e.g., from contact tracing reports), that can have a significant impact on epidemiological
or public health systems, especially during an outbreak [25]. With this, it is implied that
nodes with a high degree can be superspreaders and can be targeted to minimize the risk
of further spread of infectious diseases.
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Figure 1. Concepts related to spatiotemporal overdispersion (see Table 1 for the glossary). Each
factor can be sufficient to drive parasite load overdispersion in hosts. Social network with hubs,
heterogeneity in the characteristics of actors (e.g., hosts), and complexity in host–parasite dynamics
may lead to a distribution with variance greater than the mean. This distribution can characterize
parasite aggregation in the host population. This aggregated pattern may lead to differential risk, such
as superspreading events. These concepts, when investigated, can provide insights about the level of
spatiotemporal overdispersion in the system and when tracked, can aid in identifying strategies for
infectious disease prevention or control. Overdispersion is the link among concepts presented here.
For example, Heterogeneity and Aggregation are both linked to Overdispersion.

Table 1. Glossary of terms related to parasite aggregation. These terms, while related to each other,
should not be used interchangeably.

Term Definition

Aggregation Clustering of parasites in few hosts, while many other hosts have few or none.

Complexity
A characteristic of systems with many dynamic and interacting components.

The interaction among the components usually results in an emergent
behavior. The interaction among components can be modeled using networks.

Heterogeneity Presence of variability in the system. Variance is not zero.

Overdispersion Variance is greater than the mean. Usually, an overdispersed distribution is
often characterized by the negative binomial or by the power law.

In the field of parasitology, it is generally considered that parasite aggregation in
a host population is an ecological ‘law’ [8]. This is because most host–macroparasite
interactions in nature exhibit such a pattern [14]. This parasite aggregation characterizes
a distribution where many hosts harbor few or none of the parasites, but a small number
of the hosts have a high parasite load (Figure 2). This clustering behavior where only few
individual hosts carry a large number of parasites can be due to many reasons. One is due
to heterogeneity in the characteristics of the individual hosts, heterogeneity in the parasite
population, or heterogeneity in the environment [27]. Indeed, it is expected that if there
are heterogeneities, the possibility of having a variance greater than the mean (in terms of
the parasite load) is larger [6]. With this kind of variance, it is expected that some hosts
harbor more parasites than other hosts. However, how huge should the heterogeneity be to
have such ‘variance > mean’ behavior? There are mathematical models and agent-based
simulations showing that even if the hosts share similar characteristics, the localities in the



Diseases 2023, 11, 4 4 of 12

environment are homogenous, and the parasites are distributed equally in the environment;
even still, food-borne parasite aggregation can arise if the foraging behavior of the host
population is random [3,4]. This is possible because of a second reason, which is having a
complex parasite life cycle (e.g., with feedback loops) [4,16,28,29].
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Figure 2. Example distribution where there is parasite aggregation in host population.
Variance > Mean. In this distribution, many have zero or low parasite burden, and only a few
have high parasite burden.

A minute difference in the spatiotemporal behavior of hosts can be magnified to
drive parasite aggregation because of complexity. Parasite aggregation, specifically for
macroparasites, arises due to the complex life cycle of the parasites. For example, parasite
(e.g., worms) eggs are scattered in an environment (e.g., lake). Intermediate hosts (e.g.,
zooplanktons) in the environment carry the eggs; these eggs do not grow without the
main hosts (e.g., fish). Since the intermediate hosts are a staple food of the main hosts,
the main hosts eat them, possibly not knowing the parasite eggs are present. Then, the
parasites grow in the main host. After some time, the mature parasites lay eggs, and these
eggs are discharged in the excretion of the main hosts. Without proper sanitation, these
eggs can contaminate the environment, and then the life cycle of the parasite population
repeats. This complex life cycle can be a form of differential feedback loops in a complex
system. It is hypothesized that the distribution of parasite aggregation (e.g., as shown
in Figure 2) can have a longer tail over time (e.g., more aggregation as the host ages) or
as the food chain becomes more convoluted similar to the concept of bioamplification or
biomagnification [4,30].

