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Abstract: Demographic traits were analyzed in the Pyrenean brook newt (Calotriton asper) to evaluate
whether its variability responds to the adaptation to the different habitats. In this study, life history
traits of Calotriton asper were studied in nine populations living in two different kinds of habitats in the
Pyrenees mountains: lakes and streams. Skeletochronology was used to determine age structure and
different traits such as age at maturity and longevity. Age structure was different between populations
and sexes. The two lacustrine populations, with facultative pedomorphosis, attained their maturity
earlier. Age at sexual maturity ranged from 4 to 9 years and in some populations was similar between
sexes while in others, females matured at younger ages than males. Maximum longevity varied from 7
to 35 years among populations and was correlated with the age at sexual maturity. Body size differed
among populations, was sexually dimorphic, and this disparity was not related to the kind of habitat.
The maximum size was found in the lacustrine population but exhibited high variation between
populations. The results obtained show a significant variability between sexes and populations,
in age and body size structure of Calotriton asper that did not depend on the habitat.

Keywords: age structure; Calotriton asper; habitat type; demography; variability; evolution and
body size

1. Introduction

Processes such as growth, development, or reproduction constitute the elements of the life history
of an organism, each biological cycle being unique and vital [1]. The life history of an organism is
variable within the limits of the individual’s genotype and their phenotypic expression in different
environments can vary, it is known as phenotypic plasticity [2]. In amphibians, phenotypic plasticity is
especially widespread promoting a wide diversity of life cycles that can be observed, for example in
newts and salamanders. This diversity is the result of the interaction between costs and benefits of the
reproduction and development in the aquatic and terrestrial environments [3].

Life history traits in amphibians are strongly linked through trade-offs, such as age at maturity,
longevity, and age–size relationship [4]. These life history traits can vary due to many factors such as climatic
conditions, trophic resources, predator vs. prey interactions, or interspecific competition [5]. Besides that,
these different environmental conditions, such as between lakes and streams, cause variability and promote
ecological diversification [6]. The expression of a trait is determined by genetic factors, environmental
influences, and interactions between genotype and environment [7]. Related to this, sexual dimorphism is
determined by the balance and interaction of multiple selective forces [8]. For example, it may allow the
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reduction of intraspecific competition through ecological, morphological, or behavioral specializations
between the sexes. Therefore, differences in body size may indicate a sexual selection or it may be the
consequence of competition for food resources [9–11]. On the other hand, local environmental conditions
may explain differences in body length [12]. The Pyrenean newt (Calotriton asper) is an endemic newt of
the mountains of the Pyrenees, primarily lives in streams, although it has secondarily colonized high
mountains lakes [13]. In order urodele, growth rates tend to be highest during the larval and juvenile
stages [14]. In the case of the Calotriton asper it has been suggested that the sexes may differ in body size
and other traits, influenced by ecological factors, including climatic conditions between each locality [15].
For example, Calotriton asper at some lacustrine localities exhibits facultative pedomorphosis [16,17].

The variation in body sizes and life history traits of the Calotriton asper was previously described
in several populations at different habitat conditions [15,18–20]. For example, sexual dimorphism was
more strongly expressed in the Central Pyrenean populations (high altitude) where females showed
longer tails and smaller heads, while males had more robust tails and higher body weights compared
with the Prepyrenees populations (middle altitude) [15]. Another study found that body lengths were
higher for surface populations than the subterranean populations [20]. The variety of habitats and the
effect of glacial and interglacial periods in the Pyrenees make it a natural laboratory for biogeographic,
evolutionary, and ecological studies of mountain fauna such as Calotriton asper [21]. The main goal
of this study is to analyze the effect of different habitat types (lacustrine vs. rheophilous) on the
demographic characteristics of Calotriton asper. To achieve this, we evaluated life history traits such
as body size, age structure, age at sexual maturity, and longevity in six torrent localities and three
lacustrine localities of the species.

