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Abstract: In this study, distyly was clearly confirmed in Polygonum criopolitanum Hance, which exhibited
strict self-incompatibility. Unlike other distylous species, style-morph ratios of P. criopolitanum often
deviated obviously from 1:1, and many populations were solely composed of long or short stylous
flowers; the 1:1 style-morph ratio was occasionally found in very large populations. P. criopolitanum
was dimorphic for intrinsic features such as style height and anther height and ancillary features
such as pollen size and number. The L-morph flowers produced a significantly smaller and higher
number of pollen grains than the S-morph flowers, and the stigma papillae of both morphs were not
significantly different. We nearly found no seed sets in most wild populations and very low seed sets
occasionally occurred in large populations, which was different from other species of Polygonaceae.
Mating experiments showed that P. criopolitanum has a strict self-incompatibility system and clonal
propagation was more common than sexual propagation, which was adaptive with the unisexual wild
populations. Hygrocolous habitat, 20–60% soil water content, and height gap less than 4 m to the
adjacent water were the main limiting factors for the distribution of P. criopolitanum.

Keywords: Polygonum criopolitanum; distyly; style-morph ratios; seed sets; strict self-incompatibility

1. Introduction

Heterostyly is a genetic polymorphism in which plant populations are composed of
2 (distyly) or 3 (tristyly) floral morphs. The morphs exhibit reciprocal positioning of anthers
and stigmas. Flowers with the L-styled morphology have a stigma(s) positioned above
the anthers, whereas flowers with the S-styled morphology have anthers placed above
the stigma(s) [1,2]. Besides the differences in floral morphology, distyly is often linked to
a sporophytically controlled, diallelic incompatibility system that results in intramorph
incompatibility [3].

Heterostyly has been documented in at least 193 genera of 30 angiosperm families [2,4].
Some families-genera possess hundreds of heterostylous species, e.g., Oxalidaceae-Oxalis,
Primulaceae-Primula, and Rubiaceae [3], and the occurrence of heterostyly has been recently
reported in Perovskia [5]. Distyly in Polygonaceae was first described by Hildebrand in
Fagopyrum esculentum over 100 years ago [6]; subsequently, many distylous species have
been reported for the genera Oxygonum and Aconogonum [7–10]. The type genus for the
family, Polygonum (which has more than 300 species) [11], has a worldwide distribution,
but it has been seldom reported to be heterostylous. The first distylous Polygonum chinense
was documented in detail by Reddy et al. (1977) [8]. To date, some other distylous species
in Polygonum have been reported [12–17].

Polygonum criopolitanum Hance is an annual herb with a tufted, prostrate stem at the
base that grows to 10–15 cm. Its inflorescence is terminal and capitate, and the perianth
is composed of 5-parted purplish-red tepals. The species is always distributed in the
sand by riversides and wet ditches. Most of the previous studies on this species focused
mainly on its ecology [18], mating system [19], and plant resources [20], and, to the best of
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our knowledge, the reproductive characters of P. criopolitanum have never been reported
in detail.

In this study, we examined variations in floral and reproductive traits and incompat-
ibility systems in natural populations of P. criopolitanum. The aims of this study were as
follows: (1) to determine whether P. criopolitanum is typically distylous as other documented
distylous species; (2) to record the morph ratios of wild populations of P. criopolitanum;
(3) to test the compatibility system after pollen germination, stigma receptivity, and seed
set tests; and (4) to discuss the relationship between ecological factors and environmental
factors by using canonical correlation analysis (CCA).

2. Materials and Methods
2.1. Study Materials

This study was conducted along the Yangzi River and in Anhui, Jiangxi Province
(Figure 1). Herbarium specimens or living materials of P. criopolitanum from Anhui and
Jiangxi Province, China, were used for this study. All vouchers were deposited at the
herbarium of Anhui Normal University (ANUB), China.
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River population (Figure 1), using a vernier caliper with a resolution of 0.01 mm. 

