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Abstract: Phylogenomic analyses have revolutionized the study of biodiversity, but they have
revealed that estimated tree topologies can depend, at least in part, on the subset of the genome
that is analyzed. For example, estimates of trees for avian orders differ if protein-coding or non-
coding data are analyzed. The bird tree is a good study system because the historical signal for
relationships among orders is very weak, which should permit subtle non-historical signals to be
identified, while monophyly of orders is strongly corroborated, allowing identification of strong
non-historical signals. Hydrophobic amino acids in mitochondrially-encoded proteins, which are
expected to be found in transmembrane helices, have been hypothesized to be associated with
non-historical signals. We tested this hypothesis by comparing the evolution of transmembrane
helices and extramembrane segments of mitochondrial proteins from 420 bird species, sampled from
most avian orders. We estimated amino acid exchangeabilities for both structural environments and
assessed the performance of phylogenetic analysis using each data type. We compared those relative
exchangeabilities with values calculated using a substitution matrix for transmembrane helices
estimated using a variety of nuclear- and mitochondrially-encoded proteins, allowing us to compare
the bird-specific mitochondrial models with a general model of transmembrane protein evolution.
To complement our amino acid analyses, we examined the impact of protein structure on patterns of
nucleotide evolution. Models of transmembrane and extramembrane sequence evolution for amino
acids and nucleotides exhibited striking differences, but there was no evidence for strong topological
data type effects. However, incorporating protein structure into analyses of mitochondrially-encoded
proteins improved model fit. Thus, we believe that considering protein structure will improve
analyses of mitogenomic data, both in birds and in other taxa.

Keywords: mitogenome; transmembrane proteins; substitution matrix; JTT matrix; molecular evolu-
tion; partitioned models; mixture models; RY coding; cyto-nuclear discordance

1. Introduction

The accumulation of molecular data has revolutionized our ability to understand
biodiversity, especially since the dawn of the phylogenomic era approximately 20 years
ago [1,2]. However, phylogenomics has also revealed that many conflicting signals can
emerge when different parts of the genome are analyzed [3]. It has long been appreciated
that there are a variety of processes that can create genuine discordance among gene
trees [4,5] and the ability to collect large amounts of data that can capture the variation
among gene trees has led to a paradigm shift in systematics [6]. In fact, mathematical
models that describe discordance due to the multispecies coalescent, arguably the most
prominent source of genuine conflicts among gene trees, are now quite mature [7,8].
However, efforts to estimate species trees and to understand the amount of genuine
discordance among gene trees are complicated by two sources of error: stochastic and
systematic error [3]. Stochastic error is a simple consequence of the fact that all results

Diversity 2021, 13, 555. https://doi.org/10.3390/d13110555 https://www.mdpi.com/journal/diversity

https://www.mdpi.com/journal/diversity
https://www.mdpi.com
https://orcid.org/0000-0001-5449-5481
https://orcid.org/0000-0003-1643-5212
https://doi.org/10.3390/d13110555
https://doi.org/10.3390/d13110555
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/d13110555
https://www.mdpi.com/journal/diversity
https://www.mdpi.com/article/10.3390/d13110555?type=check_update&version=2


Diversity 2021, 13, 555 2 of 26

of phylogenetic analyses are based on a finite number of characters [9]. In principle, it is
possible to reduce or even overcome stochastic error by sequencing complete genomes
(or relatively large proportions of the genome). In contrast to stochastic error, systematic
error reflects cases where specific analytical methods are expected to converge on an
incorrect estimate of phylogeny, typically with increasing certainty, as the number of
characters used in analyses is increased. Ultimately, systematic error can only be addressed
by improving the model of evolution underlying the analytical method or by excluding
data that are misleading given the method of phylogenetic analyses.

Reddy et al. [10] highlighted a type of systematic error in phylogenetic analyses that
they called data type effects, an idea related to the “process partitions” of Bull et al. [11].
Reddy et al. [10] invoked data type effects to explain the observation that phylogenetic
analyses focused on the earliest divergences among avian orders using coding versus
non-coding data yield different trees (compare trees within Jarvis et al. [12] and compare
the non-coding Jarvis et al. [12] trees to the coding tree in Prum et al. [13]). Reddy et al. [10]
controlled for taxon sampling, finding that the important variable was the use of coding
versus non-coding data types (see also Braun and Kimball [14]). Unlike the case of process
partitions, where at least some process partitions might exhibit incongruent topologies due
to genuine discordance among gene trees (e.g., due to the multispecies coalescent [4–6]),
Reddy et al. [10] restricted the definition of data type effects to cases where the spectra
of gene trees for the data types are expected to be similar (since they were describing a
phenomenon that emerges in phylogenomic studies where they expected a mixture of gene
trees). Phylogenomic studies focused on taxa other than birds have also found differences
among trees estimated using distinct data types [3,15–21], suggesting data type effects are
a general phenomenon that can complicate our ability to use molecular data to understand
the evolutionary relationships that underlie existing biodiversity.

Data type effects differ from the sources of systematic error that have received the
most attention in the phylogenetic literature. Those sources of error include long-branch
attraction [22,23], convergence in nucleotide and/or amino acid composition [24,25], and
biases due to discordance among gene trees [26,27]. Those phenomena represent specific
parts of parameter space for the evolutionary process that can be shown to be misleading
for specific analytical methods using simulations and/or a rigorous mathematical proof.
Reddy et al. [10] defined data type effects using two criteria: (1) phylogenetic analyses of the
data types reveal distinct topological signals; and (2) analyses using multiple independent
samples of each data type converge on the same parts of tree space. The second criterion
indicates that data type effects are systematic error(s), but the term is agnostic regarding
the source of that error. For example, a case where one data type exhibits strong base
compositional convergence and the other data type does not would be a data type effect.
Another data type effect would be the case where one data type is subject to long-branch
attraction but the other is not. The only source of error that cannot be a data type effect is
biases due to discordance among gene trees; Reddy et al. [10] explicitly limited data type
effects to cases where gene tree spectra for both data types are expected to be similar. The
conflict between trees based on coding versus non-coding sequences in birds is the best-
studied example of a data type effect [10,12,14,28]; that data type effect is likely to reflect,
at least in part, model misspecification due to deviations from stationary base composition
in the coding regions [14]. Pandey and Braun [17,20] described another data type effect
involving solvent-exposed versus buried residues in globular proteins that has an impact
on the topology for the earliest divergences among metazoan. Although the basis for that
data type effect is unclear, it is clear that the best models of sequence evolution differ for
buried versus exposed residues [17,29–31]. We believe that data type effects related to
protein structure might be especially fertile ground for understanding data type effects.
After all, the extensive information about the biochemical and biophysical basis of protein
structure (reviewed by Kessel and Ben-Tal [32]) opens the door to improved models of
sequence evolution for structurally defined data types.
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The mitochondrially-encoded subset of the animal proteome might be a useful “model
system” for the study of protein structure data type effects. A classic study by Naylor and
Brown [33,34] (hereafter NB) showed that different topological signals are associated with
distinct subsets of amino acids in mitochondrially-encoded proteins. More specifically,
NB found that sites dominated by hydrophobic residues had a poor fit to a number of
strongly corroborated relationships in the vertebrate species tree based on the maximum
parsimony (MP) criterion. This suggests that mitochondrially-encoded proteins will exhibit
a structural data type effect because all proteins encoded by vertebrate mitogenomes
are transmembrane proteins [35,36] and hydrophobic amino acids are concentrated in
transmembrane (TM) helices. Thus, we expect exhibit distinct topological signals to be
evident if we define TM helices and extra-membrane (ExM) loops as the two data types
to consider. The central question is how to detect that data type effect, if it exists, in other
taxonomic groups. The “known phylogeny” approach, used by NB, suffers from the fact
that any phylogeny that can be viewed as “known” is likely to be characterized by a strong
historical signal (i.e., it will have many site patterns that support bipartitions in the true
tree). After all, it is the existence of a strong historical signal that provides the corroboration
of relationships that causes systematists to view the phylogeny as known. Unless the
non-historical signal(s) (site patterns that support bipartitions that are not present in the
true tree) are equally strong they are likely to be overwhelmed by strong historical signals,
rendering weak non-historical signals essentially undetectable. Thus, the ideal datasets
to examine for data type effects are those for which the historical signal is very weak; the
relationships among avian orders (Figure 1) represent such a phylogeny.

Takezaki and Gojobori [37] challenged the broader implications of the NB results
by showing that using models of evolution that incorporate among-sites rate variation
ameliorates the poor fit of the hydrophobic residues to vertebrate phylogeny. Virtually all
of the programs currently used in modern phylogenetic analyses, such as the fast maximum
likelihood (ML) program IQ-TREE [38], implement models that incorporate among-sites
rate heterogeneity. Although this suggests that relatively simple model improvements
might eliminate the data type effect implied by the NB results, they do not necessarily
indicate that adding among-sites rate heterogeneity to analytical models in the most
straightforward manner (the discrete approximation to the Γ distribution [39]) will be a
panacea for topological errors in analyses of mitogenomic data. Indeed, more recent studies
indicate that the details of the rate-heterogeneity model can have an impact on estimates
of phylogeny for mitogenomic data [40,41]. Moreover, many phylogenetic analyses of
metazoan mitogenomes have revealed evidence of systematic biases [42–49] and the sources
of those errors is far from clear.

