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Abstract: The classification of coralline algae commonly relies on the morphology of cells and repro-
ductive structures, along with thallus organization, observed through Scanning Electron Microscopy
(SEM). Nevertheless, species identification based on morphology often leads to uncertainty, due to
their general plasticity. Evolutionary and environmental studies featured coralline algae for their
ecological significance in both recent and past Oceans and need to rely on robust taxonomy. Research
efforts towards new putative diagnostic tools have recently been focused on cell wall ultrastruc-
ture. In this work, we explored a new classification tool for coralline algae, using fine-tuning pre-
trained Convolutional Neural Networks (CNNs) on SEM images paired to morphological categories,
including cell wall ultrastructure. We considered four common Mediterranean species, classified at
genus and at the species level (Lithothamnion corallioides, Mesophyllum philippii, Lithophyllum racemus,
Lithophyllum pseudoracemus). Our model produced promising results in terms of image classification
accuracy given the constraint of a limited dataset and was tested for the identification of two am-
biguous samples referred to as L. cf. racemus. Overall, explanatory image analyses suggest a high
diagnostic value of calcification patterns, which significantly contributed to class predictions. Thus,
CNNs proved to be a valid support to the morphological approach to taxonomy in coralline algae.

Keywords: machine learning; CNNs; SEM images; coralline algae; taxonomy; ultrastructure;
Lithophyllum pseudoracemus

1. Introduction

Calcareous red algae belong to the phylum Rhodophyta and include a multitude
of diverse marine species, acknowledged for their ecological importance as ecosystem
engineers [1–4]. They are common in Mediterranean benthic communities, constituting
biodiversity hotspots known as maerl beds and coralligenous habitats [2,5,6].

Species identification in this taxon can be challenging. A reliable taxonomy is imper-
ative, especially for paleontologists, in the attempt to reconstruct both the paleoecology
and the paleoclimate [7–10]. Thallus organization and the morphological characteristics of
cells and reproductive structures are generally used to discriminate among species [11–14],
either by light microscopy of thin sections or by high-resolution Scanning Electron Mi-
croscopy (SEM) [15]. Nevertheless, the increasing application of molecular systematic tools
has been revealing many cases of cryptic diversity and has given way to several systematic
revisions [16–20]. Recent investigations into coralline algal cell walls and their calcified
nanostructures embrace the hypothesis that a biological control exerted by the alga drives
the crystallite shape [21]. Particularly, the shape of the nanostructures composing the
so-called primary and secondary calcification is diagnostic at the level of family [21].

Recently, a new species of non-geniculate coralline alga, Lithophyllum pseudoracemus
sp. nov. Caragnano, Rodondi & Rindi, was discovered by molecular phylogeny [16]. Due
to their morphological similarity, an expert cannot unequivocally distinguish this species
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from Lithophyllum racemus (Lamarck) Foslie 1901 [16,22]. Common in the Mediterranean
Sea, L. racemus usually constitutes maerl beds [23,24]. It is a non-geniculate, fruticose
alga with many protuberances densely spaced and apically broadened [22]. It is often
found in association with Lithothamnion corallioides (P. Crouan & H. Crouan) P. Crouan &
H. Crouan 1867 [25–30], which grows in the form of free-living branchlets or nodules,
often sterile [31]. Another common species of coralline alga in Mediterranean waters
is Mesophyllum philippii (Foslie) Adey 1970, which is one of the main bioconstructors of
the Mediterranean coralligenous concretions, occurring in the form of layered crusts [32],
sometimes with protuberances.

Convolutional Neural Networks (CNNs) have been successfully applied for the clas-
sification of fish species [33,34], bivalves [35] and foraminifera [36]. In such cases, the
classified images were photographs of the entire organism. Liu and Song [37] used fine-
tuning on pretrained CNNs for the recognition of different taxonomic groups of microfossils
observed in thin sections and obtained a model accuracy comparable to human classifiers.
To the best of our knowledge, the application of CNNs to SEM images has never been
used for taxonomic identification, and there are no previous attempts to classify calcareous
red algae by CNNs. Indeed, Modarres et al. [38] used CNN for SEM image recognition
of generic nanostructures, mostly of non-biological origin. Given their morphological
plasticity, new diagnostic tools for species identification could provide significant support
to the experts, especially for fossil samples with poorly preserved morphological features.

In this work, we used CNNs to classify a set of SEM images belonging to the calcareous
red algae L. corallioides, M. philippii, L. racemus, and L. pseudoracemus. The models were
enriched by processing each image together with the vectorized representation of the
observed morphological features (or categories). Six relevant morphological categories
were considered, which were manually paired to each image (Figure 1). Three models were
trained on the same images, which were grouped at different taxonomic levels to:

1. Discriminate L. pseudoracemus from all the other species (2 class-CNN);
2. Classify the three genera (3 class-CNN);
3. Classify the four species (4 class-CNN).

Finally, we tested the model potential as a diagnostic tool for the classification
of two uncertain samples, non-molecularly identified and generically referred to as
L. cf. racemus. The experimental results proved that the proposed CNN-based approach
could potentially support and improve the expert capability in the taxonomic identification
of diverse calcareous red algal species. Thus, we summarize the contribution of this
research as follows:

1. We presented a new classification tool for coralline algae diagnosis, by applying
a deep learning technique to SEM images for the automated identification of four
species at different taxonomic levels;

2. We developed and evaluated CNN-based classification models (open-sourced on
GitHub as reported in the Data Availability Statement) against two baselines, namely
a dummy classifier and a human-reported classification. Then, our model was tested
in a practical scenario, to support the classification of two uncertain samples of
coralline algae;

3. We investigated and discussed the contribution of six main morphological categories,
shown in the SEM images, to the classification task;

4. We explored a set of explanation methods, which justify the class assignment of the
proposed model by visually highlighting the contribution of portions of the processed
SEM image.
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Figure 1. SEM images showing: (a) a longitudinal section through Mesophyllum philippii coaxial
hypothallus assigned to the hypothallus category; (b) a longitudinal section through Lithophyllum
racemus epithallus (curly bracket) with the underlying perithallus assigned to both perithallus
and epithallus categories; (c) a magnification of L. racemus perithallial cells showing crystallites
composing the cell walls (crystallites category); (d) a Lithophyllum pseudoracemus sample in surface
view (surface category).

2. Materials and Methods
2.1. Samples and Data Collection

Samples were collected at different locations in the Western and Eastern Mediterranean
Sea, and one sample was collected from the NE Atlantic Ocean (Table 1). They were
recovered by grab during the cruises of the R/V Minerva Uno, in the framework of the
Marine Strategy Campaigns, or by SCUBA diving during local surveys. The sample from
Capraia, Tuscany (Italy) was collected in the framework of “Taphonomy and Sedimentology
on the Mediterranean shelf ” project. A total of eleven specimens were selected, at least
two for each species considered (Table 1).

