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Insects comprise more than half of all described species in the animal kingdom and
account for a considerable proportion of all biodiversity on the planet [1,2]. This great
variability is due to the specificity of the genetic, morphological, and functional aspects that
different insect species have developed to successfully cope with the complex and dynamic
habitats in which they live.

Insects are referred to as pests or disease carriers that influence agriculture, human
health, and natural resources. Many of them are also beneficial for humans, as they pollinate
plants, produce useful substances, control pest insects, act as scavengers, and serve as food
for other animals and, in the near future, possibly for humans too [3]. Furthermore, given
their great biodiversity, insects are valuable objects of study in biology, evolution, and
ecology. In fact, a large amount of scientific knowledge in genetics has been obtained from
fruit fly experiments, as well as population biology in flour beetle studies. Insects are often
used in investigations regarding hormonal action, nerve and sense organ functions, and
many other physiological processes, and also as environmental quality indicators. Even if
the causes of their remarkable diversity remain poorly understood, it has been suggested
that herbivory may have accelerated diversification in many insect clades [4,5].

In this respect, this Special Issue aims to highlight new research and significant ad-
vances in order to better understand, from different perspectives and methodological
approaches, the genetic and the morpho-functional aspects characterizing the great level of
biodiversity in insects.

One key but controversial aspect in assessing insect biodiversity is that taxonomy
sometimes appears inadequate and/or incomplete, and in a case where a species falls
outside of the intraspecific variability range of closely related species, many taxonomists
tend to list it as a new species [6]. An article by Deng et al. [7] in this Special Issue deals
with this concern. These authors collected 1261 articles containing 4811 new insect species
between 2009 and 2017 and reported that, despite the increased taxonomic efforts for the
discovery of more species and their geographical distribution information, more than 21%
of these new species were described from only one specimen and/or one locality, and
half of all new species were reported based on fewer than five specimens. On the other
hand, these authors encourage taxonomists to adopt better practices, such as increasing the
number of specimens and geographical coverage of sampling, including DNA data, and
improving international collaboration in the description of new species.

Alternatively, the possibility exists that global species numbers might be underesti-
mated because of cryptic diversity [2,8]. Therefore, the use of good morphological methods
and intensive studies with large specimen numbers from many localities would help sepa-
rate most species previously found to be cryptic. Advances in revealing cryptic diversity
may also come from the use of DNA methods. This topic is supported in this Special
Issue by de Moya et al. [9], who explored the Bemisia tabaci complex of whiteflies, which
are considered pests worldwide and are thought to contain cryptic species corresponding
to geographically structured phylogenetic clades. Based on their automatic barcode gap
discovery (ABGD) analyses, these authors reported the existence of at least five species
from both the analyses of nuclear orthologs and cytochrome oxidase I.
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In a different paper of this Special Issue, Han et al. [10] revisited the phylogenetic
position of the genus Yaeprimus within Chironomini on the basis of both morphological
and molecular evidence. Their molecular results strongly support Yaeprimus as a sister
to Imparipecten Freeman, 1961, rather than to the Microtendipes group, thus countering a
previously reported systematical position exclusively based on morphological analyses.

An important, emerging threat for insect biodiversity is posed by the widespread
contamination of ecosystems with plant protection chemicals, such as fertilizers, pesticides,
and herbicides, which ultimately cause a rapid decline in both insect biomass and diver-
sity [11,12]. In this Special Issue, an article by Giglio et al. [13] examined this aspect. By
way of combined field and laboratory trials, these authors tested the effects of exposure to
realistic doses of pendimethalin-based herbicides on the constitutive immunity of Harpalus
(Pseudoophonus) rufipes, a beneficial carabid species that inhabits croplands. They reported
that exposure to herbicides can have sublethal effects, as herbicides interfere with some key
components of the immune response in insects. These effects depend on both the different
field conditions from which the insect population comes and on the cumulative effects of
repeated applications over time and suggest that this highly lipophilic herbicide, applied
in early spring when adults start foraging in the field, may be quickly absorbed through
the cuticle or ingested through the direct consumption of contaminated food.

Insect biodiversity is associated with the quantity and type of host plants available,
environmental factors, and their physiological state [14–17]. The availability of host plants
and an insect’s ability to find them are key factors for the survival of a species because
they represent both suitable oviposition sites for adult females and potential food sources
for the offspring [18–20]. An important role in the choice and recognition of a host plant
is played by the information that the olfactory and gustatory systems send to the central
nervous system (CNS) on the chemical composition of the plant [21–23]. In particular,
insects show a great peripheral plasticity that allows them to adapt to the environment
in which they live [24]. In this Special Issue, Sollai et al. [25] show that sex, physiological
state, and experience can modulate the olfactory sensitivity of the medfly Ceratitis capitata,
a highly invasive species of economic interest. The results show that: (a) lab-reared mated
males are more sensitive to host plant headspace than females, while the opposite is true for
wild insects; (b) wild virgin males are more sensitive than mated ones, while no difference
was observed among lab-reared medflies; (c) lab-reared virgin females are more sensitive
than mated ones, while few differences were found within wild medflies; (d) lab-reared
mated males are more sensitive to host plant extracts than wild ones, while the opposite
was found for females. Taken together, these findings highlight that the physiological
state and habitat contribute to the peripheral plasticity of insects of both sexes, modulating
their olfactory sensitivity to ensure the most appropriate adaptations for the survival of
the species.