In addition to their potential to improve phylogenetic estimation, models of sequence
evolution can provide insights into the underlying processes of molecular evolution [31].
Examining the evolution of TM and ExM sites in a broadly sampled set of mitogenomes (in
this study, sampled from birds) has the potential to yield a number of insights. When the
results of Jones et al. [50] and Liò and Goldman [51] (which largely reflect nuclear-encoded
TM proteins) are considered in light of the support for different relative exchangeabilities
of amino acids in distinct structural environments [17,29–31], it seems likely that analyses
focused on mitochondrially-encoded proteins will yield evidence of model differences
between data types. If those model differences result in model misspecification for at least
one of those data types, we might find evidence for strong data type effects (strong support
for clades that conflict with the monophyly of the strongly corroborated avian orders),
weak data type effects (strong topological conflicts for the weakly-supported relationships
among orders), or both.
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Figure 1. Consensus phylogeny of birds based on phylogenomic data. This cladogram reflects a 
recent phylogenomic supertree analysis [52] modified based on the results of two more recent phy-
logenomic studies [14,53]; relationships that are highly uncertain are presented as polytomies. Most 
terminal taxa correspond to orders as defined in the IOC World Bird List v. 6.1, with the exception 
of the IOC Caprimulgiformes (clade V) where we used the ordinal definitions of Chen et al. [54,55]. 
These ordinal definitions are strongly corroborated so we view their monophyly as “known.” Ro-
man numerals indicate the “magnificent seven” superordinal clades defined by Reddy et al. [10]; 
the historical signal uniting the magnificent seven is weak, but they are relatively well corroborated. 
The dashed line highlights an exception; support for the position of Musophagiformes is especially 
weak [14], this is not relevant to the present study given our taxon sample. Three additional clades 
are indicated using letters: “N” (within Palaeognathae) indicates Notopalaeognathae (non-ostrich 
paleognaths [56]); “D” (within clade V) indicates Daedalornithes (owlet-nightjars, swifts, and hum-
mingbirds [57]); and “E” (within Passeriformes) indicates Eupasseres (all passerines except the New 
Zealand wrens [58]). Relationships within two selected orders are also shown; they were chosen 
because they highlight relationships where the positions of taxa in published mitochondrial phy-
logenies differed from the position in nuclear phylogenies [42,59,60]. Orders and families without a 
complete (or nearly complete) mitogenome sequence included in this analysis are presented in gray. 

Here, we conducted a study motivated by the classic NB studies and previous work 
on models of TM protein evolution [50,51]. We generated an aligned data matrix compris-
ing the 12 proteins encoded by the heavy strand of the avian mitogenome sampled from 
420 bird species, annotated the alignment with structural information, and used those 
data to examine three predictions that emerge when the NB studies are considered. First, 
we predicted that if we use the 20-state general time-reversible (GTR20) model to estimate 
the relative exchangeabilities of amino acids in TM versus ExM environments we would 

Figure 1. Consensus phylogeny of birds based on phylogenomic data. This cladogram reflects a recent
phylogenomic supertree analysis [52] modified based on the results of two more recent phylogenomic
studies [14,53]; relationships that are highly uncertain are presented as polytomies. Most terminal
taxa correspond to orders as defined in the IOC World Bird List v. 6.1, with the exception of the IOC
Caprimulgiformes (clade V) where we used the ordinal definitions of Chen et al. [54,55]. These ordinal
definitions are strongly corroborated so we view their monophyly as “known.” Roman numerals
indicate the “magnificent seven” superordinal clades defined by Reddy et al. [10]; the historical signal
uniting the magnificent seven is weak, but they are relatively well corroborated. The dashed line
highlights an exception; support for the position of Musophagiformes is especially weak [14], this is
not relevant to the present study given our taxon sample. Three additional clades are indicated using
letters: “N” (within Palaeognathae) indicates Notopalaeognathae (non-ostrich paleognaths [56]);
“D” (within clade V) indicates Daedalornithes (owlet-nightjars, swifts, and hummingbirds [57]); and
“E” (within Passeriformes) indicates Eupasseres (all passerines except the New Zealand wrens [58]).
Relationships within two selected orders are also shown; they were chosen because they highlight
relationships where the positions of taxa in published mitochondrial phylogenies differed from
the position in nuclear phylogenies [42,59,60]. Orders and families without a complete (or nearly
complete) mitogenome sequence included in this analysis are presented in gray.

Here, we conducted a study motivated by the classic NB studies and previous work on
models of TM protein evolution [50,51]. We generated an aligned data matrix comprising
the 12 proteins encoded by the heavy strand of the avian mitogenome sampled from
420 bird species, annotated the alignment with structural information, and used those
data to examine three predictions that emerge when the NB studies are considered. First,
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we predicted that if we use the 20-state general time-reversible (GTR20) model to estimate
the relative exchangeabilities of amino acids in TM versus ExM environments we would
find evidence for very different parameter values. This prediction is already corroborated
by other studies focused on transmembrane protein evolution [50,51], so it is very likely to
be true. However, we can make a more specific prediction regarding the patterns we are
likely to see in our estimated rate matrices: we predicted that relative exchangeabilities
for pairs of amino acids that are rare in a particular structural environment would be
elevated in mitochondrially-encoded proteins because this has already been shown for
globular proteins [31]. Second, we expected phylogenetic analyses of the ExM loops to
perform better than analyses of TM helices. Since the relationships among avian orders are
highly uncertain (Figure 1) we tested this prediction by examining the monophyly of orders
(monophyly of avian orders as they are currently circumscribed is strongly corroborated;
reviewed by Braun et al. [61]). Third, we expected different topological signals to emerge in
phylogenetic analyses of each data type. Even if there were no strong non-historical signals,
it seems likely that even very weak biases might perturb the highly uncertain portions of
the bird tree (Figure 1). We then used a mixture model framework to determine whether
there were model violations that remained after estimating GTR20 rate matrices for each
data type. To complement our analyses of amino acid data, we analyzed the nucleotide
sequences for each data type (including analyses conducted after RY-coding, in which the
data are encoded as purines or pyrimidines). These analyses provided insights into the
processes of molecular evolution for mitochondrially-encoded proteins and they have the
potential to improve phylogenetic analyses of mitochondrial sequences, a major tool in the
study of biodiversity.

2. Materials and Methods
2.1. Data Matrix Construction

We started with the alignment used by Nabholz et al. [62], which includes 92 taxa,
identified gene boundaries and began adding annotated coding regions for each of the
12 proteins encoded on the heavy strand of the avian mitogenome. We added sequences
from taxa with complete or nearly complete mitogenome sequences and the coding regions
from one study [63] where the sequences for each gene were obtained separately from
the same specimen. Sequences were aligned by eye because avian mitochondrial coding
regions have few indels and they are easy to align. We did not construct chimeric sequences
from multiple individuals. Ultimately, this resulted in a data matrix with 420 species. After
translating the sequences we used the TM helix boundaries annotated for the chicken
(Gallus gallus) in UniProt [64] to create a NEXUS charset [65] for the TM helices. Although
the lengths of TM helices can vary depending on the tilt angle of the helix [66], their lengths
are highly constrained by the width of the lipid bilayer. Thus, we believed that it was
reasonable to assume that the sites were either associated with TM helices or ExM segments
across all birds. These datasets are available as Supplementary File S1.

2.2. Analyses of Molecular Evolution and Phylogeny

We used IQ-TREE version 2.0.6 [38] for all tree estimation and we assessed support
using the ultrafast bootstrap [67], with 1000 replicates. We used the Bayesian information
criterion (BIC) [68] values calculated by IQ-TREE to identify the best-fitting model.

We analyzed three amino acid datasets (TM sites, ExM sites, and all sites) using the
GTR20 and mtVer [69] models. We accommodated among sites rate heterogeneity using
a combination of invariant sites and Γ-distributed rates across sites. We used empirical
amino acid frequencies (+F) for the mtVer. For the partitioned analysis, we fixed R matrix
parameters at the values estimated using the separate TM and ExM alignments, which we
call the bird mtTM model and bird mtExM model (hereafter, TM and ExM will be used
as abbreviations for transmembrane and extramembrane sites while mtTM and mtExM
will be used for the R matrices). The mixture model (bird mtMIX) was constructed using
the bird mtTM and bird mtExM R matrices as the two mixture components with the rate
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of each mixture component set to a value proportional to the tree lengths (the sum of
all ML branch length estimates) for each separate analysis; the relative rates (rounded to
three decimal places) were mtTM = 0.918 and mtExM = 1.082. We assumed Γ-distributed
rates to accommodate rate heterogeneity beyond that of the mixture component rates.
We estimated mixture weights by ML and calculated the relative contributions to the
site likelihoods using the -wslm option. We generated a generalized TM helix model to
compare with the bird mtTM model; we generated this model (JTTtm) by using the DCMut
method [70] method to convert the data in Jones et al. [50] into an R matrix. All R matrices
(bird mtTM, bird mtExM, and JTTtm) are available in PAML format in Supplementary
File S2 and https://github.com/ebraun68/protmodels (accessed on 26 September 2021).
The bird mtMIX model is also available as a NEXUS models block, which can be read by
IQ-TREE (this file includes unrounded values for the mixture component rates).