Species identification for Lithothamnion sp. and Mesophyllum sp. was assessed by
morphological analyses of the SEM images. Two samples (iv1, iv2 in Table 1) were iden-
tified as L. corallioides [31,39]. Three more samples (iv3–5) (Table 1) were identified as
M. philippii [13,32]. Four samples (iv6–9) (Table 1) were targeted for a multigene molecular
phylogeny at Università Politecnica delle Marche (AN) [16], and are currently deposited
in the Herbarium Universitatis Florentinae, Natural History Museum (Florence, Italy)
with codes FI058894, FI058887, FI058890 and FI058891. They were identified as L. racemus
(samples iv6, iv7 in Table 1) and L. pseudoracemus (samples iv8, iv9 in Table 1). The last
two samples considered (DB865 and DB866) (Table 1) were referred to as L. cf. racemus [22],
since they were not molecularly identified, and, thus, they could be used as a real-case
test study.
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Table 1. Summary of the samples used, site of collection, and the number of SEM images per sample.

Sample Species Sampling Site
(Latitude, Longitude) Images (n)

iv1 Lithothamnion corallioides Villasimius, Sardinia (Italy)
(39◦08′32′′ N, 9◦31′14′′ E) 24

iv2 Morlaix, Brittany (France)
(48◦34′42′′ N, 3◦49′36′′ W) 25

iv3 Mesophyllum philippii Portofino, Liguria (Italy)
(44◦17′56′′ N, 9◦13′08′′ E) 11

iv4 Capraia, Tuscany (Italy)
(43◦01′04′′ N, 9◦46′26′′ E) 14

iv5 Cavoli Island, Sardinia (Italy)
(39◦05′20′′ N, 9◦32′33′′ E) 16

iv6 Lithophyllum racemus Pontian Islands (Italy)
(40◦54′47′′ N, 12◦52′58′′ E) 24

iv7 Capri, Gulf of Naples (Italy)
(40◦34′08′′ N, 14◦13′32′′ E) 43

iv8 Lithophyllum pseudoracemus Pontian Islands (Italy)
(40◦11′43′′ N, 12◦53′07′′ E) 9

iv9 Villasimius, Sardinia (Italy)
(39◦08′32′′ N, 9◦31′14′′ E) 48

DB865 Lithophyllum cf. racemus Santa Catarina, Rovinj (Croatia)
(45◦04′32′′ N, 13◦37′38′′ E) 28

DB866 Torre dell’Orso, Puglia (Italy)
(40◦14′00′′ N, 18◦28′00′′ E) 13

The selected algae were cleaned of sediment and epiphytes, and then prepared for
SEM as per Basso [12]. Samples were fragmented along the growth direction to observe
morphologies in longitudinal sections, they were mounted on stubs by means of graphite
paste, and finally, chrome coated. SEM analysis was performed by a Field Emission Gun
Scanning Electron Microscope (SEM-FEG) Gemini 500 Zeiss (Milan, Italy).

The final dataset included 255 SEM images, belonging to the eleven samples listed
in Table 1. The images had a resolution of 2046 × 1369 pixels in greyscale (single chan-
nel). Furthermore, each image in the dataset was assigned to one or more categories
(i.e., conceptacles, perithallus, crystallites, epithallus, hypothallus and surface) according to
the morphological features observed (Figure 1), and each category information was added
as metadata. Among those, 21 images were assigned to more than one category since they
present multiple structures together. Ten images, including those showing details of the
conceptacle pore canal (Figure A1), were not attributed to any specific category.

2.2. Data Augmentation

To increase the number of images, and, hence, improve the variance of the available
training set, an ‘on-the-fly’ realistic data augmentation [40] was performed. Namely, during
model training, each image in the training set was duplicated five times, each time with
some random changes according to the following criteria: a random change in brightness
in the range [0.5, 1.8], a random rotation up to 10 degrees, a random zoom to a maximum
of 0.7, and a random horizontal flip. Figure 2 shows eight examples of augmented images
obtained from the original image located in the upper left corner. The criteria were chosen
to obtain realistic augmented images, i.e., images compatible with SEM images.
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Figure 2. Examples of augmented images of a Lithophyllum racemus conceptacle given the original
image in the first position (upper left).

2.3. Convolutional Neural Networks

Classification (or, more formally, supervised classification) is the specific area of
machine learning that aims at assigning objects to one of several predefined classes. In our
case, the objects, i.e., the input of classification, are represented by images associated with
categorical metadata (i.e., morphological features), while the classes are the considered
species or genera. Artificial neural networks are popular machine learning algorithms
whose goal is to determine the set of weights (i.e., the edges connecting neurons of the
network) that minimize a defined loss function over the predicted classes and the real
classes [41]; this is achieved by an iterative process which alternated a feedforward step,
in which weights connecting different layers are used to compute the output (i.e., the
predicted classes), to a backpropagation step, whose aim is to adjust the weights by
computing the gradient of the loss function. Deep learning usually refers to artificial neural
networks with more than two hidden layers.

In the image classification context, deep learning avoids the time-consuming and
challenging feature extraction process which is required for other classification methods
(such as SVM and kNN) [42,43]. Indeed, deep learning provides end-to-end learning
and eliminates all extra overheads of selecting feature descriptors and feature selection
by automatically extracting information from the raw data. In particular, Convolutional
Neural Networks (CNNs) have become the state-of-the-art image recognition method [44].

Several different variations in CNN architectures have been applied, but in general,
they consist of stacked convolutional and pooling layers, followed by one or more fully
connected layer(s). The convolutional layers are the core of CNNs and are based on a set
of trainable filters or kernels; basically, they can be seen as a pattern extractor. The inputs
are convolved over those filters, whose weights are optimized in the training phase to
obtain a new representation of the original images, i.e., a new feature map. The pooling
layer reduces these feature maps through information compression, usually keeping the
maximum value (i.e., maxpooling layer). Convolutional and pooling layers are followed by
fully connected or dense layers, which consist of neurons connected to all the neurons of the
previous and following dense layers. For classification purposes, the number of neurons in
the output layer is equal to the number of classes to be predicted, and each of these neurons
provides as output the probability that the image belongs to the corresponding class.
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CNNs are data-hungry; that is, they need to be trained on a huge number of training
images [44]. Thus, for small datasets (i.e., less than a thousand images) it is convenient to
start from a pretrained network, which is a CNN whose weights have been already trained
on thousands of images [45,46]. Unlike random weights, the weights of a pretrained CNN
have been already trained to distinguish some simple and common geometrical patterns.
Typically, the last fully connected layer of the pretrained CNN will be substituted to obtain
the desired output, which may imply a different number of classes. Then, the CNN can
be trained on the images of interest, and depending on the training procedure, we can
speak of transfer learning and/or fine-tuning. In the former case, all or only some layers of
the CNN will be trained on the images of interest for a few numbers of epochs, while the
latter involves the tuning of some hyperparameters (such as the learning rate) to adapt the
network to the new classification purpose.