Figure 1. Study sites of Polygonum criopolitanum (•: Population. JXC = Jinxian County;
HJC = Huangjiacun; TPL = Taiping Lake; MFR = Mafeng River; ZR = Zhang River; AQ = Anqing;
GC = GuiChi; TL = Tongling; WH = Wuhu; MAS = Maanshan; PR =Pi River).

2.2. Study Methods
2.2.1. Floral Characters

To document distyly in P. criopolitanum, the height of stigma, height of anther, stigma-
anther separation, length of tepal, and flower diameter (sketched in Figure 2) were recorded
for 50 or 100 flowers of each morph at random from the Wuhu Mafeng River population
(Figure 1), using a vernier caliper with a resolution of 0.01 mm.

To count the number of pollen produced, anthers from 100 flowers per morph of the
Wuhu populations were placed on individual microscope slides. The numbers of pollen
grains per flower were counted using a light microscope, and the diameter of 10 moderate
pollen grains from each flower was measured [12,21]. Pollen counts for the style morphs
were compared using Student’s t-test.

2.2.2. Scanning Electron Microscopy

According to the standard acetolysis method [22], pollen grains were mounted in
glycerin jelly and sealed with paraffin. The size of well-formed pollen grains from each
sample was measured. Scanning electron microscopy was performed using acetolyzed
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pollen grains coated with Au/Pd under a Hitachi S4800 scanning electron microscope
(SEM). Fresh stigmas were mounted in a slow-drying glue and observed under the SEM.
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SSH: stigma height of S-morph; SSAS: stigma-anther separation of S-morph.

2.2.3. Population Structure Survey

To determine the relative frequencies of the 2 style morphs in populations of
P. criopolitanum, we surveyed 44 samples to test whether L- and S-morphs occurred at
equal frequencies. The chi-square test was performed in R software [23]. We sampled all
plants in sporadic populations and 1 × 1 m in patches of populations; for larger samples,
and we performed 10 × 10 m sampling.

2.2.4. Environmental and Ecological Factors

Nineteen samples were obtained in Huangshan Taiping Lake, AnqingYingjiang Tower,
Guichi Shibasuo, Tongling Shizishan, Yangzi River in Wuhu, Longwo Lake, and Zhang
River. Four samples were obtained along the Yangzi River, Longwo Lake, and Zhang River.
The first sample was located at the water side, and the other three samples were located
along a line drawn perpendicular to the shore at 1-m intervals in altitude up the slope of the
riverbank. The number of plants, height, relative coverage, species richness, and presence
or absence of P. criopolitanum was recorded. The altitude, height gap to the adjacent water,
habitat, annual precipitation, annual average temperature, slope, and canopy density of
each sample were also documented, and1 kg of soil from each sample was transferred to
the laboratory to test ecological factors such as soil water content, pH, organic matter, total
nitrogen (TN), and total phosphorus (TP). The soil water content was measured using the
GB9834-88 method; soil TN, Kjeldahl method; and soil TP, Mo-Sb colorimetric method [24].

2.2.5. CCA

CCA was performed using Canoco for Windows 4.5. The graph settings were con-
firmed using the data for the environmental and ecological factors.

2.2.6. Fluorescent Microscopy

To identify the extent of incompatibility of the breeding system of P. criopolitanum,
pollen germination, and pollen tube growth were determined. The style morphs from each
population were pollinated; we waited for 12 h to observe growth in the pollen tube, then
they were stored in FAA until staining. To estimate the pollen germination, theharvested
styles were softened in 8 mol/L NaOH for 24 h rinsed with distilled water. Then, they were
stained for 4 h in 0.4 mg/mL aniline blue solution in phosphate buffer (pH 8.0) and gently
squashed in a small drop of glycerol mounting medium under a cover slip. The pistil and
pollen were scanned with an Olympus (BX61) epifluorescence microscope (420–470 nm
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excitation, 490–535 nm emission). For each style, pollen germination was detected by the
presence of a pollen tube projecting from the grain, and 10 replicates were performed.