We conducted four analyses of nucleotide data, all of which were partitioned by codon
position. As with the amino acid datasets, we analyzed three nucleotide datasets: (1) TM
sites; (2) ExM sites; and (3) all sites. We conducted two analyses of the all-sites data, one
using three partitions (the codon positions) and a second with six partitions (the three
codon positions for TM sites and the three codon positions in the ExM sites). The same
four analyses were conducted using binary (RY) versions of the three datasets. Since the
IQ-TREE binary model uses 0 and 1 as character states, we actually coded the data as
purines = 0 and pyrimidines = 1; we generated the binary data matrix using recodeRY.pl,
available from https://github.com/ebraun68/RYcode (accessed on 26 September 2021).

We assessed the topological distances among trees using matching distances [71,72],
calculated in PAUP* 4.0a169 [73]. We used the Kimball et al. [52] supertree (specifically, the
matrix representation of the parsimony supertree from that paper) as our estimate of the
avian species tree. To facilitate comparisons between estimates of the mitogenomic tree
and the Kimball supertree, we reduced the trees to a set of 51 taxa, each of which represent
major lineages that were monophyletic in the mitogenomic tree. All trees are included
in Supplementary File S3. Taxa used for the comparison with the Kimball supertree
are included in that file as a taxset. We visualized distances among trees by clustering
the matching distances using neighbor joining [74]. The matrix of matching distances is
available in Supplementary File S4.

We used a simple dataset subdivision similar to the Farris et al. [75,76] incongruence
length difference (ILD) test to assess the differences between the TM and ExM data types.
Briefly, we generated 100 randomly subdivided dataset pairs, where one data subset had
the same number of sites as the TM sites and the other had the same number of sites
as the ExM sites. The ILD test uses the sum of the MP treelengths for the optimal trees
for each data subset as the test statistic; we eschewed the use of MP treelengths because
they can confound topology and model. Instead, we used three different test statistics:
(1) Euclidean distances between vectors of normalized R matrix parameters; (2) Euclidean
distances between vectors of amino acid frequencies; and (3) topological distances (match-
ing distances). This separates model differences (captured by two Euclidean distances)
from topological differences. Euclidean distances were calculated using a program writ-
ten by E.L.B. and available from https://github.com/ebraun68/protmodels (accessed on
26 September 2021). The use of dataset subdivision and model distances might be seen
as yielding results similar to the BIC, but we believe it might have more power when the
number of free parameters is large, many parameters are relatively constrained, and the set
of parameters that differ is difficult to predict. This is the case for the GTR20 model.

3. Results
3.1. Do the mtTM (Transmembrane) and mtExM (Extramembrane) Models Differ?

We estimated relative exchangeability (R matrix) and amino acid frequency parame-
ters for the TM and ExM sites using the GTR20 and mtVer models (+I + Γ rate heterogeneity,
see Methods); GTR20 had a better fit to both datasets (∆BIC for TM = 677.0478 and ∆BIC
for ExM = 861.4969). This suggests the relative exchangeability parameters for the two

https://github.com/ebraun68/protmodels
https://github.com/ebraun68/RYcode
https://github.com/ebraun68/protmodels
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data types exhibit significant differences. We used a random dataset subdivision to deter-
mine whether that was true; we asked whether the distances between model parameters
estimated using TM versus ExM sites exceeded our null expectation. Our null hypothesis
was that the two data types are best described by very similar models (i.e., the model dis-
tances will be low). The observed distances between models for the TM and ExM sites fell
outside the null distribution for the R matrices and for amino acid frequencies (Figure 2).
These results corroborated our first prediction (that the distances between estimated model
parameters for TM and ExM sites were greater than expected by chance).
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Comparing our novel mtTM and mtExM models to other TM and mitochondrial
models can provide insights into the patterns of molecular evolution for each data type.
The parameters that are most obviously expected to differ between TM and ExM models
are the amino acid frequency parameters and the existence of this difference is strongly
corroborated by our random subdivision test (Figure 2). As stated in the introduction, TM
helices are expected to be enriched for hydrophobic residues whereas ExM segments will
be enriched for polar residues. This is exactly what we observed when the bird mtTM and
mtExM matrices were compared (the blue boxes in Figure 3 indicate cases where the two
TM matrices have a higher amino acid frequency parameter than the bird mtExM matrix).
All nine of the amino acids with an elevated amino acid frequency in bird mtTM that
was elevated relative to mtExM had very low to moderate Grantham [77] polarity values;
seven of those nine amino acids (L, I, F, W, C, M, and V) form a group at the very lowest
end of the Grantham polarity scale (Supplementary File S2). Jones et al. [50] reported
data for a TM helix mutation data matrix based on nuclear- and mitochondrially-encoded
transmembrane proteins from a variety of taxa; we derived the JTTtm matrix (Figure 3a)
using their data. There were a few differences in the set of amino acids enriched in JTTtm
versus those enriched in bird mtTM, but the set of amino acid frequencies in JTTtm that
were elevated relative to bird mtExM (L, I, F, C, V, Y, A, and G) was quite similar to the set
enriched in bird mtTM.

Differences in amino acid exchangeability (R matrix) parameters were also evident
(Figure 3). Polar–polar exchangeabilities (e.g., N-K, D-E, and N-D) were elevated relative
to bird mtExM in both TM matrices whereas hydrophobic-hydrophobic exchangeabilities
(e.g., I-V, M-V, and F-Y) were elevated in mtExM (Supplementary File S2). However, the
largest relative exchangeability parameters in the mtTM matrix in absolute terms were not
polar–polar; they were I-V and H-Y instead. The largest exchangeability in JTTtm was a
polar–polar exchange (R-K), which also has a relatively high value in the bird mtTM matrix,
albeit not to the same degree (Figure 3). Regardless, it is clear that there are substantial
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differences between models of TM helix versus ExM loop evolution, as expected based on
our first prediction.
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mitochondrial models

Transmembrane models

Figure 3. Models of sequence evolution for TM and ExM sites, showing amino acid frequencies
(bottom) and R matrices (above). Four models of protein sequence evolution: (a) the JTTtm model,
a general model of TM helix evolution; (b) bird mtTM, our new model of TM helix evolution;
(c) bird mtExM, our new model of ExM loop evolution; and (d) the mtVer model [69], which was
trained using all sites in mitochondrially-encoded proteins from diverse vertebrates. The TM models
are inside the blue box and the mitochondrial models are inside the red box. All matrices were
normalized to have a maximum exchangeability of 100. Progressively darker shades of red are used
for larger relative exchangeability values. Amino acid frequency parameters highlighted in blue
in the TM models have values that are higher than the bird ExM amino acid frequency. These R
matrices available from https://github.com/ebraun68/protmodels (accessed on 26 September 2021)
and in Supplementary File S2.
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3.2. TM Helix and ExM Loops Tree Topologies: Stochastic Error, Not Data Type Effects

ML analyses of amino acid alignments of both data types yielded trees with similar
treelengths but a large number of differences for the relationships among orders (Figure 4).
The TM tree and the ExM tree both exhibited substantial conflict with the best available
estimates of the bird tree (Figure 1). Although this is consistent with the results of pub-
lished broadly sampled mitogenomic trees of birds [62,78], it emphasized the fact that the
additional taxon sampling in this study did not result in increased support.

Diversity 2021, 13, x FOR PEER REVIEW 9 of 27 
 

 

substantial differences between models of TM helix versus ExM loop evolution, as ex-
pected based on our first prediction. 

3.2. TM Helix and ExM Loops Tree Topologies: Stochastic Error, Not Data Type Effects 
ML analyses of amino acid alignments of both data types yielded trees with similar 

treelengths but a large number of differences for the relationships among orders (Figure 
4). The TM tree and the ExM tree both exhibited substantial conflict with the best available 
estimates of the bird tree (Figure 1). Although this is consistent with the results of pub-
lished broadly sampled mitogenomic trees of birds [62,78], it emphasized the fact that the 
additional taxon sampling in this study did not result in increased support. 

 
Figure 4. Condensed ML trees for 420 taxon mitochondrial data matrix estimated for each data type using the GTR20 + I + 
Γ model. (a) Sites annotated as TM. (b) Sites annotated as ExM. Most tips reflect multiple taxa, with orders collapsed to 
yield a single tip whenever they were monophyletic. Cases where taxa in the same order were not recovered as monophy-
letic in at least one of the analyses (e.g., Accipitriformes, Suliformes, and Gruiformes) are presented as two or more tips 
with information regarding the subset of the order that the tip represents in parentheses. Boxes to the right of each tree 
indicate clades highlighted in the results. Complete trees with branch lengths and ultrafast bootstrap support for all 
branches are available as a Nexus format treefile in Supplementary File S3. 