We adapted and fine-tuned a deep neural network named Visual Geometry Group 16
(VGG16) [47] pretrained on the “imagenet” dataset [48], which includes 14 million images
belonging to 1000 classes. Figure 3 depicts the adapted VGG16 architecture, which is
constituted by:

1. An input layer of fixed size 224 × 224 Red-Green-Blue image;
2. A stack of convolutional layers, where the filters were used with a very small receptive

field: 3 × 3;
3. Five maxpooling layers (not all the convolutional layers are followed by max-pooling);
4. A dense layer, whose input is the output of the previous maxpooling layer and

concatenated with the one-hot-encoded categories, and;
5. A softmax output layer.
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All hidden layers, i.e., the layers between the input and the output layers, are equipped
with the ReLU activation function [47,49]. VGG16 architecture is particularly suited for
the recognition of geometries, which makes it effective for our application since the shape
of cells and reproductive structures is one of the most significant parameters for species
identification in coralline algae. In a preliminary analysis, we further considered a set of
other CNN-based architectures (namely ResNet50, InceptionV3, MobileNet), where the
VGG16 resulted as the most promising approach in terms of diagnostic accuracy.

We resized our sampled SEM images and replicated the same greyscale image for
the three RGB channels, to be injected into the input layer. All the convolutional layers’
parameters of the original VGG16 are kept frozen (i.e., are not modified during the learning
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procedure), while we trained the last dense layer and the output layer of our specific
classification tasks. Furthermore, we added a new input layer constituted by six neurons,
mapping the one-hot encoded representation of the morphological features observed in
each image, and directly connected with the dense layer.

Formally, given an image x with a morphological categories vector c, each output
neuron og, associated to algae class g, is computed as:

og = so f tmax

(
∑

i
Wo

i,gdi

)
; di = ReLU

(
∑

j
Wd

j,ihj + ∑
l

Wd
l,icl

)
,

where di is the i-th component of the dense layer, hj is the j-th component of the image x
representation provided by the last maxpooling layer of VGG16, and cl is the l-th compo-
nent of the one-hot encoded category input layer. Wd and Wo are the matrices of weights
learned by the model for the dense and output layers respectively.

We stress the fact that the softmax function, applied to the output layer, projects the
output in the interval [0, 1], such that og = P(g|x, c) for each class g. The predicted class ĝ is
hence assigned to the class g with the highest probability.

Since L. pseudoracemus and L. racemus are almost undistinguishable from a traditional
morphological approach [16], the difficulty of the classification task changed according to
the taxonomic level considered. Therefore, we constructed the following three architectures
addressing different classification tasks, each grouping the SEM images at diverse levels
(as shown in Figure 3):

1. 2 class-CNN (L. pseudoracemus versus Others, i.e., all the other species), last dense
layer of 128 neurons, output layer of two neurons;

2. 3 class-CNN, at the genus level (Lithothamnion sp., Mesophyllum sp. and Lithophyllum sp.),
last dense layer of 256 neurons, output layer of three neurons;

3. 4 class-CNN, at the species level (L. corallioides, M. philippii, L. racemus and L. pseudoracemus),
last dense layer of 64 neurons, output layer of four neurons.

For all three architectures, the number of epochs was set to 20 and the learning rate
to 10−5.

We optimized the VGG16 hyperparameters, i.e., the number of neurons in the last hid-
den dense layer, the training epochs and the learning rate in order to obtain suitable weights
for the problem under study. As per common practice, the best hyperparameters were
chosen according to the highest performance in cross-validation [50]. In addition, we used
a weighted class assignment, in which the class contributions are inversely proportional to
the different representativeness of the classes.

2.4. Interpretability

Despite widespread adoption, CNNs are often considered as black boxes, because
the interpretation of the model predictions is not trivial. However, understanding the
reasons behind predictions is a matter of intuition, which is fundamental to act based on
the prediction. In order to make CNNs replicable, different approaches belonging to the
so-called explainable artificial intelligence were developed, i.e., local approximations of the
model’s behavior. In this work, we considered three approaches: Saliency [51], LIME [52]
and Grad-CAM [53].

As explained in [51], the computing of the gradient of an output class with respect to
an input image provides information on how the output class value changes with respect
to a small change in input image pixels. All the positive values in the gradients tell us that
a small change to that pixel will increase the output value. Hence, a saliency map is the
visualization of these gradients, which have the same shape as the image and provide an
intuition of the information learned by the model.

Local Interpretable Model-Agnostic Explanation (LIME) [52] is a model-independent
explanation technique that attempts to explain the model by perturbing the input sam-
ples and understanding how these perturbations affect the predictions. Given an in-
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put image, LIME masks random regions of the image to define their importance for the
CNN prediction.

Like Saliency, Gradient-weighted Class Activation Mapping (Grad-CAM) also uses
the class-specific gradient, but in this case, considers the final convolutional layer of a CNN
to produce a coarse location map of important regions in the image [53].

We applied these explanation techniques to the sampled SEM images to obtain differ-
ent explained overlays. Thus, they were evaluated according to their meaningfulness and
helpfulness for the classification task.

The CNNs and the explanation models were built by means of Keras [54], Keras
Vis [55] and Lime [52] packages with TensorFlow [56] backend in Python v3.6.

2.5. Evaluation Protocol

To extensively evaluate the effectiveness of our approach for the task of coralline algae
classification, we considered two different setups.

In the first one, Internal Validation, we measured the capability of the model in identi-
fying the correct class for each image involved in the study. For this purpose, we selected
only the images belonging to the samples for which a sure diagnosis is given as ground
truth (based on morphology and molecular phylogeny, as described in Section 2.1). Thus,
we excluded the images referred to the L. cf. racemus samples (i.e., DB865 and DB866). We
ended up with a dataset of 214 tagged SEM images. In order to consider the whole set
of images while avoiding overfitting, we applied a k-fold cross validation approach [50].
Specifically, we considered a four-fold cross validation, in which the original dataset was
partitioned into four disjoint sets (i.e., folders). In each round, a folder was used as a
validation set (on which classification metrics were computed), while the other folders
were used to train the model. The procedure iterated until all the folders (and thus all the
images) were used for validation. Furthermore, we compared the performances obtained
by the CNN models with average baselines produced by dummy classifiers, whose ran-
dom predictions (repeated 1000 times) follow the a priori class distribution, and with a
human classifier, required to diagnose each SEM image considered in Internal Validation.
Specifically, a post-doc researcher in paleoecology at Milano-Bicocca University was invited
to identify the species shown in each SEM image (previously anonymized and shuffled),
by filling a multiple-choice questionnaire, and relying on scientific experience and pro-
vided literature [13,16,22,31,32,39]. The comparison between the model and the expert’s
performances allowed us to evaluate the practical usefulness of our method in supporting
the classification task [57,58].