2.2.7. Seed Set Experiments

The seed set experiments were performed using natural populations and controlled
pollination populations. For the natural populations, we set 14 1 × 1 m samples in Taiping
Lake (2 samples), Luan Pi River (1), Guichi (1), Anqing (1), Tongling (1), Wuhu (5), and
Jinxian (3). We calculated the style-morph ratio and then obtained all infructescences of
one plant to count the number of seeds (n = 45).

The hybrid experiments were conducted in the laboratory. Legitimate and illegitimate
pollination (including selfing) were performed; the seed sets were recorded in every treat-
ment mode: emasculation and bagging, selfing, illegitimate (intramorph) pollination, and
legitimate (intermorph) pollination. Each mode was conducted using 100 flowers.

2.2.8. Seed Germination Experiments

Normally developed seeds were soaked in water for 48 h and then disinfected in 75%
ethyl alcohol for 30 s. Thirty treated seeds were placed in a culture dish in an illumination
incubator to observe the seed germination, with 3 replicates.

3. Results
3.1. Floral Biology

P. criopolitanum is an annual herb with terminal and capitate inflorescence. The pe-
duncle is covered by dense glandular hair, and each bract is 1-flowered. The pattern of
floral variation in the wild populations demonstrates that P. criopolitanum has conventional
distylous floral syndrome (Figure 3A–D). The tepal lengths of the long stylous flower
(hereafter L-morph) and short stylous flower (hereafter S-morph) were 2.53 ± 0.44 and
2.47 ± 0.29 mm, respectively, and the tepal diameters of the L-morph and S-morph were
6.58 ± 0.47 and 6.42 ± 0.25 mm, respectively. No significant differences were observed
between the tepal lengths as well tepal diameters of the L-morph and S-morph (Table 1,
p > 0.05). The anthers and stigma are reciprocally positioned in the flowers of the two
morphs (Figures 4 and 5). Five stamens are situated between the base of adjacent tepals, and
the anthers are purple. Styles 2, seldom 3, connate at the middle-upper part
(Figure 5A–D). In addition, the two morphs have five nectaries arranged at the base of each
ovary (Figure 3C,D). The stigma and anther heights of the L-morph were
4.02 ± 0.66 and 2.19 ± 0.42 mm, respectively, and the stigma and anther heights of the
S-morph were3.90 ± 0.42 and 1.83 ± 0.55 mm, respectively; significant differences were
observed between the heights of the stigma and anther of both morphs (p < 0.05, Table 1).
We found that the stigma-anther separation of the L-morph (2.06 ± 0.39) was longer than
that of the S-morph (1.83 ± 0.55; p < 0.05, Table 1).

The stigma, which is capitate or spherical with globular papillae on the stigma surface,
is similar in the L-morph and S-morph. No significant differences were observed in the
size and shape of the stigma papillae (Figure 5C–F).

The pollen grains of P. criopolitanum are spheroidal in both morphs, and the pollen
grain surface is covered with reticulate exine structures that are pentagonal or hexagonal.
Each reticular mesh in the pollen contains many smooth papillae (Figure 5G–J).

The pollen size and number of the two morphs of P. criopolitanum showed significant
differences. The mean pollen diameters of the L-morph and S-morph were 51 ± 1.92 µm
and 62 ± 2.51 µm, respectively, and the mean pollen number per flower of the L-morph
and S-morph was 647 ± 40 and 526 ± 38, respectively (Table 1). Although an overlap was
detected in the pollen sizes of both morphs, flowers of the L-morph produced significantly
more and smaller pollen grains than the ones of the S-morph (Table 1, p < 0.01).
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Table 1. Morphological features of the long- and short-morph flowers of P.criopolitanum. Differences
between the means were analyzed using one-way analysis of variance (ANOVA; mean ± standard error).
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Pollen number 647 ± 40 526 ± 38 <0.01 100
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Figure 5. Micromorphological characteristics of P. criopolitanum (SEM). (A) pistil of L-morph; (B) 
pistil of S-morph; (C) stigma of L-morph; (D) stigma of S-morph; (E) stigma papillae of L-morph; 
(F) stigma papillae of S-morph; (G) pollen of L-morph; (H) pollen of S-morph; (I) pollen epidermal 
ornamentation of L-morph; (J) pollen epidermal ornamentation of S-morph. 