In contrast to our second prediction, neither data type appeared to perform substan-
tially better based on the “known clade” criterion. Analysis of TM sites recovered Noto-
palaeognathae, Phasianidae + Odontophoridae, and Eupasseres whereas analysis of ExM 
sites recovered monophyly of the order Gruiformes and two magnificent seven clades: V 
(Strisores [55]) and VII (Mirandornithes [79]). Although there were cases where analyses 
of both data types yielded 100% support for specific clades, support for orders and other 
strongly corroborated clades was often surprisingly low (Table 1). Conducting a com-
bined analysis of all sites often increased support relative to analyses of the individual 

VII

CASUARIIFORMES

GALLIFORMES (Numididae)
GALLIFORMES (Phasianidae)

GAVIIFORMES
PICIFORMES

CUCULIFORMES

GRUIFORMES (Ralli)

CICONIIFORMES

PROCELLARIIFORMES (Procellariidae)

NYCTIBIIFORMES

FALCONIFORMES

APODIFORMES

GALLIFORMES (Cracidae)

GALLIFORMES (Odontophoridae 1)

OTIDIFORMES

PHAETHONTIFORMES

SULIFORMES (excluding Fregatidae)

PELECANIFORMES (Pelecanidae + Balaenicipitidae)

AEGOTHELIFORMES

APTERYGIFORMES

PELECANIFORMES (Ardeidae)

PELECANIFORMES (Threskiornithidae)

PSITTACIFORMES

RHEIFORMES

PHOENICOPTERIFORMES

PASSERIFORMES (Passeri)

GRUIFORMES (Grui)

PODICIPEDIFORMES
PTEROCLIFORMES

PASSERIFORMES (Tyranni)

ACCIPITRIFORMES (Acciptres)

SPHENISCIFORMES

COLUMBIFORMES

GALLIFORMES (Megapodiidae)

DINORNITHIFORMES

PASSERIFORMES (Acanthisittidae)

PROCELLARIIFORMES (Diomedeidae + Oceanitidae)

SULIFORMES (Fregatidae)

STRIGIFORMES
GALLIFORMES (Odontophoridae 2)

BUCEROTIFORMES

TINAMIFORMES

EURYPYGIFORMES

STRUTHIONIFORMES

ANSERIFORMES

ACCIPITRIFORMES (Cathartidae)

TROGONIFORMES

CHARADRIIFORMES

CORACIIFORMES

SULIFORMES (Fregatidae)

OTIDIFORMES

STRUTHIONIFORMES

PICIFORMES

PROCELLARIIFORMES (Procellariidae)

PSITTACIFORMES

STRIGIFORMES

GALLIFORMES (Phasianidae)

APTERYGIFORMES

AEGOTHELIFORMES

PHOENICOPTERIFORMES

PELECANIFORMES (Ardeidae)

ACCIPITRIFORMES (Cathartidae)

RHEIFORMES

CHARADRIIFORMES

PODICIPEDIFORMES

CICONIIFORMES

CORACIIFORMES

FALCONIFORMES

PASSERIFORMES (Passeri)

ACCIPITRIFORMES (Acciptres)

PHAETHONTIFORMES

PELECANIFORMES (Threskiornithidae)

BUCEROTIFORMES

SPHENISCIFORMES
PELECANIFORMES (Pelecanidae + Balaenicipitidae)

NYCTIBIIFORMES

GALLIFORMES (Megapodiidae)

GALLIFORMES (Numididae)

APODIFORMES

PTEROCLIFORMES

GRUIFORMES (Grui)

GAVIIFORMES

ANSERIFORMES

SULIFORMES (excluding Fregatidae)

EURYPYGIFORMES

PASSERIFORMES (Acanthisittidae)

GALLIFORMES (Odontophoridae 2)

TINAMIFORMES

GRUIFORMES (Ralli)

GALLIFORMES (Cracidae)

PASSERIFORMES (Tyranni)

DINORNITHIFORMES

PROCELLARIIFORMES (Diomedeidae + Oceanitidae)

COLUMBIFORMES

CUCULIFORMES

GALLIFORMES (Odontophoridae 1)

CASUARIIFORMES

TROGONIFORMES

TRANSMEMBRANE SITES(a) (b) EXTRAMEMBRANE SITES

N
otopalaeognathae

Phasianidae
+

O
donophoridae

Eupasseres

V

Figure 4. Condensed ML trees for 420 taxon mitochondrial data matrix estimated for each data type using the GTR20 + I + Γ
model. (a) Sites annotated as TM. (b) Sites annotated as ExM. Most tips reflect multiple taxa, with orders collapsed to yield
a single tip whenever they were monophyletic. Cases where taxa in the same order were not recovered as monophyletic
in at least one of the analyses (e.g., Accipitriformes, Suliformes, and Gruiformes) are presented as two or more tips with
information regarding the subset of the order that the tip represents in parentheses. Boxes to the right of each tree indicate
clades highlighted in the results. Complete trees with branch lengths and ultrafast bootstrap support for all branches are
available as a Nexus format treefile in Supplementary File S3.

In contrast to our second prediction, neither data type appeared to perform sub-
stantially better based on the “known clade” criterion. Analysis of TM sites recovered
Notopalaeognathae, Phasianidae + Odontophoridae, and Eupasseres whereas analysis of
ExM sites recovered monophyly of the order Gruiformes and two magnificent seven clades:
V (Strisores [55]) and VII (Mirandornithes [79]). Although there were cases where analyses
of both data types yielded 100% support for specific clades, support for orders and other
strongly corroborated clades was often surprisingly low (Table 1). Conducting a combined
analysis of all sites often increased support relative to analyses of the individual data types,
as expected if the primary reason for differences between the analyses of TM and ExM
sites was increased stochastic error due to the smaller size of the data subsets. When there
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were conflicts between the analyses of the TM and ExM site, the combined analyses did not
appear to agree with one subset more than the other (Table 1). Results were similar when
analyses were conducted using the mtVer model (Supplementary File S3), although the fit
of this model was not as good as the fit of the GTR20 + I + Γ model (see above, Section 3.1).

Table 1. Support for selected clades 1 in GTR20 + I + Γ analyses of TM, ExM, and All (TM+ExM) sites.

Clade 2 TM Sites ExM Sites All Sites

PALAEOGNATHAE 100 100 100
NOTOPALAEOGNATHAE 72 – 57

(-) “Ratites”—Dinornithiformes 3 – 42 –
Dinornithiformes + Tinamiformes 87 92 98

GALLOANSERES 100 100 100
Galliformes 100 100 100

(-) Numididae + Phasianidae – 74 57
Odontophoridae + Phasianidae 75 – –

Odontophoridae 84 – 71
NEOAVES 95 99 100

VII. MIRANDORNITHES – 78 93
VI. COLUMBIMORPHAE – – –
“ORPHAN ORDERS” 4 n/a n/a n/a

Charadriiformes 89 76 98
Gruiformes – 90 –

V. STRISORES – 59 75
Daedalornithes 82 35 80
Apodiformes 97 92 99

IV. OTIDIMORPHAE – – –
III. PHAETHONTIMORPHAE – – –

II. AEQUORNITHES – – –
Procellariiformes – 96 96

Suliformes – – 92
Sulidae + Phalacrocoracidae + Anhingidae 99 100 100

Pelecaniformes – – –
(-) Ardeidae + Threskiornithidae – – 64
Balaenicipitidae + Pelecanidae 72 81 95

I. TELLURAVES – – –
Accipitriformes – – –

Accipitres (Acciptriformes—Cathartidae) 96 49 93
Strigiformes 99 100 100

Coraciiformes 36 84 79
Passeriformes 94 100 100

Eupasseres 94 – 87
1 We present ultrafast bootstrap support for clades present in the optimal tree and we have shaded support values
when analyses of the data subsets disagree. In those cases, we shaded cells light gray if they agree with our best
estimate of the avian species tree and we shaded cells black with white text if they conflict with our best estimate
of the avian species tree. 2 Clades were included if they met one of these three criteria: (1) they were members
of the “magnificent seven”; (2) they had <100% support in at least one analysis; or (3) they included a subclade
that met the second criterion. 3 We have highlighted a small number of groups that are unlikely to be present
in the avian species tree. The putative clades that are unlikely to be correct begin with (-) and are underlined.
4 Although some studies [12,80] have supported a Charadriiformes+Gruiformes clade we do not view that clade
to be sufficiently corroborated to be scored in this table. Therefore, we designate these orders as “orphans” to
indicate that they are not members of the “magnificent seven” superordinal clades.