The distribution characterized by parasite aggregation may not necessarily be heavy or
long-tailed. In most cases, the negative binomial distribution is used, and in some cases, a
zero-inflated distribution can be useful in statistical studies [31,32]. There are common metrics
that are being calculated to describe and track parasite aggregation. Examples are [15]:

• Variance-to-mean ratio, where if this ratio is approximately equal to 1, then a Poisson
(random) distribution could characterize the distribution of parasites in the host
population. If it is greater than 1, then parasite aggregation may occur. Smaller values
(<1) may represent a distribution following the binomial distribution; if the value is
near zero, the parasite distribution could be uniformly or evenly distributed. The
variance-to-mean ratio is related to the index of dispersion (D), which can be described
by the following [6,23]:

D =
σ2

µ
(n− 1) (1)

where µ is the mean, and σ2 is the variance of the distribution of parasites in the host
population. The parameter n is the number of sampled hosts.
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• Negative binomial parameter k, which can be described as

k =
µ2

σ2 − µ
. (2)

If σ2 � µ, then k is small or could be near zero, in which parasite aggregation may
occur. If σ2 ≈ µ or k is large, a Poisson (random) distribution may arise [4,6]. This
metric is one of the most preferred aggregation metrics.

• Taylor’s Power Law b, in which b is the regression slope described by the following [6,17]:

σ2 = a + µb orlog
(

σ2
)
= log(a) + b log(µ) (3)

Here, a and b are fitted against the collected data. The distribution of the parasites in
the host population could be uniform if b is zero, random if b is approximately equal
to 1, and aggregated if b is significantly greater than 1.

The coefficient of variation is not usually used as an aggregation metric because it
is scale-invariant. This means that two distributions—say one with a low total parasite
count and the other with a high total parasite count—could reflect similar coefficients
of variation. In parasitology, actual counts matter, especially that the parasite load is
related to superspreading events and affects the health of the host. Comparing the parasite
distribution to the Poisson distribution or to the negative binomial can also be performed
using statistical techniques, such as goodness-of-fit tests [33].

In compartmental modeling, such as in Susceptible-Infectious-Removed (SIR) frame-
work [34], heterogeneity is represented by incorporating the k parameter in the differential
equation model. For example, we can represent the change in the S population due to the
disease by [2]:

dS
dt

= −k ln
(

1 +
βI
kN

)
S (4)

where β is the frequency-dependent transmission rate; I is the population size of the
infectious, and N is the total population size. The parameter k is also used in calculating
the outbreak threshold (T), which is the number of cases needed for an outbreak to thrive
with a probability equal to 1− c. The outbreak is calculated during the initiation phase of
the outbreak. It can be estimated using the following formula [35]:

T = − log(c)
log(R0)

(
0.334 +

0.689
k

+
0.408

R0
− 0.507

kR0
− 0.356

R02 +
0.467
kR02

)
. (5)

where R0 is the basic reproduction number.
The reproduction number R (basic or effective) represents the average contagiousness

or transmissibility of a disease, while k considers the variance. Both metrics are essential
to be reported, not just the famous R. In a disease network, R can be calculated by taking
the mean of the number of individuals infected by an infectious host. As we know, the
number of secondary cases is often not uniform, and thus, variance is not zero. The variance
is important to be reported so that we can gauge how superspreading events affect the
contagiousness or transmissibility of a disease in a community. Knowing the possible
superspreaders may help in the disease cluster detection and in the minimization of delays
in reporting and control.