We applied two well-defined classification metrics to evaluate the performance of our
model, namely Global Accuracy and Class Recall [50]. For each model, the Global accuracy
is the fraction of correctly predicted images in cross validation, while Class Recall for the
g-th class is the fraction of correctly predicted images of the sample belonging to class g in
cross validation. The Class Recall fractions were also given for each morphological category,
added as metadata (Figure 1).

In the second setup, External Test, we tested our model in a simulated scenario, namely,
where an expert is required to identify the correct classes (i.e., genus or species) of new
unknown samples of coralline algae. We simulated this case study by training our CNN
classification model on the whole set of 214 tagged SEM images, then we applied the model
to each image belonging to the L. cf. racemus samples DB865 and DB866. Therefore, we can
measure the Class Share (CS) of each class g, for a specific sample s, as follows:

CSs(g) =
1

Ns

Ns

∑
n=1

δn where δn =

{
1, i f ĝn = g
0, otherwise

,

where Ns is the number of SEM images belonging to sample s, δn is equal to 1 if the
n-th image of sample s is assigned to class g (i.e., the predicted class ĝn is equal to g) by
our classification model and 0 otherwise. Furthermore, the Class Share per category was
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computed on the different subsets of SEM images assigned to each morphological category
(Figure 1).

3. Results
3.1. Internal Validation

In Table 2, we report the results for the Internal Validation procedure compared to the
results provided by dummy and human classifiers.

Table 2. Model performances in the 3 classification tasks: L. pseudoracemus versus the other species (2 classes); diverse
genera (3 classes) and diverse species (4 classes). The Global accuracy is shown, as well as the Class Recall for each class for
the proposed approach (CNN), for the human classifier (HC) and dummy classifiers (DC).

2 classes 3 classes 4 classes
Class Recall Class Recall Class Recall

CNN HC DC CNN HC DC CNN HC DC
L. pseudoracemus 0.61 0.21 0.27 Lithothamnion sp. 0.55 0.73 0.23 L. corallioides 0.57 0.73 0.23
Others 0.62 0.92 0.73 Mesophyllum sp. 0.56 0.41 0.19 M. philippii 0.49 0.41 0.19

Lithophyllum sp. 0.69 0.42 0.58 L. racemus 0.46 0.33 0.31
L. pseudoracemus 0.37 0.21 0.27

Global accuracy 0.61 0.73 0.62 0.64 0.49 0.43 0.48 0.40 0.27

The global cross-validation accuracy was similar in the 2 class-CNN (L. pseudoracemus
versus Others) and in the 3 class-CNN (genus level), despite the increased difficulty in the
task, given the higher number of classes (three rather than two) and thus, data sparsity.
The highest classification accuracy was in fact achieved by the 3 class-CNN (accuracy 64%),
and the lowest by the 4 class-CNN (species level), with an accuracy of 48% (Table 2).

With respect to the Class Recall, in the 2 class-CNN we observe a significant improve-
ment in the identification of L. pseudoracemus (61% against the 27% of the dummy baseline
and the 27% of the human classifier), despite registering a decrease in the Recall for Others,
and in the Global accuracy, compared to expert evaluation.

For both 3 and 4 class-CNNs the Global accuracy and all the Class Recall were higher
than both the baselines, except for Lithothamnion sp. (or L. corallioides), where a 55% and
57% Recall is achieved, against the 73% of the human classifier. Nevertheless, our models
significantly outperform the expert classification on the Recall of the two other classes (with
a maximum of +27% for Lithophyllum sp. Recall) and Accuracy (+15%). Furthermore, the
two genera Lithothamnion and Mesophyllum were classified by our model with a Recall that
is more than twice as high as the dummy classifier. Similar observations can be drawn
from the Recall at the species level (4 class-CNN). Another interesting finding is that the
Lithothamnion genus is predicted slightly better at the species level (i.e., L. corallioides), with
an increased Recall from 55% to 57%, despite having a sparser classification task. The
classification of L. racemus and L. pseudoracemus in the 4 class-CNN corresponded to the
most difficult task due to their morphological similarity, and our analysis, as well as the
empirical evidence of human evaluation, was in line with the domain-related studies. In
fact, both at genus and species levels the increment in Recall was consistently between
the 10% and 15%, compared to the dummy classifiers’ baseline. L. pseudoracemus in the
4 class-CNN was the most difficult class to be identified by our model, with the lowest
Recall of 37%. Compared to the model, the human performances showed a better in Recall
limitedly to L. corallioides class, while all the other classes at both genus and species levels
had a notably lower Recall. Concluding, our CNN-based models outperformed the human
diagnosis at both genus and species level Global accuracy, as well as in the Recall of the
hardest distinguishable classes, L. racemus and L. pseudoracemus, proving the effectiveness
of our technique in support of coralline algae classification.

Finally, the 3 class-CNN thus appeared to be the best model for coralline algae classifi-
cation, with the highest Global accuracy and solid Class Recall for each genus. Nevertheless,
it would be convenient to adopt the 4 class-CNN model when a more fine-grained diagno-
sis (i.e., at species level) is required. This model, indeed, despite the smaller Global accuracy,
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could include more classes and still provide reasonable support for classification even in
the occurrence of very similar classes, such as L. pseudoracemus and L. racemus.

Morphological Categories Analysis

Table 3 is a summary of the results of Class Recall for each class and each modeling
approach conditioned on the morphological category represented in the image.

Table 3. The total number of SEM images in each class (columns) and categories (rows) according to the three modeling
approaches (L. pseudoracemus versus other species, diverse genera, and diverse species) is listed, together with the Class
Recall. Images not assigned to a category (n.c.) and showing more than one category (shared) are also included.

2 class-CNN
L. pseudoracemus Others

Category Images (n) Class Recall Images (n) Class Recall
conceptacles 1 1.00 9 0.56
perithallus 7 0.14 32 0.53
crystallites 27 0.70 67 0.61
epithallus 10 0.70 24 0.71
hypothallus 0 - 3 0.67
surface 5 0.60 7 0.57
n.c. 2 1.00 4 0.75
shared 5 0.40 11 0.73

3 class-CNN
Lithothamnion sp. Mesophyllum sp. Lithophyllum sp.