There are two clades that could reflect data type effects based on the support values in
Table 1: Notopalaeognathae and the Odontophoridae + Phasianidae clade. In both cases,
there is conflict between the TM and ExM trees and support is higher in the TM tree than it
is in the all-sites tree. This suggests that the topological signal in each data type actually
conflicts. This pattern contrasts with Mirandornithes and Strisores; both of those clades are
present in the ExM tree and absent in the TM tree but the all-sites tree had substantially
higher support than the ExM tree. This suggests that there is hidden support [81,82] for
both Mirandornithes and Strisores in the TM data). In all of the cases we highlighted, the



Diversity 2021, 13, 555 11 of 26

TM tree includes a signal congruent with the likely topology (albeit mixed in the case of
Mirandornithes and Strisores) of the true mitogenomic tree. This suggests that ExM sites
might perform slightly worse than TM sites, which is the opposite of our prediction.

Our third prediction was that phylogenetic analyses of TM and ExM sites will yield
significantly different tree topologies. It is possible to exclude the existence of strongly
misleading data type effects because we did not recover strong support for any backbone
relationships (Table 1 and Supplementary File S3). Despite the obvious differences between
the tree topologies we recovered (Figure 4), the low support along the backbone and for
many orders (Table 1 and Supplementary File S3) led us to postulate that the topologi-
cal differences simply reflect the stochastic error associated with dividing the complete
mitochondrial protein alignment into smaller sub-alignments for the TM and ExM sites.
We calculated topological distances for the 100 randomly subdivided datasets used above.
Unlike the case for model distances, the topological distance between the TM and ExM
trees fell within the null distribution (Figure 5), with analyses of nine of the 100 randomly
subdivided dataset pairs yielding trees with higher matching distances. Although we
acknowledge that the topological distance between the TM and ExM trees fell at the upper
end of the null distribution and that much of the topological similarity between the TM
and ExM trees appears to reflect nodes closer to the tips (284 out of 417 possible internal
branches were present in a strict consensus of the TM and ExM trees), we believe that these
results are best interpreted as evidence for strong stochastic error due to the reduced size of
the TM and ExM data matrices. Thus, we were unable to corroborate our third prediction
(that topological distances between trees estimated using TM versus ExM sites would be
greater than expected by chance.
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3.3. Is There Evidence for Heterogeneity within TM and ExM Sites?

One type of model misspecification might be the assumption of homogeneity within
each data type implicit in our analyses. If the bird mtTM and bird mtExM matrices are
good approximating models for each data type we would expect them to exhibit a better
fit to the vast majority of sites within the appropriate data type (i.e., bird mtTM would
fit TM sites better than bird mtExM and vice versa). It is straightforward to test this by
fitting a two-component mixture model, with one component corresponding to bird mtTM
R matrix and the second component corresponding to bird mtExM R matrix. Since there
are clear differences between the models for TM and ExM sites (Figures 2 and 3) we expect
the mixture model that combines bird mtTM and bird mtExM, which we call bird mtMIX,
to fit the data better than a single matrix. This is precisely what we found (∆BIC for bird
mtMIX relative to all-sites GTR20 + I + Γ = 5045.4351).
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It is possible to make two predictions about the behavior of the bird mtMIX model
if the patterns of sequence evolution for TM and ExM sites differ between data types but
are relatively homogeneous within each data type: 1) estimates of the mixture weights
for each component will be close to the proportions of sites in each data type; and 2) the
contributions of each mixture component to each site likelihood are expected to differ for the
two data types and be largely non-overlapping (see Pagel and Meade [83] for an illustration
of the second prediction). This is not what we found (Table 2 and Supplementary File S5);
the ML estimate of the mixture weight for the bird mtTM model component was higher
than the proportion of TM sites and the weight of the bird mtExM mixture component
was lower than the proportion of ExM sites. The contributions of each mixture component
to the site likelihoods (the lnL difference in Table 2) are in broad agreement with our
second prediction. The median contribution of the bird mtTM mixture component to
the likelihoods of TM sites was higher than the median contribution of the bird mtTM
mixture component to ExM sites. However, there was a wider range of contributions of
each model component to the site likelihoods than we expected. The bird mtTM mixture
component made a surprisingly large contribution to the likelihood of many ExM sites.
In fact, the median contribution of the bird mtTM mixture component was very close to zero,
indicating that the bird mtTM mixture component actually makes the larger contribution
to the likelihood of half of the ExM sites. Overall, these results indicate that the patterns of
sequence evolution in heavy strand-encoded mitochondrial proteins is more complex than
one might predict based on the straightforward assumption that sites have evolved under
two models, one for TM sites and one for ExM sites.

Table 2. Mixture weights and contribution of each mixture component to site likelihoods.

Site Type 1 ML Estimate of Weight Proportion of Sites

TM 0.5943 0.5103
ExM 0.4057 0.4897

lnL mtTM—lnL mtExM 2 TM Sites ExM Sites

Lower Quartile 0.3038 −1.6424
Median 1.2827 0.0894

Upper Quartile 2.16975 1.23255
1 The estimated mixture weight is expected to equal the observed proportion of sites. 2 Positive values are
expected for TM sites and negative values are expected for ExM sites.

Estimates of phylogeny generated using partitioned analysis and mixture models were
generally similar to the unpartitioned tree (Table 3). Unsurprisingly, both the partitioned
analysis and use of the bird mtMIX model resulted in a better fit to the complete data
matrix than the GTR20 + I + Γ model with parameters estimated using all sites (∆BIC for
partitioned analysis = 2480.0035; ∆BIC for bird mtMIX = 5045.4351). A strict consensus of
the unpartitioned and partitioned trees had 377 resolved branches (90.4% of the potential
branches) and a strict consensus of the unpartitioned and bird mtMIX tree had 383 resolved
branches (91.8% of the potential branches). Support for various clades in the partitioned
and bird mtMIX trees was generally similar to support in the unpartitioned all-sites tree
(compare the values in Table 3 to the all-sites column in Table 1). Both partitioned analysis
and use of the mixture model had an impact on branch length estimates; relative to tree
resulting from the all-sites unpartitioned analysis, the bird mtMIX treelength was 1.148 and
the partitioned analysis treelength was 1.235. The ratio of the sum of the internal branch
lengths to the total treelength was virtually identical across analyses (31.98% for the bird
mtMIX model, 32.019% for partitioned analysis, and 32.03% for the unpartitioned analysis).
However, it will be necessary to conduct simulations to understand whether the branch
length estimates based on analyses using mtMIX or partitioned analyses are closer to the
true branch lengths.
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Table 3. Support for selected clades 1 in analyses of all amino acid sites using partitioned and
mixture models.

Clade Partitioned birdMIX

PALAEOGNATHAE 100 100
NOTOPALAEOGNATHAE 57 —

(-) “Ratites”—Dinornithiformes — 23
Dinornithiformes + Tinamiformes 98 99

GALLOANSERES 100 100
Galliformes 100 100

(-) Numididae + Phasianidae 57 61
Odontophoridae + Phasianidae — —

Odontophoridae 67 71

NEOAVES 97 99
VII. MIRANDORNITHES 94 93
VI. COLUMBIMORPHAE — —

“ORPHAN ORDERS” n/a n/a
Charadriiformes 99 100

Gruiformes — 97
V. STRISORES 71 86

Daedalornithes 77 81
Apodiformes 99 99

IV. OTIDIMORPHAE — —
III. PHAETHONTIMORPHAE — —

II. AEQUORNITHES — —
Procellariiformes 97 97

Suliformes 94 65
Sulidae + Phalacrocoracidae + Anhingidae 100 100

Pelecaniformes — —
(-) Ardeidae + Threskiornithidae — 35
Balaenicipitidae + Pelecanidae 98 98

I. TELLURAVES — —
Accipitriformes — —

Accipitres (Acciptriformes—Cathartidae) 97 96
Strigiformes 100 100

Coraciiformes 80 89
Passeriformes 100 100

Eupasseres 72 80
1 We have shaded support values when analyses presented in this table disagree. In those cases, we shaded cells
light gray if they agree with our best estimate of the avian species tree and we shaded the cells black with white
text if they conflict with our best estimate of the avian species tree.

3.4. Protein Structure Has an Impact on Analyses of Nucleotide and Purine-Pyrimidine Data

Arguably, mitochondrial sequence data have the greatest potential as sources of
information for biodiversity studies near the tips of the vertebrate tree of life [84–86]. Thus,
it would be desirable to assess the impact of protein structure on analyses of nucleotide
data. For our partitioned analyses of the TM and ExM codons (three partitions, one for each
codon position), the TM and ExM nucleotide trees exhibit a number of differences from the
trees based on amino acid data (Table 4 and Supplementary File S3). We did not observe a
simple pattern of either increased or decreased congruence with the likely species tree.
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Table 4. Support for selected clades 1 in analyses of nucleotide sequences for TM, ExM, and all sites.