There are other sources of heterogeneity that can cause overdispersion and aggregation
of parasites. Age distribution and aging have a role in accumulating parasites through time
(e.g., via foraging), which may lead to aggregation [36]. As shown in Figure 1, there are
many pathways that could lead to overdispersion and aggregation. Whatever the reasons
are, we need to consider the variance and the possible “black swans” or the outliers, which
could not be detected by only investigating the average dynamics of the host–parasite
interaction. This framework of thinking could have an impact on the management of
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health systems, which also has socio-economic implications [37,38]. Overdispersion and
aggregation pose unequal exposure, vulnerability, and risk to hosts. In some cases, risk
sharing could be managed in such a way that the marginalized and overburdened host can
recover and survive. An example of risk sharing is that in a farming community with a
schistosomiasis outbreak, human hosts (farmers) with low protection should not be too
exposed to the disease compared to farmers with access to protective gear.

3. Method

In this section, the method of tracking the disease dynamics with overdispersion is
presented. As shown in Figure 1, there are many pathways to parasite aggregation. Hence,
monitoring the mechanisms of various pathways can help in tracking overdispersion lead-
ing to aggregation. Social network with hubs, heterogeneity in the characteristics of actors
(e.g., hosts), and complexity in the interaction among actors may lead to a distribution with
variance greater than the mean. This statistical distribution can characterize aggregation,
such as parasite aggregation in host population. This aggregated pattern may lead to
differential risk, such as superspreading events. These pathways are affected not just by
the biological characteristics of hosts and parasites, but also by environment (including
abiotic factors and geographic locality) affecting the host–parasite system [4,30]. These
pathways when investigated individually and as part of the whole ecosystem can provide
insights about the causes and impacts of the disease dynamics and when tracked can aid in
identifying strategies for infectious disease prevention or control.

The reproduction number R and the overdispersion coefficient k are, in practice, not
easy to calculate due to a lack of available data (e.g., incomplete contact tracing data). One
type of commonly available data is the spatiotemporal disease counts, in which there are
methods to approximate R and k [39,40].

Following the framework in Figure 1, here are some questions to be asked that can be
used in our monitoring:

1. What is the degree distribution of the contact or interaction network (e.g., from
contact tracing)?

2. What are characteristics of the hosts (e.g., age, sex, body size, and foraging behavior)?
3. What are the characteristics of the parasites (e.g., age, body size, and complex

life cycle)?
4. What are the characteristics of the environment (e.g., microlocality, mixing dynamics,

temperature, and food distribution)?
5. What are the characteristics of the host–parasite interaction (e.g., preferential attach-

ment and host immunity)?
6. What is the spatiotemporal parasite load of sampled hosts?

These questions should be disaggregated temporally and spatially (depending on the
preferred spatial granularity, i.e., local, regional, and continental scales). The more granular
the dataset, the more chance of seeing heterogeneous properties, which means that we
need to look at a high-dimensional dataset (as characterized in Figure 3).

Question 1 will provide us an idea if there are hubs in the interaction network. If
there are intermediate hosts in the interaction, we can look at the network projection (see
Figure 5). Questions 2 to 5 will provide us information about the level of heterogeneity
in host and parasite populations as well as in the environment. We can obtain many
insights from these datasets, such as what characteristics can lead to a more aggregated
parasite population. For the monitoring, the spatiotemporal descriptive statistics of the
datasets gathered as answers to Questions 1 to 6 can be used to investigate heterogeneity,
overdispersion, and aggregation.
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Figure 3. Multiscale investigation of overdispersion. At the top part of the figure, overdispersion can
happen at the species population network and also at the interspecies (or intercommunity) network.
Food chain or web, predation, parasitism, and other interactions can characterize interspecies network.
At the middle part of the figure, overdispersion can be investigated at a certain locality and at the
macroscale (global) spatial level. Spatial investigation can be analyzed using a grid system, depending
on the availability of data and on the spatial homo/heterogeneity of the interaction networks. For
simplicity, a 2D spatial representation is presented here, but a 3D representation can also be performed.
Moreover, spatial overdispersion can be dynamic through time. The distribution of parasites in host
population can vary and evolve spatially and temporally.
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Figure 4. Effect of heterogeneity and overdispersion in epidemics. In both figures, k near zero
represents more heterogeneity and high overdispersion. (a) 90% probability, k = 1 is assumed to
be equivalent to a homogeneous transmission; (b) k→ ∞ represents random transmission (e.g.,
Poisson-distributed spread of infectious disease).