Category Images (n) Class Recall Images (n) Class Recall Images (n) Class Recall
conceptacles 0 - 4 0.75 6 0.67
perithallus 20 0.65 3 0.33 16 0.44
crystallites 14 0.57 13 0.38 67 0.85
epithallus 12 0.42 5 0.20 17 0.47
hypothallus 0 - 3 0.67 0 -
surface 2 0.50 4 0.50 6 0.17
n.c. 0 - 1 1.00 5 0.80
shared 1 0.00 8 1.00 7 0.57

4 class-CNN
L. corallioides M. philippii L. racemus L. pseudoracemus

Category Images (n) Class Recall Images (n) Class Recall Images (n) Class Recall Images (n) Class Recall
conceptacles 0 - 4 1.00 5 0.80 1 1.00
perithallus 20 0.60 3 0.33 9 0.22 7 0.00
crystallites 14 0.71 13 0.00 40 0.48 27 0.37
epithallus 12 0.50 5 0.20 7 0.57 10 0.70
hypothallus 0 - 3 0.67 0 - 0 -
surface 2 0.00 4 0.75 1 0.00 5 0.40
n.c. 0 - 1 1.00 3 0.33 2 0.00
shared 1 0.00 8 1.00 2 0.50 5 0.20

As shown in Table 3, considering L. pseudoracemus, the 2 class-CNN correctly recog-
nized all the images showing the conceptacle and 70% of crystallites and the epithallus.
On the other hand, only 14% of the images of the L. pseudoracemus perithallus were assigned
to the correct class. Within the class including all the species except for L. pseudoracemus
(Others), the percentages of images correctly identified were balanced among classes with
an average accuracy of 64%. Overall, about 61% of the SEM images in both classes had
been correctly classified, despite the class Others had almost three times more images than
L. pseudoracemus (Table 3). The images with no category (n.c.) were mostly assigned to the
correct class, as well as the images within the class, others showed more than one category
(shared), which included five images showing the hypothallus, two images showing both
epithallus and perithallus and one image showing both perithallus and crystallites. The
n.c. images in both classes included the conceptacle pore canal and the perithallus with
crystallites in the proximity of the pore canal in L. racemus (Figure A1) and L. pseudoracemus.

Among genera, Lithophyllum sp. had the highest percentage of images correctly
classified (69%). The identification of conceptacles, when present, was still significant for
the correct classification, as well as the perithallus in Lithothamnion sp. and the crystallites
in both Lithothamnion sp. and Lithophyllum sp. (Table 3). In Mesophyllum sp., the only
genus showing the hypothallus, this contributed significantly to the identification with 67%
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of correct assignations. In the 3 class-CNN models as well, the non-categorized images
have been of significant support to the correct classification (Table 3). The shared images
correctly identified as Mesophyllum sp. included five images of the hypothallus, three of
which also show the conceptacle, and two showing also the epithallus. The n.c. images
correctly identified in the Lithophyllum sp. class included the pore canal of a conceptacle in
the L. pseudoracemus, the perithallial cells and crystallites at the proximity of the same pore
canal, and the pore canals in two different conceptacles of L. racemus (Figure A1).

Conceptacles were determinants for the identification of the algae also at the species
level (Table 3). The perithallus, instead, aided only the classification of L. corallioides
(with 60% of correct assignations), in which also the crystallites made a significant con-
tribution (71%). The images showing the epithallus were mostly correctly classified in
L. pseudoracemus (70%) and misclassified in M. philippii (20%). As for the 3 class-CNN, also
in the 4 class-CNN the hypothallus was a significant contributor for the classification of
M. philippii (67%), as well as the images showing the surface (75%). All the shared images in
M. philippii were correctly classified, corresponding to those described for the 3 class-CNN.

The SEM images showing conceptacles were the major contributors to the success
of the classification task in each model (Figure 4). Except for the 4 class-CNN, the exact
classification was significantly favored by crystallites as well, which represented almost
half of the total number of SEM images in the dataset (Table 3, Figure 4). In the 2 class-CNN,
besides crystallites and conceptacles, high percentages of images correctly classified were
achieved by the epithallus (71%, the highest value), and the hypothallus. Conversely, in the
3 class-CNN, the epithallus, together with the surface, led to the most incorrect classifi-
cations (Figure 4). Crystallites further increased in significance, as well as conceptacles.
In the 4 class-CNN, the accuracy decreased and a reduced number of images showing
the perithallus, the surface and the crystallites had correctly been classified (Figure 4).
Conceptacles represented the most robust category for the classification success (90% of
images correctly classified), together with the hypothallus which kept the same significance
across models (67%).

Diversity 2021, 13, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 4. Total number of SEM images assigned to different categories that have been classified in 
the 2, 3 and 4 class−CNNs. Percentages within each category indicate the proportion between im-
ages correctly and wrongly classified. 

3.2. External Test 
In Table 4, we show the Class Share for the two test samples, namely DB865 and 

DB866. Considering the 2 class−CNN model, we notice how the two samples are classified 
in a similar way by identifying around 70% of the images in both samples belonging to 
the Others class. This approach seems to suggest that the two samples do not belong to 
the L. pseudoracemus class.  

Table 4. Class Share for the L. cf. racemus samples (DB865, DB866) in the 3 classification tasks: L. 
pseudoracemus versus Others (2 class−CNN), diverse genera (3 class−CNN), and diverse species (4 
class−CNN). 

2 Class−CNN 
 Sample DB865 Sample DB866 

L. pseudoracemus 0.32 0.31 
Others 0.68 0.69 

3 class−CNN 
 Sample DB865 Sample DB866 

Lithothamnion sp. 0.18 0.00 
Mesophyllum sp. 0.00 0.08 
Lithophyllum sp. 0.82 0.92 

4 class−CNN 
 Sample DB865 Sample DB866 

L. corallioides 0.18 0.08 
M. philippii 0.00 0.08 
L. racemus 0.50 0.54 
L. pseudoracemus 0.32 0.30 

Figure 4. Total number of SEM images assigned to different categories that have been classified in
the 2, 3 and 4 class-CNNs. Percentages within each category indicate the proportion between images
correctly and wrongly classified.
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3.2. External Test

In Table 4, we show the Class Share for the two test samples, namely DB865 and DB866.
Considering the 2 class-CNN model, we notice how the two samples are classified in a
similar way by identifying around 70% of the images in both samples belonging to the
Others class. This approach seems to suggest that the two samples do not belong to the
L. pseudoracemus class.

Table 4. Class Share for the L. cf. racemus samples (DB865, DB866) in the 3 classification tasks:
L. pseudoracemus versus Others (2 class-CNN), diverse genera (3 class-CNN), and diverse species
(4 class-CNN).