Clade TM Sites ExM Sites All Sites (3) All Sites (6)

PALAEOGNATHAE 100 100 100 100
NOTOPALAEOGNATHAE — — — —

(-) PALAEOGNATHAE—Rheiformes 2 — 62 — 34
(-) “Ratites”—Dinornithiformes 2 59 — — —

(-) “Ratites” 2 79 — 48 —
Dinornithiformes + Tinamiformes — 84 — 55

GALLOANSERES 100 100 100 100
Galliformes 100 100 100 100

(-) Numididae + Phasianidae — 64 — —
Odontophoridae + Phasianidae 65 — 69 70

Odontophoridae 99 76 100 100
NEOAVES 100 99 100 100

VII. MIRANDORNITHES 88 98 100 100
VI. COLUMBIMORPHAE — — — —

“ORPHAN ORDERS” n/a n/a n/a n/a
Charadriiformes 99 100 — 3 100

Gruiformes 79 97 — 99
V. STRISORES — 84 — —

Daedalornithes 97 79 95 100
Apodiformes 99 99 100 100

IV. OTIDIMORPHAE — 46 — —
III. PHAETHONTIMORPHAE — — — —

II. AEQUORNITHES — 73 — —
Procellariiformes 100 100 100 100

Suliformes 100 86 100 100
Sulidae + Phalacrocoracidae + Anhingidae 100 100 100 100

Pelecaniformes 40 — — —
(-) Ardeidae + Threskiornithidae 60 84 94 97
Balaenicipitidae + Pelecanidae 93 100 100 100

I. TELLURAVES — — — —
Accipitriformes — — — 22

Accipitres (Acciptriformes—Cathartidae) 98 100 100 100
Strigiformes 100 99 100 100

Coraciiformes — — — —
Passeriformes 100 100 100 100

Eupasseres 100 — 76 72
1 We have shaded support values when analyses of the data subsets disagree. Cells were shaded light gray if
they agree with our best estimate of the avian species tree and black with white text if they conflict with our
best estimate of the avian species tree. 2 We have added two groups that are unlikely to be correct because they
appeared in nucleotide analyses and they relate to the topology for Palaeognathe (see discussion for additional
information). 3 All Charadriiformes except Turnix sylvaticus form a clade with 100% support in the three-partition
nucleotide analysis of all sites. The family Turnicidae (hemipodes) has a long branch in many analyses of
molecular data [56,61,63].

The six-partition analysis of all sites (partitioning by structure and codon position)
improved the fit to the data (∆BIC favoring the six-partition analysis = 1811.5226) relative
to three partitions (partitioning by codon position alone). The six-partition tree exhibited a
number of differences from the trees based on separate analyses of TM and ExM sites and
the three partition all-sites tree. The most notable difference between the three partition
and six partition trees was the non-monophyly of Charadriiformes and Gruiformes in
the former and the strongly supported monophyly of those orders in the six-partition
analysis (Table 4). That result was surprising because separate nucleotide analysis of TM
and ExM data yielded trees with monophyly of Charadriiformes and Gruiformes. The
estimated nucleotide frequencies for TM sites and ExM sites were very different (Table 5),
suggesting that the three-partition analysis resulted in model misspecification that, based
on the topological results, had a meaningful impact on phylogenetic estimation.
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Table 5. ML estimates of base frequencies and relative partition rates in the analyses of nucleotide sequences.

Clade Rate A C G T A + G 1

All sites (3 partition analysis)
1st codon positions 0.2806 0.292628 0.294518 0.212506 0.200348 0.505134
2nd codon positions 0.1578 0.185234 0.295701 0.121601 0.397464 0.306835
3rd codon positions 2.5616 0.399664 0.422178 0.0456232 0.132535 0.4452872

TM sites (6 partition analysis)
1st codon positions 0.2730 0.274286 0.284418 0.216439 0.224857 0.490725
2nd codon positions 0.1253 0.0871239 0.280307 0.116706 0.515864 0.2038299
3rd codon positions 2.7629 0.386619 0.433748 0.0439558 0.135678 0.4305748

ExM sites (6 partition analysis)
1st codon positions 0.2540 0.311341 0.304823 0.208493 0.175343 0.519834
2nd codon positions 0.1611 0.285325 0.311407 0.126596 0.276672 0.411921
3rd codon positions 2.4235 0.412972 0.410375 0.0473243 0.129329 0.4602963

1 Sum of the nucleotide frequency parameters for purines.

Recoding nucleotide data as two states (purines and pyrimidines; typically called
RY-coding) has been used in a number of studies, especially those using mitochondrial data.
In fact, RY-coding has resulted in very clear improvements to estimates of avian phylogeny
when limited taxon samples are used [43]. When we used RY-coding for the four analyses
conducted using nucleotide data (Table 6), we did observe several differences. One notable
shift relative to four-state data was the support in Notopalaegnathae in the TM sites;
however, other analyses (ExM sites, all sites/three partitions, and all sites/six partitions) all
placed Rheiformes sister to other Palaeognathae, similar to some of the nucleotide analyses.
Although this shift represented greater congruence with the species tree, we noticed that
analyses of TM sites after RY-coding also resulted in the loss of Strigiformes monophyly
(Table 6). This was surprising given the high support for Strigiformes in other analyses
(Tables 1, 3, 4 and 6). Similar to the analyses using nucleotide data, the six-partition model
had a better fit to the data than the three-partition model (∆BIC favoring the six-partition
RY analysis = 303.0233). This is likely to represent the fact that the hydrophobic amino
acids I, L, M, F, and V, which are enriched in the TM helices (Figure 3), have codons with T
in their second position. These results emphasize that researchers should consider protein
structure when conducting analyses of mitochondrial nucleotide sequences, regardless of
whether or not they employed RY-coding.

3.5. Multiple Factors Shape the Tree Space for Analyses of Mitochondrial Proteins

We assessed the topological distances among our estimates of the mitogenomic
tree for birds and between those trees and the likely species tree (represented by the
Kimball et al. [52] supertree). It was necessary to reduce the taxon sample to compare our
mitogenomic trees to the Kimball supertree. This limited the comparisons major clades,
although we did capture all of the topological variation highlighted in the tables along with
all relationships among orders. The matching distances between the mitogenomic trees
and the Kimball supertree ranged from 131 to 200 (Figure 5), much lower than expected for
matches among random trees (the median matching distances for a sample of 1000 random
trees was 428; 95% of comparisons fell in the range of 369–496). Thus, the topological
distances between the Kimball supertree and the mitogenomic trees was between 31%
and 47% of the expected distance for pairs of random trees. The ExM amino acid data
clustered with the Kimball supertree, but the distance to the TM amino acid trees was only
slightly higher in absolute terms (Figure 6 and Supplementary File S4). The nucleotide
trees clustered in tree space and the trees estimated using the same datasets (TM, ExM,
and all sites) clustered regardless of whether they were two-state (RY) or four-state (unal-
tered nucleotide data) trees. The most striking pattern was the large distances among all
estimates of the mitogenomic tree and between estimates of the mitogenomic tree and the
Kimball supertree.
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Table 6. Support for selected clades 1 in analyses of purine-pyrimidine (RY) data for TM, ExM, and
all sites.

Clade TM Sites ExM Sites All Sites (3) All Sites (6)

PALAEOGNATHAE 100 100 100 100
NOTOPALAEOGNATHAE 83 — — —

(-) PALAEOGNATHAE—Rheiformes — 56 42 60
Dinornithiformes + Tinamiformes 75 95 95 94

GALLOANSERES 100 100 100 100
Galliformes 100 100 100 100

(-) Numididae + Phasianidae — 77 — —
Odontophoridae + Phasianidae 57 — 50 54

Odontophoridae 97 81 89 99

NEOAVES 100 100 100 100
VII. MIRANDORNITHES 100 98 100 100
VI. COLUMBIMORPHAE — — — 58

“ORPHAN ORDERS” n/a n/a n/a n/a
Charadriiformes 100 98 100 100

Gruiformes 92 98 100 100
V. STRISORES — 72 — —

Daedalornithes 95 80 100 99
Apodiformes 100 98 100 100

IV. OTIDIMORPHAE — — — —
III. PHAETHONTIMORPHAE — — — —

II. AEQUORNITHES — — — —
Procellariiformes 100 97 100 100

Suliformes 99 35 100 100
Sulidae + Phalacrocoracidae + Anhingidae 100 100 100 100

Pelecaniformes 54 — — —
(-) Ardeidae + Threskiornithidae 71 — 75 78
Balaenicipitidae + Pelecanidae 93 100 100 100

I. TELLURAVES — — — —
Accipitriformes — — — —

Accipitres (Acciptriformes—Cathartidae) 100 100 100 100
Strigiformes — 94 98 97

Coraciiformes — — — —
Passeriformes 100 100 100 100

Eupasseres 79 — 70 69
1 We have shaded support values when analyses of the data subsets disagree. Cells were shaded light gray if
they agree with our best estimate of the avian species tree and black with white text if they conflict with our best
estimate of the avian species tree.
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Figure 6. Dendrogram generated by clustering topological distances for the major lineages.
We viewed the Kimball et al. [52] supertree, which is a summary of phylogenomic studies, as
an estimate of the species tree and included for comparison to the mitogenomic trees. The parentheti-
cal number that follows each mitochondrial tree is the matching distance to the Kimball supertree.
To facilitate visualization, the root of the tree has been placed at the midpoint. The complete distance
matrix is available in Supplementary File S4.
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4. Discussion

We addressed three hypotheses related to the potential relationship between the
structure of mitochondrially-encoded proteins and the behavior of phylogenetic analyses,
using a dataset comprising all 12 heavy strand-encoded proteins from 420 bird species.
First, we corroborated our hypothesis that the relative exchangeabilities and equilibrium
frequencies of amino acids would differ between TM and ExM environments. We also
found evidence that the bird mtTM model exhibited similarities to a general model of
TM helix evolution (JTTtm). Moreover, the observed similarities between the bird mtTM
and JTTtm models conformed to our expectations based on the analyses of buried versus
solvent-exposed residues in globular proteins [31]. We did not corroborate our second
hypothesis, that phylogenetic analyses of ExM loops would exhibit better performance in
terms of topological estimation than analyses of TM helices (based on the NB observations).
We found that some a priori expected clades emerged only in analyses of ExM sites and
that others emerged only in analyses of TM sites. The overall support for many clades
was also quite low. Third, we hypothesized that distinct topological signals would emerge
in phylogenetic analyses of each data type. Although the trees based on each data type
differed (Figure 4), it seems reasonable to postulate that stochastic error can explain the
observed incongruence between the data types. The broad distribution of topological
distances in the data subdivision test (Figure 5) suggests that stochastic error played a large
role in shaping the differences among trees. Overall, we concluded that the best models for
TM and ExM sites were very different but found little or no evidence for topological data
type effects in the mitochondrially-encoded proteins of birds.