Using the familiar equation for risk: risk = hazard × exposure × vulnerability, we
can track the unequal risk distribution in a host population due to parasite aggregation.
Force of infection (as risk) = disease hazard (which can be characterized by the disease
prevalence and degree of environmental favorability for parasites to reproduce)× exposure
(which can be characterized by the degree distribution in an interaction network that is
affected by the behavior of the host and life cycle of parasite) × transmissibility (which
can be characterized by the biophysical properties of the parasites and hosts essential for
efficient and effective transmission). The force of infection, thus, is not just a single number
or constant, but a distribution of values pertaining to the spatiotemporal dynamics of the
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host–parasite system. The hazard is dynamic as prevalence changes overtime due to more
hosts being infected or due to the removal of hosts (e.g., death or recovery). Exposure is also
dynamic based on the location and situation and parasite distribution in the environment.
The transmissibility also depends on the host body, which can be infected or not, depending
on available immunity or protection [42], and depending on the efficiency of the route of
transmission.
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Figure 5. Interaction network among hosts. Blue line denotes transmission from Host species A to
Host species B (e.g., parasite eggs from main host to intermediary host). Red line denotes transmission
from Host species B to Host species A (e.g., parasite larva from intermediary host to main host). The
lines can also be weighted based on volume of parasite loading. (a) sample network; (b) network is
converted to a bipartite graph; (c) graph projection where black lines denote transmission interaction
via an intermediate host. Note that a multipartite (e.g., tripartite) interaction network can also be
studied to account for the role of the parasites.

After gathering datasets, we grouped the hosts based on the factors affecting the force
of infection. In this grouping, heterogeneity and overdispersion are considered. Force of
infection is represented as a triple (f1, f2, and f3) meaning value of hazard, value of exposure,
and value of transmissibility, see Figure 6. We can consider thresholds as a benchmark,
say thresholds for considering low, medium, and high values. For example, the status of
one individual host for a specific time frame represents a point in the force of infection
space as medium, medium, and high due to medium disease prevalence in the community,
medium exposure because the host is sometimes exposed to the environment with parasites,
and high transmissibility due to the absence of available protection, respectively (refer to
Figure 6 for illustration). Values can be normalized to optimize consistency in setting values
so that the risk values are comparable. Moreover, the severity of impact to the health of the
host is not yet included in the triple (f1, f2, and f3). A fourth dimension can be included to
include severity, which can help in tracking possible hospitalizations.
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characterizes host population.

As an example, consider the simulated datasets in [4]. The dataset is based on the
constructed visual agent-based simulation model involving fish hosts in a closed freshwater
environment (lentic ecosystem) that forage on zooplanktons harboring macroparasites.
In this simulation, several scenarios were considered, such as (i) the initial sizes of the
population of both the fish and zooplanktons have a minimal effect on the aggregation of
parasites; (ii) increasing the probabilities of reproduction of both fish and zooplankton lead
to parasite aggregation among fish hosts; and (iii) aggregation occurs either by decreasing
the size of the infection area or increasing the size of the zooplankton-free area in the
lentic ecosystem. Relating the simulated datasets to the framework presented here, we can
characterize the f1 (in the force of infection triple) based on the density of the parasites in
the lentic ecosystem. The value of exposure (f2) can be characterized by the distribution of
the parasites in an area (e.g., infected zooplanktons are concentrated only in a limited area;
hence, not all fish can be exposed for a certain period of time). The transmissibility (f3) in
the simulated datasets is set to be medium to high, i.e., without protection, but there is the
possibility of treatment. As shown in the figures in [4], ‘sliders and buttons’ in the NetLogo
program can be used to determine the setting of the host–parasite dynamics, which can
also determine the (f1, f2, and f3) triple. Different settings could result in different parasite
load distributions.