2. Materials and Methods

A total of 399 adult newts were sampled in nine populations (three lakes and six streams) along
the southern slope of the Pyrenean mountains, from 2012 to 2015 (Figure 1, Table 1). The main
characteristic of the streams is that their hydrological regime is determined by the pattern of snowfall.
Consequently, the flow has an extraordinary seasonal variability, with maximums of spring associated
with the melting, and the minimums in summer, when in some cases they can dry up. The other kind
of habitat we analyzed was high mountain lakes of glacial origin [22]. The main characteristic of the
lakes is that they suffer a stratification inversion of the water under the ice layer in winter. The densest
waters (4 ◦C) fall to the bottom and the cold waters remain on the surface. This ice sheet can last several
months [23]. Individuals were captured by hand, sexed based on the external morphology of the
cloacal area, the newts were sexed based on sexual secondary characters: pointed cloacal protuberance
in females and round and bulbous cloaca in males. The snout to the rear margin of the cloaca length
(SVL) was measured using a digital caliper with a 0.1 mm of precision by the same person (F. Amat).
Minimum size at sexual maturity was also estimated for each sex and population, as the minimum
SVL of sexually mature individuals, age at maturity, as the minimum number of lines of arrested
growth LAGs counted in the reproductive individuals and longevity, as the maximum number of
LAGs counted in the sexually mature individuals. The authorization numbers for scientific capture of
the Government of Aragón, Spain (500201/24/2015/2747; 500210/24/2014/491; 500201/24/2012/12145).
These authorizations certifying that the conditions established are approved by the Ethics Committee
for this project.

Skeletochronological methods were used to estimate the individual age, and to infer age at
sexual maturity and longevity for each sex and population using the protocols described [24,25].
Skeletonchronology, with precise age determinations, is widely applied to the study of sexual maturity
and longevity in amphibians [24,26]. The largest toe of the left hind limb was removed and stored
in 70% alcohol and the wound was disinfected. Bones were decalcified in 3% nitric acid between 35
and 75 min, cleaned by water for 1 h, and placed in phosphate-buffered saline and sucrose 30% for
48 h at 4 ◦C. Cross-sections (14–16 µm) were obtained with a freezing microtome and stained with
Ehrlich’s hematoxylin between 21 and 40 min. The age of each individual was determined by counting
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LAGs in the diaphysis of the periosteal bone using a light microscope at 100× and 400×magnifications.
The analysis of growth marks was done by S. Camarasa and N. Oromi. Taking into account that in
each individual all sections were reviewed in detail and no double growth lines were found, it was
estimated that each LAG is one year.Diversity 2020, 12, x FOR PEER REVIEW 3 of 9 
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Lake Espeluciecha 42°47’18.06” N 0°25’47.93” W 1955 52 
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Figure 1. Localization of the sampled localities of Calotriton asper populations. Stream populations:
1 Peramola; 2 San Juan de la Peña; 3 Sarvisé; 4 Oto; 5 Benasc; 6 Barranc Acherito. Lacustrine populations:
7 Espeluciecha; 8 Acherito; 9 Perramó. See Table 1 for details on each locality.

Table 1. Latitude, longitude, altitude, and number of individuals (339 in total) for each locality
and habitat.

Habitat Locality Latitude Longitude Altitude n

Stream

Peramola 42◦4′17.17′′ N 1◦16′30.98′′ E 592 28
San Juan de la Peña 42◦30′26.94′′ N 0◦40′0.16′′ W 1215 38

Sarvisé 42◦34′51.90′′ N 0◦4′17.70′′ W 1222 38
Oto 42◦35′47.47′′ N 0◦7′42.56′′ W 916 44

Benasc 42◦38′2.23′′ N 0◦34′25.21′′ E 1600 37
Barranc de Acherito 42◦52′27.81′′ N 0◦43′18.64′′ W 1525 47

Lake
Espeluciecha 42◦47′18.06′′ N 0◦25′47.93′′ W 1955 52

Acherito 42◦52′45.52′′ N 0◦42′27.48′′ W 1872 44
Perramó 42◦38′19.29′′ N 0◦30′1.14′′ E 2254 71

To test for differences in age structure among populations, we performed a two-way ANOVA on
medium age using sex and populations as factors. Besides, we have a test for body size differences
among populations taking into account sexual dimorphism. Thus, two-way ANOVA on mean body
size was conducted using sex and populations as factors. Pearson correlation was done to test for
relationships between age at sexual maturity and longevity. All analyses were done using JMP Pro
14 [27], (alpha = 0.05) on 10 log-transformed variables age and SVL.