4.1. Data Type Effects and Process Partitions

It has long been appreciated that patterns of evolution are heterogeneous, with distinct
subsets of the genome and suites of morphological characters having the potential to
exhibit different patterns of evolution. Bull et al. [11] defined process partitions as subsets
of characters in a larger phylogenetic data matrix that evolved according to rules that differ
from the other subset(s) in some demonstrable way. They provided a number of examples,
such as (1) codon positions; (2) coding versus non-coding regions; (3) different genes and
different regions within genes (including regions defined by the three-dimensional protein
structure); (4) stems versus loops in ribosomal RNAs; and (5) nuclear versus organellar
genes. As described in the introduction, the data type effects idea modifies this in two ways.
The first is that data type effects exclude cases where discordance among gene trees can
provide a simple explanation for any observed incongruence. Reddy et al. [10] explicitly
excluded sex chromosome versus autosome comparisons from data type effects because
different gene tree spectra are expected in such a comparison. Thus, it would certainly be
inappropriate to view differences between a tree based on analyses of multiple nuclear loci
and a tree based on a large non-recombining region such as the avian mitogenome [87,88]
as a data type effect. On the other hand, it is reasonable to describe incongruence among
estimates of phylogeny obtained using different subsets of sites in organelle genomes
(or sex chromosomes) as data type effects.

The second criterion for data type effects is that multiple independent samples of
each data type converge on trees in similar parts of tree space. It difficult to test this
criterion in the same way as Reddy et al. [10] given the size of vertebrate mitogenomes,
although observing similar topologies in jackknifed subsets of the TM and ExM sites would
corroborate the hypothesis that different signals are associated with TM versus ExM sites.
However, a prerequisite for such a test would be finding that the trees estimated using the
TM and ExM sites are different enough to define two distinct parts of tree space. For that to
be true the distance between the TM and ExM trees should exceed the expected distances
between pairs of trees estimated using random subsets of the complete data matrix identical
in size to the TM and ExM subsets; we did not meet that criterion.

A similar criterion can be used to judge distances between models, although such a
test might not appear to yield information beyond the information available from standard
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model selection criteria such as the BIC. However, a random subdivision test might have
an advantage relative to criteria such as the BIC for protein models. Most models of protein
sequence evolution, such as the Dayhoff/PAM [89], JTT [90], LG [91], and mtVer [69]
models, are fixed R matrices estimated based large training dataset, so they have no free
R matrix parameters. In contrast, the GTR20 model is very parameter-rich (it has 189 free
R matrix parameters). However, many R matrix parameters are highly constrained (e.g.,
amino acid substitutions that require multiple nucleotide changes will have R matrix
parameters equal to or close to zero). However, fixing those parameters at a value of zero
is not a good solution; Kosiol et al. [92] and Pandey and Braun [31] used very different
analytical frameworks but both showed that some amino acid substitutions that require
multiple nucleotide changes are associated with values much larger than zero. Thus, when
faced with the question of whether a potentially heterogeneous protein dataset is best
described by a single R matrix or multiple R matrices, one may find conditions where
optimizing all GTR20 model parameters, including those constrained to be close to zero,
cannot be justified using the BIC. However, a few important parameters might have very
different values; dataset subdivision provides a simple method to determine whether this
is the case. In this study, both the BIC and random subdivision corroborated the hypothesis
that the best models for TM and ExM sites were significantly different whereas random
subdivision revealed that topological data type effects are either very weak or non-existent.

4.2. Models of Transmembrane Protein Evolution and the NB Hypothesis

The new models of mitochondrial protein evolution we developed exhibit patterns
consistent with the “rule of opposites,” described by Pandey and Braun [31] for buried
versus solvent-exposed residues in globular proteins. The rule of opposites is a statement
that the most exchangeable amino acids in a specific structural environment are the less
common amino acids in that environment. In this study, polar–polar exchanges were
associated with the most elevated relative exchangeabilities in both of our new TM models
(bird mtTM and JTTtm) and hydrophobic-hydrophobic exchangeabilities were the most
elevated in mtExM. The rule of opposites applies to relative exchangeabilities (R matrix
parameters) and not to instantaneous rates (Q matrix parameters). Therefore, the rule of
opposites could reflect, at least in part, the time reversibility constraint. Pairs of rare amino
acids require large exchangeabilities to explain even modest instantaneous rates of change
between those amino acids. Pandey and Braun [31] proposed two mutually-exclusive
verbal models regarding protein evolution relevant to the rule of opposites: (1) amino
acids that are rare in a specific environment would not be exchangeable because they
are necessary for specific functions; and (2) exchanges between pairs of amino acids that
are rare in a specific environment are actually common (relative to their frequency) as
long as the physicochemical nature of the amino acid is conserved. If the first model was
correct it is necessary to invoke the high variance of R matrix parameters for pairs of low
frequency amino acids. However, the first hypothesis also predicts that models based on
some training datasets would not show evidence of the rule of opposites, at least for some
exchangeabilities. Pandey and Braun [31] argued that their results for globular proteins,
where they estimated parameters from seven different training datasets, favored the second
model. This study shows that a similar pattern emerges in the bird mtTM model and in the
more general JTTtm models, further corroborating the second verbal model.

Although we were able to improve the fit of evolutionary models to mitochondrially-
encoded proteins by considering TM and ExM sites separately, we interpret the results of
the mixture model analyses as evidence that there is substantial heterogeneity within each
data type. All of the mitochondrially-encoded proteins of vertebrates are subunits within
large multiprotein complexes that include nuclear-encoded, mitochondrially-localized
proteins. This could cause some sites in the ExM loops to evolve under rules similar to
those for buried sites in globular proteins, reflecting their contacts with other subunits.
Since buried sites in globular proteins are enriched for hydrophobic amino acids [17,93] the
existence of these sites could explain both the elevated estimate of the mtTM component



Diversity 2021, 13, 555 19 of 26

mixture weight and the large contribution of the bird mtTM mixture component to the
site likelihoods for some ExM sites (Table 2). Regardless, that heterogeneity suggests
further improvements to models of sequence evolution have the potential to be useful,
both for efforts to understand patterns of molecular evolution and for improving estimates
of phylogenetic trees.

The topological distances between our estimates of the avian mitogenomic tree and
the likely species tree (represented by the Kimball supertree; see Figure 6) were very
high, ranging from 31% to 47% of the expected distance between pairs of random trees.
The largest distance among estimated mitochondrial trees was even higher (the distance
between the ExM amino acid tree and the three-partition RY tree for all sites was 250, 58%
of the median distance between pairs of random trees). The simplest interpretation of these
results is that they further emphasize the role of stochastic error in our estimates of the
mitogenomic tree of birds. The clustering of nucleotide trees in tree space is likely due to
the influence of information from synonymous substitutions on topology. The observation
that there were three clusters (TM, ExM, and all sites) within the nucleotide trees suggests
that deviations from stationarity in base composition did not lead to a strong topological
signal. The hypothesis that the shifts base composition led to a strong topological signal
would predict two clusters, one for four state data and one for two state6, because RY-
coding reduces deviations from stationarity [45,94,95] under most conditions. Although
we believe that our “tree-of-trees” is useful, we emphasize that it is simply a tool to reduce
high-dimensional data (topological distances among trees) to facilitate visualization. Thus,
the clustering of the ExM trees with the Kimball supertree in the dendrogram should not be
overinterpreted. Although it could indicate that analyses of ExM sites perform better than
those of TM sites (which would be consistent with the prediction based on NB), the long
terminal branches provide evidence that any such effect is weak. Overall, the structure of
the tree-of-trees supports two conclusions: (1) analyses of all datasets are very sensitive
to the details of analytical methods (compare the distances between trees estimated using
mtVer versus the optimized mtTM and mtExM models in Figure 6); and (2) stochastic error
plays a large role in our estimates of the mitogenomic tree.