2 class-CNN
Sample DB865 Sample DB866

L. pseudoracemus 0.32 0.31
Others 0.68 0.69

3 class-CNN
Sample DB865 Sample DB866

Lithothamnion sp. 0.18 0.00
Mesophyllum sp. 0.00 0.08
Lithophyllum sp. 0.82 0.92

4 class-CNN
Sample DB865 Sample DB866

L. corallioides 0.18 0.08
M. philippii 0.00 0.08
L. racemus 0.50 0.54
L. pseudoracemus 0.32 0.30

In the 3 class-CNN approach, the model is convincing in assigning the images of the
two samples to the Lithophyllum genus. Specifically, for the DB866, more than 90% of the
images are classified in that class, while for DB865 around 80% of the images are classified
as Lithophyllum sp., and the remaining 20% to Lithothamnion sp. class.

Finally, in the 4 class-CNN, species level classification, again there is a high similar-
ity between the two samples. In both cases, DB865 and DB866 images are assigned to
L. racemus (around 50%) and L. pseudoracemus (around 30% each), while 20% of DB865 are
identified as belonging to the L. corallioides species and less than 10% of the images are
assigned to the L. corallioides and M. philippii for sample DB866. The highest Class Share is
achieved by the L. racemus class with 54% (sample DB866).

These findings are in line with the expert evaluation of samples DB865 and DB866,
which were identified as L. cf. racemus, being impossible to clearly discriminate between
L. racemus and L. pseudoracemus without molecular data. Nevertheless, the 4 class-CNN
model favored the L. racemus class over L. pseudoracemus (around 50% versus 30%).

Morphological Categories Analysis

In the 2 class-CNN most of the SEM images showing the L. cf. racemus samples
DB865 and DB866 were classified in the class Others, with very similar percentages (68%
and 69%, respectively as shown in Table 4). All the conceptacles were assigned to this
class, as well as most of the images showing crystallites and the epithallus, with a lower
percentage for the crystallites in sample DB866 (67%) (Tables 5 and 6). Most of the images
showing the perithallus were rather classified as L. pseudoracemus, this is particularly true
in the sample DB866. In this sample, also the image showing the surface was assigned to
L. pseudoracemus class (Table 6). The n.c. images showing the perithallial cells in the
proximity of a pore canal in sample DB865 have been assigned to the Others class. In
sample DB865, an image showing both the epithallus and the crystallites was identified as
belonging to L. pseudoracemus (Table 5).
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Table 5. The Class Share of sample DB865 has been reported for each assigned category (rows) and class (columns). The
total number of SEM images in every predicted class of the three models (L. pseudoracemus versus other species, genus level
and species level) are listed. Images not assigned to a category (n.c.) and showing more than one category (shared) are
also included.

DB865 2 class-CNN
Category Images (n) L. pseudoracemus Others
conceptacles 1 0.00 1.00
perithallus 3 0.67 0.33
crystallites 12 0.17 0.83
epithallus 5 0.20 0.80
hypothallus 0 - -
1 surface 2 0.50 0.50
n.c. 2 0.50 0.50
shared 3 0.67 0.33

3 class-CNN
Category Images (n) Lithothamnion sp. Mesophyllum sp. Lithophyllum sp.
conceptacles 1 1.00 0.00 0.00
perithallus 3 0.33 0.00 0.67
crystallites 12 0.00 0.00 1.00
epithallus 5 0.40 0.00 0.60
1 surface 2 0.50 0.00 0.50
n.c. 2 0.00 0.00 1.00
shared 0.00 0.00 1.00

4 class-CNN
Category Images (n) L. corallioides M. philippii L. racemus L. pseudoracemus
conceptacles 1 0.00 0.00 1.00 0.00
perithallus 3 0.33 0.00 0.00 0.67
crystallites 12 0.00 0.00 0.83 0.17
epithallus 5 0.80 0.00 0.20 0.00
1 surface 2 0.00 0.00 0.50 0.50
n.c. 2 0.00 0.00 0.50 0.50
shared 3 0.00 0.00 0.00 1.00

1 no hypothallus in the sample DB865.

Table 6. The Class Share of the sample DB866 was reported for each assigned category (rows) and class (columns). The total
number of SEM images in every predicted class of the three models is listed. Images not assigned to a category (n.c.) and
showing more than one category (shared) are also included.

DB866 2 class-CNN
Category Images (n) L. pseudoracemus Others
conceptacles 2 0.00 1.00
perithallus 2 1.00 0.00
crystallites 3 0.33 0.67
epithallus 1 0.00 1.00
hypothallus 0 - -
1 surface 1 1.00 0.00
n.c. 2 0.00 1.00
shared 2 0.00 1.00

3 class-CNN
Category Images (n) Lithothamnion sp. Mesophyllum sp. Lithophyllum sp.
conceptacles 2 0.00 0.00 1.00
perithallus 2 0.00 0.00 1.00
crystallites 3 0.00 0.00 1.00
epithallus 1 0.00 0.00 1.00
1 surface 1 0.00 0.00 1.00
n.c. 2 0.00 0.00 1.00
shared 2 0.00 0.50 0.50
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Table 6. Cont.

4 class-CNN
Category Images (n) L. corallioides M. philippii L. racemus L. pseudoracemus
conceptacles 2 0.00 0.00 1.00 0.00
perithallus 2 0.00 0.00 0.00 1.00
crystallites 3 0.00 0.00 0.67 0.33
epithallus 1 1.00 0.00 0.00 0.00
1 surface 1 0.00 0.00 0.00 1.00
n.c. 2 0.00 0.00 1.00 0.00
shared 2 0.00 0.50 0.50 0.00

1 no hypothallus in sample DB866.

At the genus level, most of the images of samples DB865 and DB866 were correctly
classified as Lithophyllum sp. (82% and 92%, respectively, as shown in Table 4). The
classification was correct for all categories in sample DB866, while the conceptacle in
sample DB865 was, surprisingly, assigned to Lithothamnion sp. (Tables 5 and 6).

At species-level, most of the images of samples DB865 and DB866 were assigned to
L. racemus and L. pseudoracemus, with a higher percentage for the first class (Table 4). All the
conceptacles were identified as belonging to L. racemus, as well as crystallites, especially
for sample DB865. The images of the perithallus were rather classified as L. pseudoracemus,
with a higher probability in DB866 (Tables 5 and 6). The epithallus in both samples was
identified as L. corallioides, while the surface was assigned to the L. pseudoracemus class in
DB866. In sample DB865, all the images showing more than one category were classified as
L. pseudoracemus (Table 5). Every shared image showed the epithallus, two with also the
crystallites and one with the surface.