4. Conclusions

In this paper, I discussed a framework based on the mechanisms that can lead to
parasite aggregation. Parasite aggregation is a result of overdispersion and heterogeneity,
and this aggregated pattern is very common in nature. Thus, it is important not to focus
only on the average parasite burden in hosts because parasite aggregation poses a high risk
to hosts with a severe parasite load. These hosts can also be potential superspreaders.

In terms of biodiversity, parasite aggregation is beneficial to both macroparasite and
host populations (except for few sacrificial hosts) as parasites can have enough population
size without exterminating the whole host population. Parasite aggregation could be an
example of a collective behavior (e.g., as a result of the complex life cycle of parasites and the
dynamic interaction with foraging hosts) with or without the intention of each individual
parasite to aggregate. The emergence of this pattern is based on many pathways as shown
in Figure 1, which in many circumstances could be part of a host–parasite evolution and a
driver to stabilize ecological systems.
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One way to investigate heterogeneity is to include the network of interaction in
host–parasite systems, which is expected to be non-Poisson. Heterogeneity can lead to
differential exposure and vulnerability and to overdispersed risks [26]. We can expect that
many host–parasite systems exhibit a pattern similar to Figure 7, where we can observe a
3-simplex of risk points in the force of the infection space. In the simplex, many hosts have
minimal risks, but a few have very high risks, which is a sign of parasite aggregation in
hosts [27].

Diseases 2023, 11, x FOR PEER REVIEW 10 of 12 
 

 

In terms of biodiversity, parasite aggregation is beneficial to both macroparasite and 
host populations (except for few sacrificial hosts) as parasites can have enough population 
size without exterminating the whole host population. Parasite aggregation could be an 
example of a collective behavior (e.g., as a result of the complex life cycle of parasites and 
the dynamic interaction with foraging hosts) with or without the intention of each indi-
vidual parasite to aggregate. The emergence of this pattern is based on many pathways as 
shown in Figure 1, which in many circumstances could be part of a host–parasite evolu-
tion and a driver to stabilize ecological systems.  

One way to investigate heterogeneity is to include the network of interaction in host–
parasite systems, which is expected to be non-Poisson. Heterogeneity can lead to differ-
ential exposure and vulnerability and to overdispersed risks [26]. We can expect that 
many host–parasite systems exhibit a pattern similar to Figure 7, where we can observe a 
3-simplex of risk points in the force of the infection space. In the simplex, many hosts have 
minimal risks, but a few have very high risks, which is a sign of parasite aggregation in 
hosts [27]. 

 
Figure 7. Simplex of risk points that could characterize host population with parasite aggregation. 
High-risk individual hosts could have high parasite burden. Each red dot could represent an indi-
vidual host. 

Future research directions include determining more pathways or mechanisms that 
could lead to parasite aggregation. The proposed method of tracking spatiotemporal par-
asite aggregation can be utilized to investigate datasets from observational studies and to 
identify trends in parasite aggregation (e.g., to monitor stable equilibrium, seasonalities, 
and trend anomalies). The proposed integrated framework and method can aid studies 
related to mammalian parasitic infections, health, zoonoses, and neglected tropical dis-
eases. 

Author Contributions: Conceptualization, methodology, formal analysis, writing—original draft 
preparation, writing—review and editing, visualization, project administration, and funding acqui-
sition: J.F.R. The author has read and agreed to the published version of the manuscript. 

0

1

f1 disease hazard
f3 transmissibility

f2 exposure

0

0

Figure 7. Simplex of risk points that could characterize host population with parasite aggregation.
High-risk individual hosts could have high parasite burden. Each red dot could represent an
individual host.

Future research directions include determining more pathways or mechanisms that
could lead to parasite aggregation. The proposed method of tracking spatiotemporal
parasite aggregation can be utilized to investigate datasets from observational studies and
to identify trends in parasite aggregation (e.g., to monitor stable equilibrium, seasonalities,
and trend anomalies). The proposed integrated framework and method can aid studies
related to mammalian parasitic infections, health, zoonoses, and neglected tropical diseases.
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