Using non-historical topological signals to study molecular evolution has one potential
advantage over methods that focus on parameter estimation (e.g., the rate matrices in this
study). If we assume model misspecification leads to non-historical signals, then it becomes
possible to identify sites with a poor fit to the model used for the analysis finding sites
associated with the unexpected topological signal. It is challenging to identify sites with
poor fit to a model of sequence evolution in absolute (rather than relative) terms [96,97],
making approaches that are able to highlight sites characterized by model violations useful.
This was our goal when we searched for a topological data type effect associated with
structural environments in mitochondrially-encoded proteins.

There are also challenges associated with using non-historical topological signals to
study molecular evolution. First, there is always some uncertainty in empirical phylogenies,
making it difficult to identify the true historical signal. Discordance among gene trees
further complicates this issue because a tree that conflicts with a “known” species tree
can also be explained by gene tree–species tree discordance. Second, the best method
to reveal non-historical signals is unclear. NB used the MP criterion, a computationally
efficient method [98] with a simple biological interpretation (MP treelength is the minimum
number of changes for a character given a specific tree topology). However, the model
implicit in MP has troubling mathematical properties when it is used with molecular data;
(Holder et al. [99] describes the problems associated with branch lengths in MP-equivalent
models). This motivated us to use a standard ML framework. Third, misleading signals,
such as those identified by NB, might emerge only at certain depths in the tree of life. Our
taxon sampling largely limited our topological assessments to clades that diversified in
the lower Paleogene or upper Cretaceous (see Field et al. [100]); biases that might appear
at other depths in the tree would not be detectable. Finally, substitutions responsible for
misleading signals accumulate in a stochastic manner, just like substitutions responsible
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for historical signals. Even if one knew that a specific tree topology and evolutionary
model is misleading in expectation (given a specific analytical method), analysis of a finite
sample of sites generated under that model might not show evidence of the misleading
topological signal (Kim [101] presents an example of a topology + model that exhibits this
behavior in Figure 13 of that publication). However, that scenario would be expected to
yield a dataset with very weak non-historical signals. Since it is impossible to distinguish
a weak misleading signal from simple stochastic error, this could be the case for the
avian mitogenomic tree, although that scenario requires more assumptions than a scenario
involving stochastic error alone.

4.3. Implications for Avian Systematics and Evolution

Two additional questions emerge if we shift our focus from molecular evolution to the
study of avian biodiversity: (1) What information about avian evolution does an accurate
estimate of the mitogenomic tree of birds provide? (2) Have our analyses generated an
accurate estimate of the avian mitogenomic tree? The first question is especially important
in the era of genomics; whole-genome sequences for birds are now accumulating at an
ever accelerating pace [102,103] and those data are being used to revolutionize phyloge-
netics [61]. Ultimately, the mitogenomic tree is a single gene tree and discordance among
gene trees is known to be ubiquitous [6]. This is especially true for the diversification of
avian orders at the base of Neoaves [12,104,105]. However, the mitogenomic tree is also an
unusual gene tree because it is expected to be more congruent with the species tree than the
average nuclear gene tree [106] and, when it differs from the species tree, that discordance
can have important biological implications.

The unusual nature of the mitochondrial gene tree is likely to reflect, in large part,
the maternal inheritance of the mitogenome. Maternal inheritance is expected to reduce
the effective population size of the mitogenome relative to nuclear genes under many
circumstances [107]. The ZW sex chromosome system of birds probably has an additional
impact on avian mitochondrial population biology; Berlin et al. [108] suggested that Hill-
Robertson interference [109] between the W chromosome and mitogenome can explain the
low intraspecific variation observed in avian mitogenomes. Hickey [110] and Lane [111]
suggested the opposite pattern (that selection on mitogenome leads to low W chromosome
variation) is more likely; however, the locus of selection is actually irrelevant for birds
because both scenarios reduce the effective population size of the mitogenome and therefore
increase the likelihood of congruence with the species tree. In fact, both scenarios could
be true in that selection on either the mitogenome or the W chromosome is expected to
lead to selective sweeps that reduce variation on both genetic elements (obviously, the
locus of selection would be relevant in taxa with different sex determination systems).
On the other hand, some analyses support instances of genuine discordance between the
mitogenomic tree and the species tree [112–114]. Although incomplete lineage sorting is
likely to explain some instances of mitochondrial incongruence, mitochondrial capture
probably explains many instances of discordance between the mitogenomic tree and the
species tree [115]. Mitochondrial capture is likely to have a functional basis; introgression
of a mitochondrial genotype is favored if it is better adapted to the local environment than
the genotype of the recipient and/or when the mitochondrial genotype of the recipient
taxon has a high mutational load. This creates two situations: (1) the true mitogenomic tree
typically matches the species tree more closely than the true gene tree for a typical nuclear
locus; and (2) genuine discordance between the species tree and mitogenomic tree can
indicate interesting biological processes. Thus, an accurate estimate of the mitogenomic
tree is likely to provide interesting information.

The second question was whether the evidence suggested that we were able to gen-
erate an accurate estimate of the mitogenomic tree; obviously, we were unable to do so.
Although the incongruence among our estimates of mitochondrial phylogeny speak vol-
umes, an even bigger problem is that concordance with the likely avian species tree is
approximately evenly split between TM and ExM sites. This evaluation of the performance
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of analyses using a specific data type is predicated on the assumption that congruence
between the estimated mitochondrial tree and the likely species tree indicates better perfor-
mance. Although it is possible that any specific example of congruence is coincidental it is
a virtual certainty that this will be true on average, especially in cases where the branch
uniting a group is long in terms of the multispecies coalescent. For example, the branch
uniting Notopalaeognathae is known to be long based on retroelement insertion data [116]
(also note the high estimate of the concordance factor in Smith et al. [117]). Thus, one can
place a very high prior probability that the true mitogenomic tree includes that clade and
further leads us to the conclusion that analyses of the TM sites are correct (and those of
ExM sites are incorrect) in this case. On the other hand, Mirandornithes is also recovered
in a large number of individual gene trees [12,118], indicating that the branch uniting it
is long in coalescent units. However, in this case, it is the ExM sites that yield a tree with
Mirandornithes and TM amino that fail to do so (although analyses of TM nucleotides do
yield the clade). We chose these examples because both are clades that appear in many
nuclear gene trees and therefore it is very likely that the relevant clades are in the true
mitogenomic tree. Indeed, it is likely that many of the clades that are present in at least
some estimates of the mitogenomic tree as well as the likely species tree are present in the
true mitogenomic tree. However, there is no clear pattern relating the topological signal in
different structural environments to clades that are present in the species tree. This makes
it impossible to assess the evidence for clades without reference to the species tree; this
makes it impossible to identify genuine discordance between the true mitogenomic tree
and the species tree.

5. Conclusions

The central conclusion of this study is that the best-fitting models of sequence evo-
lution for TM versus ExM sites differ substantially but the tree topologies for those two
data types exhibit few, if any, significant differences. Thus, we did not corroborate the NB
hypothesis for the bird tree, at least for the parts of the tree we could examine given our
taxon sample. Nevertheless, the conclusion that there are significant differences between
the best-fitting models for TM and ExM sites suggests that it would be wise to incorporate
information about these model differences into analyses of mitochondrial data. In gen-
eral, better-fitting models will yield more accurate estimates of phylogeny and it seems
reasonable to assert that better models of mitochondrial protein evolution will be useful in
at least some parts of the tree. Even if the direct improvements to estimates of the topology
for the mitogenomic tree are limited, incorporating differences related to protein structure
into models of mitochondrial sequence evolution is likely to improve studies focused on
shifts in the strength of purifying selection [62] or those focused on positive selection and
convergence in mitochondrial proteins [119–121].

Despite our focus on a single gene tree, we believe our results have implications for
the theory and practice of phylogenomics. Most modern phylogenomic studies combine
gene trees estimated using many different loci to generate the species tree using summary
coalescent methods, such as the method in the program ASTRAL [122] (although most
studies also present trees estimated using other methods). Summary coalescent methods
are unbiased when two conditions are met: (1) conflicts among gene trees reflect the
multispecies coalescent; and (2) true gene trees are used as input [123]. However, they can
be sensitive to gene tree estimation error [124–127]. Even when the species tree generated
by a summary coalescent method has the correct topology, low-quality input gene trees
lead to the underestimation of coalescent branch lengths [128]. This raises a profound
question: how accurate are our estimates of gene trees? Although simulations provide
some guidance, it seems likely that trees estimated from empirical data are often less
accurate than trees based on simulated data. This study suggests that most estimates of the
avian mitogenomic tree are inaccurate but many of these conflicts were uncovered because
we incorporated information about mitochondrial protein structure. However, we have
much less information about most loci used to generate gene trees. This study suggests



Diversity 2021, 13, 555 22 of 26

that it would be valuable to incorporate more detailed information to better assess the
accuracy of typical nuclear gene trees; structure is one such source of information for gene
trees estimated using protein-coding regions.
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