3.3. Explanation

Image analyses using explainable artificial intelligence allowed us to detect the areas
more relevant to CNN classification.

Each explanation approach used highlighted different areas of the image by showing
positive and negative contributions (LIME), a heat map of the positive contributions
(Grad-CAM), or simply the more relevant pixels (Saliency) (Figure 5). In some cases, the
information given by the three approaches was counterintuitively different, due to the
differences in the calculation of the outputs. For this reason, the visualization of the three
explanatory techniques together could provide more insights into the relevant features
displayed in the images.

Given the complexity of the structures shown in the SEM dataset, it was not always
possible to recognize common diagnostic structures. Nevertheless, in most cases, the
shape of cells and conceptacles were identified by the models (Figure A2). In images
showing the epithallus and the perithallus, background areas and starch grains (Figure A2)
sometimes “disturbed” the classification, resulting in erroneous identifications. The model
performances could, therefore, be implemented by avoiding the use of images containing
these interferences.

Notably, crystallites and cell wall calcification, in general, have been considered to be
important features for the classification task. Figure 5, which was correctly classified in all
three models used by the Internal validation (2, 3 and 4 class-CNNs), shows an example of
L. corallioides crystallites in the perithallial cell walls of two adjacent cells. LIME, Saliency
and Grad-CAM approaches (Figure 5) consistently revealed a significant contribution of the
primary calcification [59,60], i.e., the outermost calcified layer of the cell wall composed by
crystallites oriented parallel to the cell lumen, also called “interfilament”, at the boundary
between cell filaments [61]. Thus, this calcification feature appeared to have a particular
significance for the classification task, as already observed recently by Auer and Piller [21],
and Bracchi et al. [60].
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Figure 5. An example of the output obtained from the three approaches (LIME, Saliency, Grad-CAM)
that show the pixels giving the major contributions to the CNN classification in the different models
used (2, 3 and 4 class-CNNs). In LIME, positive and negative contributions to classification are
respectively colored in green and red. In Saliency, brighter color highlights the pixels contributing
the most to the class attribution, while in the Grad-CAM visualization the most significant areas
for the final classification have a warmer color tone. The SEM image was successfully classified as
Lithothamnion corallioides by every model and shows a magnification of the cell wall ultrastructure
(crystallites category).

4. Discussion

The main goal of this work was to explore a new putative tool for coralline algae
identification, by applying deep learning methods to the automatic classification of four
algal species common in Mediterranean waters.

Species identification in this taxon is often ambiguous, and advances in molecular
phylogeny revealed striking cases of cryptic and pseudocryptic species. The traditional mor-
phological approach to taxonomic identification relies on thallus organization and on the
morphometrical measurements of biological structures, including epithallial, perithallial
and hypothallial cells and conceptacles. Besides the uncertainty related to the classification
based solely on these tools (e.g., L. racemus and L. pseudoracemus) [16], in fossil samples,
where molecular techniques cannot be applied, traditional morphological parameters are
often poorly preserved due to diagenetic processes, which reduce their taxonomic value.
Recently, new attention has arisen on the calcification patterns of coralline algae, revealing
the cell wall ultrastructure as the phenotypic expression of genotypic information [21].
Indeed, there is a taxon-specific regulation of the morphology of crystallites composing the
cell wall, also observed at the genus level [60].

The use of CNNs has offered the opportunity to investigate the diagnostic value
of morphology as a whole, including both traditional parameters and the mineralized
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ultrastructure. In doing so, machine learning has played the role of an unbiased operator,
which could establish its own classification features and possibly suggest to the real
operator significant diagnostic parameters, even more than conventional ones.

The analysis of the different explanatory techniques allowed us to highlight the image
areas that have most influenced identification at both genus and species levels. Concerning
the morphology of biological structures, an elementary description of the species is given
as follows: L. corallioides is often sterile lacking conceptacles, it has rectangular perithallial
cells connected by multiple fusions and the epithallus is characterized by multiple layers
of flattened cells, typically flared in the first layer below the surface [12]. M. philippii has a
thick coaxial hypothallus and a single layer of rounded to flattened epithallial cells. The
perithallial cells commonly present cell fusions and the buried multiporate sporangial
conceptacles, hemispherical in shape, are typically infilled with large, irregular cells [11,32].
In L. racemus and L. pseudoracemus, sporangial conceptacles are rounded and uniporate,
secondary pit connections join the perithallial cells of adjacent cell filaments and there can
be up to five layers of flattened epithallial cells [16,22]. The two Lithophyllum spp. have
been unequivocally distinguished from each other only by molecular tools so far since the
morphological approach was poorly effective. Therefore, the specific classification task
involving their discrimination was particularly challenging. From an ultrastructural point
of view, the cell walls in Lithothamnion corallioides are constituted by flattened squared
bricks with roundish outlines in the secondary calcification and rectangular tiles in the
primary calcification [60]. The secondary calcification in Lithophyllum sp. is organized in
perpendicular rods, while the primary calcification presents rhombohedral crystallites [21].
Mesophyllum sp. cell wall ultrastructure has never been specifically characterized. Thanks
to the explanation comparison, we recognized some traditional morphological parameters,
such as conceptacle and cells morphometry (Figure A2), but also the crystallite morphology
undoubtedly contributed to the outcomes of the classification (Figure 5). A particular
relevance, indeed, was given to crystallites, which alone constituted almost half of the
total images used to run the CNN models. Concerning the identification of the two
L. cf. racemus samples, DB865 and DB866, the model agreed with the expert on attributing
the Lithophyllum sp. class in the 3 class-CNN and was leaning towards L. racemus in the
4 class-CNN.

To maximize the species variance, we included in the dataset the images for each spec-
imen (two/three samples per species) (Table 1). By doing so, we reduced the error related
to the features characterizing the sample more than the species itself. To achieve satisfying
classification performances, intra-class variability is required to be lower than inter-class
variability. However, in our case increasing the number of classes led to a decrease in
inter-class variability (due to the two similar classes L. racemus and L. pseudoracemus).
This was clearly not balanced by an increase of intra-class variability and, thus, led to
lower performance.

It is essential to remark that the SEM images used were not taken specifically for the
purpose of this work. Indeed, while in the 4 class-CNN the number of images among
classes was reasonably balanced, in the 3 class-CNN the Lithophyllum sp. class accounted
for more than half the total number of images, potentially favoring the accuracy of its
classification. Nevertheless, even accounting for about one-third of the total images, the
Class Recall of L. pseudoracemus in the 2 class-CNN was similar to the class Others (60%,
Table 2). Therefore, the model proved to be able to identify some morphological features
of L. pseudoracemus, as suggested by a Class Recall value much higher (60%) than both the
performances of the dummy classifier (27%) and, most notably, the human classifier (21%)
(Table 2).