Remaining in the context of environmental conditions, in this Special Issue,
Viterbi et al. [26] published an interesting study on the effects of temperature and its
changes on the biodiversity of insects in mountains. In particular, the authors observed
significant differences between groups of species and along the altitudinal gradient, al-
though only small changes emerged in the overall biodiversity patterns. The effects of
temperature increase could be more pronounced for spiders and butterflies and could
be particularly detrimental for high-altitude species. They observed significant changes
in community composition and species richness, especially in the alpine belt, but a clear
separation between vegetation levels was also retained in the warming scenarios. This
conservative approach suggests that even a moderate temperature increase (of about 1 ◦C)
could influence animal biodiversity in mountain ecosystems.

Insects’ biodiversity may represent a threat for rare plant species, which are reliable
indicators of environmental changes but also are a resource in various economic sectors,
such as pollination and human health. The loss of biodiversity is related to several key
factors, such as human activity (fragmentation and loss of habitat, pollution, etc.), climatic
events, and geological processes [27]. This course can be reversed through a reduction in
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the use of environmental pollutants and pesticides and the increase in favorable habitats
for the species [28]. To this end, it could be of particular importance to learn the factors
that regulate the relationships between plants, the environment, and herbivores [29]. For
example, the effects of herbivorous species capable of influencing the viability of a host
plant and the development of its reproductive structures should be considered [30]. In this
Special Issue, Bonsignore et al. [31] showed the effects that several species of herbivorous
insects have on a rare plant species, Salvia ceratophylloides, endemic of southern Italy. They
found bottom-up and top-down effects on plant health and reproduction associated with
herbivorous action. Among the herbivores, mainly Squamapion elongatum affected this rare
species of sage: the acquired data indicate that the density of the herbivore in the area of
diffusion of sage does not represent a quantitative regulating factor of flowering, but it can
rather condition the survival of the species.

In this Special Issue, Enkhtur et al. [32] showed that moths are creatures with an
important role in the ecosystem and have the potential to serve as environmental indicators.
In particular, Geometrid moths (Geometridae), constituting one of the biggest families of
Lepidoptera, are a species-rich and easily recognizable family and have served as indicators
for environmental changes [33]. By analyzing the distribution pattern, species richness,
and biodiversity in the Mongolian ecoregions and correlating them with environmental
variables, the authors concluded that annual precipitation and the maximum temperature
of the warmest month were the most important environmental variables that correlated in
an analysis of geometrid assemblages of different ecoregions in Mongolia.

Finally, Hristov et al. [34] published an interesting review describing how the reduction
in honey bee populations affects various economic sectors, as well as human health. Despite
the important role played by these insects, a progressive decline in bee colonies is being
observed due to the effect of the excessive use of pesticides in agricultural production,
genetically modified plants, electromagnetic radiation, inadequate honey bee nutrition,
crops growing in monoculture, and biodiversity loss. Honey bees are the most economically
valuable pollinator in the world: 9.5% of the total economic value of agricultural production
comes from insect pollination, which totals an amount of just under USD 200 billion globally.
They pollinate not only a large number of commercial crops (cereals, vegetables, fruits,
edible oil crops, stimulants, and nuts and spices), but also many wild plants, some of which
are threatened with extinction, playing a significant role in every aspect of ecosystem,
facilitating the growth of trees, flowers, and other plants that serve as food and shelter for
many creatures large and small. Honey bee products, such as honey, pollen, royal jelly,
propolis, bee venom, wax, and bee bread, are important resources with regard to human
nutrition and the production of pharmaceuticals and food additives.

In conclusion, even if this Special Issue does not entirely cover the vast range of the
possible topics related to insect biodiversity, it provides insight into the multiple directions
with which biodiversity intersects. Unfortunately, we are currently experiencing a biodiver-
sity crisis: many species, among which are insects, are becoming extinct, probably before
we can even detect their existence and describe them.This loss in insect biodiversity, which
is mainly a consequence of anthropogenic pressure, will ultimately lead to a subsequent
decline in ecosystem stability and functioning. In this respect, better knowledge of the
genetic, morphological, and functional aspects characterizing the great level of biodiversity
in insects will be decisive for the safeguarding of ecosystems.
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