3. Results

Populations of Calotriton asper exhibited significant differences between sexes, males and females,
in age structure at intrapopulation (F 1 381 = 8.667, p = 0.003) and interpopulation level (F 8 381 = 74.902,
p < 0.001). Three examined populations, two lacustrine (Acherito, Perramó) and one stream-dwelling
(Barranc de Acherito) had a young age structure (Figure 2, Table 2). However, we found a significant
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interaction between these two factors (sex and locality), thus reflecting that sexual differences in age
structure changed over populations (F 8 381 = 2.470, p = 0.013) (Table 3). Nevertheless, the sexual effect
on demography was unrelated to the habitat (Table 2): given that the three lacustrine populations
showed three different patterns, and of the six rheophilous populations, three of these showed older
males than females and the other three the opposite pattern (Figure 2, Table 2).
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Figure 2. Box-plot of the age structure of the newts for each locality and sex. The 1st Quartile (values
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box limit. Vertical stripes outside the box identify the maximum and minimum values. The extreme
cases are represented by circles.

Table 2. Descriptive statistics for age and snout-vent length (SVL) for each sex, locality, and habitat, ES:
standard error.

Age (Years) SVL (mm)

Habitat Locality Sex n Minimum Maximum Median Minimum Maximum Mean ± ES

Stream

Peramola
Females 16 6 18 10.0 52.3 68.8 59.0 ± 1.1
Males 12 7 27 12.0 53.2 65.9 58.5 ± 1.3

San Juan de
la Peña

Females 19 8 31 15.0 54.8 70.3 61.4 ± 0.9
Males 19 8 22 15.0 59.7 70.8 65.9 ± 0.6

Sarvisé
Females 17 8 22 17.0 51.9 58.6 57.2 ± 0.6
Males 21 9 31 16.0 57.9 67.2 62.7 ± 0.5

Oto
Females 23 7 19 12.0 50.1 59.1 54.5 ± 0.6
Males 21 7 28 17.0 51.1 62.6 55.3 ± 0.6

Benasc
Females 19 7 26 14.0 56.4 71.3 63.7 ± 0.9
Males 18 9 23 14.5 55.7 68.5 64.8 ± 0.8

Barranc de
Acherito

Females 20 4 8 5.0 63.8 77.6 73.6 ± 0.8
Males 27 4 7 5.0 53.9 74.5 68.9 ± 0.9

Lake

Espeluchieca Females 26 8 34 14.5 53.1 82.7 64.4 ± 1.4
Males 26 6 35 15.5 58.7 76.2 64.7 ± 1.0

Acherito
Females 12 4 9 6.5 56.0 68.0 61.0 ± 1.1
Males 32 4 12 7.0 56.0 67.0 63.0 ± 0.5

Perramó
Females 34 4 14 7.0 58.0 72.2 64.1 ± 0.6
Males 37 6 19 10.0 59.2 73.0 66.2 ± 0.5
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Table 3. ANOVA results of statistical analyses to test differences in age structure and SVL at sexual and
locality level. Statistically significant values are indicate by asterisks (*).

Age Structure by Sex and Population

Factor Degrees of freedom F Probability > F
Sex 1 8.6671 0.0034 *

Locality 8 74.9023 <0.0001 *
Locality × sex 8 2.4706 0.0128 *

SVL by sex and population
Factor Degrees of freedom F Probability > F

Locality 8 62.6399 <0.0001 *
Sex 1 10.2254 0.0015 *

Locality × sex 8 6.3897 <0.0001*

Age at sexual maturity ranged from 4 to 9 years among populations. The lacustrine populations
of Perramó and Acherito, and the stream-dwelling population near Acherito matured earlier than
the others. In all the examined populations, age at sexual maturity was similar between sexes, or the
females matured at younger age than males, the only exception was the Espeluchieca lake population
(Table 2). Maximum longevity varied from 7 to 35 years among populations and correlated with the
age of sexual maturity (r = 0.821, p = 0.010, n = 9). Although maximum longevities were correlated
between sexes (r = 0.762, p = 0.016, n = 9), populations differed in the sexual pattern of longevity,
males tending to develop high longevity. That was the case of the lacustrine populations, although it
was also found in half of the rheophilous populations.