Future experimentation on CNNs applied to SEM imagery for the identification of
coralline algae should better rely on standard magnifications for SEM images within each
morphological category, with an even distribution of the number of images among classes.
We propose the following standards:

• Conceptacles: ~250×, ~500×;
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• Perithallus: ~1000×, ~2500×, ~5000×;
• Crystallites: ~10000×, ~20000×, ~30000×;
• Epithallus: ~1000×, ~2500×, ~5000×;
• Hypothallus: ~250×; ~1000×;
• Surface: ~1000×.

Variable sample orientation should be carefully avoided, and the collection of SEM
images should be carried out on longitudinal sections, as explained in Section 2.1. Overall,
our performances offered promising results for obtaining a useful model that could support
the expert for the classification of coralline algae, also considering the reduced number
of images and samples, and the high intra-class variability. Further investigations should
involve an image dataset wider and standardized, to guarantee the reproducibility of the
method and enhance model accuracies.

Author Contributions: Conceptualization, G.P.; software and formal analysis, G.P., C.V. and G.S.;
data curation, G.P.; writing—original draft preparation, G.P.; writing—review and editing, C.V.,
G.S. and G.P.; supervision, G.S. All authors have read and agreed to the published version of
the manuscript.

Funding: Some algal samples used in this study were collected in the framework of “Convenzione
MATTM-CNR per i Programmi di Monitoraggio per la Direttiva sulla Strategia Marina (MSFD,
Art. 11, Dir. 2008/56/CE)”. G.P. was funded by a doctoral fellowship in Environmental Sciences of
the University of Milano-Bicocca.

Institutional Review Board Statement: Ethical review and approval were waived for this study,
because it had no risk for human rights or welfare.

Data Availability Statement: The full SEM dataset is not publicly available. The model scripts are
available on GitHub https://github.com/CValsecchi/VGG16_SEM (accessed on 19 November 2021).

Acknowledgments: Our gratitude goes to the anonymous referees whose insightful comments
enabled us to make significant improvements to the paper. We are grateful to Daniela Basso, Valentina
Alice Bracchi, Guido Bressan, Luigi Piazzi and Francesco Mastrototaro for sample collections. The
captain, crew, and scientific staff of the RV Minerva Uno cruise STRATEGIA MARINA LIGURE-
TIRRENO are acknowledged for their efficient and skillful cooperation at sea. We also thank Giovanni
Coletti for his collaboration as human classifier.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Diversity 2021, 13, x FOR PEER REVIEW 18 of 21 
 

 

Data Availability Statement: The full SEM dataset is not publicly available. The model scripts are 
available on GitHub https://github.com/CValsecchi/VGG16_SEM (accessed on 19 November 2021). 

Acknowledgments: Our gratitude goes to the anonymous referees whose insightful comments en-
abled us to make significant improvements to the paper. We are grateful to Daniela Basso, Valentina 
Alice Bracchi, Guido Bressan, Luigi Piazzi and Francesco Mastrototaro for sample collections. The 
captain, crew, and scientific staff of the RV Minerva Uno cruise STRATEGIA MARINA LIG-
URE−TIRRENO are acknowledged for their efficient and skillful cooperation at sea. We also thank 
Giovanni Coletti for his collaboration as human classifier. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

 
Figure A1. Examples of SEM images that were not assigned to a specific category: (a) Lithophyllum racemus pore canal; (b) 
a magnification showing perithallial cells near the pore canal. These features proved to be significant contributors to the 
correct classification of Lithophyllum spp. in the 2 and 3 class−CNNs. 

 
Figure A2. LIME, Saliency and Grad−CAM techniques show the pixels giving the major contributions to CNN classifica-
tion: (a) magnification of the epithallial cell wall in Lithophyllum racemus evidence the significant contribution of calcifica-
tion, formed by rod−shaped crystallites; (b) Mesophyllum philippii conceptacle shape focused by Saliency; (c) starch grains 
within the perithallial cells of L. racemus did not hamper correct identification; (d) the background beyond the epithallus 
of Lithothamnion corallioides was likely responsible for the erroneous classification of this image. 

Figure A1. Examples of SEM images that were not assigned to a specific category: (a) Lithophyllum racemus pore canal;
(b) a magnification showing perithallial cells near the pore canal. These features proved to be significant contributors to the
correct classification of Lithophyllum spp. in the 2 and 3 class-CNNs.

https://github.com/CValsecchi/VGG16_SEM


Diversity 2021, 13, 640 18 of 20

Diversity 2021, 13, x FOR PEER REVIEW 18 of 21 
 

 

Data Availability Statement: The full SEM dataset is not publicly available. The model scripts are 
available on GitHub https://github.com/CValsecchi/VGG16_SEM (accessed on 19 November 2021). 

Acknowledgments: Our gratitude goes to the anonymous referees whose insightful comments en-
abled us to make significant improvements to the paper. We are grateful to Daniela Basso, Valentina 
Alice Bracchi, Guido Bressan, Luigi Piazzi and Francesco Mastrototaro for sample collections. The 
captain, crew, and scientific staff of the RV Minerva Uno cruise STRATEGIA MARINA LIG-
URE−TIRRENO are acknowledged for their efficient and skillful cooperation at sea. We also thank 
Giovanni Coletti for his collaboration as human classifier. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

 
Figure A1. Examples of SEM images that were not assigned to a specific category: (a) Lithophyllum racemus pore canal; (b) 
a magnification showing perithallial cells near the pore canal. These features proved to be significant contributors to the 
correct classification of Lithophyllum spp. in the 2 and 3 class−CNNs. 

 
Figure A2. LIME, Saliency and Grad−CAM techniques show the pixels giving the major contributions to CNN classifica-
tion: (a) magnification of the epithallial cell wall in Lithophyllum racemus evidence the significant contribution of calcifica-
tion, formed by rod−shaped crystallites; (b) Mesophyllum philippii conceptacle shape focused by Saliency; (c) starch grains 
within the perithallial cells of L. racemus did not hamper correct identification; (d) the background beyond the epithallus 
of Lithothamnion corallioides was likely responsible for the erroneous classification of this image. 

Figure A2. LIME, Saliency and Grad-CAM techniques show the pixels giving the major contributions
to CNN classification: (a) magnification of the epithallial cell wall in Lithophyllum racemus evidence the
significant contribution of calcification, formed by rod-shaped crystallites; (b) Mesophyllum philippii
conceptacle shape focused by Saliency; (c) starch grains within the perithallial cells of L. racemus
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corallioides was likely responsible for the erroneous classification of this image.
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