Body size significantly differed among populations (locality: F8381 = 62.639, p < 0.001) and was
sexually dimorphic (sex: F1381 = 10.225, p = 0.002) (Figure 3, Table 2). Body size variation was not related
to the kind of habitat of the populations (Table 2). Smallest mean body sizes for both sexes corresponded
to the Oto population, and the largest to the Barranc Acherito populations. The other populations
showed intermediate values. Except in two stream localities, males show a larger mean body size
than females. For example, the smallest and largest mean body sizes corresponded to stream-dwelling
populations while lacustrine newts showed intermediate values. Regarding the maximum values,
there was also not a clear association with habitat. Although in most populations males showed higher
mean values than females, this latter sex reached higher maximum sizes in some cases. As a result,
the pattern of sexual dimorphism was not the same for all the populations (F8381 = 6.389, p < 0.001)
(Table 3) and was not related to the habitat.
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4. Discussion

Variability in life history traits of amphibians is a result of adaptations to different environmental
conditions. In our case, despite the clear differences in ecological conditions between rheophilous
and lacustrine environments [28], experienced by Calotriton asper, our results showed a complex
picture where the interactions of multiple factors, not linked with the habitat conditions, determine
the demographic traits of populations. Consequently, life history traits such as age at maturity and
longevity can show a variation with habitat, molded by its specificities [29]. We suggest that the
environmental factors explain variation in life history traits, body size, and growth rates. This variation
can be related to water temperature, annual duration of the activity period, foraging activity, and the
duration of the terrestrial phase [20].

Observing the species distribution, glaciations could have limited the persistence of populations
of Calotriton asper in lakes before the end of the last glaciation, so the origin of these would be recent
colonization [30]. Quaternary glacial events, with expansion–contraction of the geographic range,
have influenced and explain the current distribution of Pyrenean fauna and flora [31,32]. Although the
habitats trace the great ecological lines, it is the peculiarities of each locality that define aquatic and
terrestrial conditions such as the temperature, predation pressure, structure, and trophic productivity
or competition with other species [3]. The different “life history traits and body size” found in the
localities could be a reflex of the environmental and climatic forces that act on them. These strategies
are directly influenced by the duration of the annual activity period and the duration of the terrestrial
and larval phases [33]. Age or size at metamorphosis, at maturity, and longevity, result from trade-offs
between advantageous conditions in environments [34]. All stream dwelling populations showed
intermediate age structure among the lacustrine localities, singular conditions of each locality influences
in a different way in the demography of each one of the populations. The great majority of the lakes of
the Pyrenees are not populated by Calotriton asper, the difficult colonization of lacustrine habitats causes
changes in the demography since most of them do not have the ideal biotic and abiotic conditions.
The only two localities with facultative pedomorphosis, Acherito and Perramó, are characterized for
not having an immature terrestrial phase, likely increasing the population density in the lake. It seems
that the peculiarities in the conditions of these lakes have allowed the development of a pedomorphic
phenotype [16,17,21]. In these lakes, the populations show a first sexual maturity to compensate for
short longevity. The benefits of early maturation are a shorter generation time, reducing exposure to
juvenile mortality [4]. In contrast, the lacustrine population of Espeluchieca delays the age of sexual
maturity, reaching greater longevity and larger body size. In this population, newts live together
with fishes, which share the lake but there is spatial segregation between them (personal observation
F. Amat). This spatial segregation is formed on a slope of the lake, where the rocks from the landslides
are submerged into the water, making a physical separation. It is known that the aquatic shelters favor
coexistence between newts and fish [35]. We can also see the pressure of the fish on the newts when
they live together in the stream population of Barranc Acherito, where there is short longevity and
early maturity, which could be due to the presence of fish. The smaller body sizes are for the localities
of Sarvisé and Oto, although they have high longevity. There is possibly a strict selection for small
body individuals that can hide from floods [36], because the number and dimensions of refuges such
as stones and fissures define the density and distribution of newts [37]. In Calotriton asper annual active
life varies from 4 to 8 months or more [13], also the duration of the larval phase varies from 1 to 3 years
or more [16,38]. We do not know water temperature or variations in trophic conditions for the Calotriton
asper populations that we studied. We can, however, hypothesize that environmental conditions are
the inductors of this variability, which favors its adaptation. In several urodeles, the average age, age at
maturity, and body size increase as the annual activity period shortens [39]. In the duration of the
terrestrial phase, there seems to be a tendency to shorten in the lacustrine habitat or does not exist in
pedomorphic populations.

In summary, the results of this study show that Calotriton asper exhibits interpopulation variability
in the demography that does not depend on the habitat. In conclusion, we reject the hypothesis that
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habitat (stream and lake) gives a pattern to the demography in Calotriton asper. The factors that shape
the demographics of populations have an effect on a smaller scale, differently within each locality
beyond whether the habitat is rheophilous or lacustrine.
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