Figure 5. Micromorphological characteristics of P. criopolitanum (SEM). (A) pistil of L-morph; (B) pistil
of S-morph; (C) stigma of L-morph; (D) stigma of S-morph; (E) stigma papillae of L-morph; (F) stigma
papillae of S-morph; (G) pollen of L-morph; (H) pollen of S-morph; (I) pollen epidermal ornamentation
of L-morph; (J) pollen epidermal ornamentation of S-morph.
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3.2. Style-Morph Ratios

The chi-square test is a measure of whether the style-morph ratios deviate from 1:1. The
survey results showed that the style-morph ratios of P. criopolitanum obviously deviated from 1:1,
and parthenogenetic populations were always detected in the wild populations. We found that
many populations were solely composed of long or short stylous flowers (e.g., ZhengfengTower
or Jinxian County populations), whereas the 1:1 morph ratio was seldom found in larger
populations (Jinxian County, Taiping Lake, and Mafeng River populations; Table 2).

Table 2. Style-morph ratios in 44 natural populations of P. criopolitanum.

Geographic
Position Sample Sites

Sample
Size
(m2)

Flower
No. of L-
Morph

Flower No.
of S-Morph

L-Morph:S-
Morph χ2 p-Value

Deviate
from
1:1

Anqing City ZhengfengTower 1 211 0 - 211 2.2 × 10−16 Y
Zongyang County 1 185 0 - 185 2.2 × 10−16 Y

Guichi City Huamiao 1 12 0 - 12 5.32 × 10−4 Y
Shibasuo 1 0 97 - 97 2.2 × 10−16 Y

Tongling
City

Shizishan 1 1 0 37 - 37 1.18 × 10−9 Y
Shizishan 2 1 0 285 - 285 2.2 × 10−16 Y

Wuhu City

MafengRiver 100 785 721 1.08 2.72 9.91 × 10−2 N
MafengRiver 1 1 0 63 - 63 2.07 × 10−15 Y
MafengRiver 2 1 82 0 - 82 2.2 × 10−16 Y
MafengRiver 3 1 46 0 - 46 1.18 × 10−11 Y

QingyiRiver 1 0 81 - 81 2.2 × 10−16 Y
Zhang River 1 100 102 0 - 102 2.2 × 10−16 Y
Zhang River 2 1 150 162 0.93 0.46 0.50 Y
ZhaojiaRiver 1 72 0 - 72 2.2 × 10−16 Y
LongwoLake 1 0 95 - 95 2.2 × 10−16 Y

Wanzhi 1 0 89 - 89 2.2 × 10−16 Y

Manshan
City

Yushanqu 1 1 19 0 1 19 1.31 × 10−5 Y
Yushanqu 2 1 36 0 1 36 1.97 × 10−9 Y
Yushanqu 3 1 22 16 1.38 0.95 0.33 N
Yushanqu 4 1 21 0 1 21 4.59 × 10−6 Y
Yushanqu 5 1 18 92 0.20 49.78 1.72 × 10−12 Y

Tunxi City

Taiping Lake 100 340 316 1.08 0.88 0.35 N
Taiping Lake 1 100 54 0 - 54 2 × 10−13 Y
Taiping Lake 2 1 31 0 - 31 2.58 × 10−8 Y
Taiping Lake 3 1 0 49 - 49 2.56 × 10−12 Y
Taiping Lake 4 1 11 0 - 11 9.11 × 10−4 Y

Luan City

Luan Pi River 100 345 67 5.15 187.58 2.2 × 10−16 Y
Luan Pi River1 1 121 0 - 121 2.2 × 10−16 Y
Luan Pi River2 1 56 0 - 56 2.2 × 10−16 Y
Luan Pi River3 1 0 160 - 160 2.2 × 10−16 Y

Luan 1 1 42 24 1.75 4.91 0.03 Y
Luan 2 1 35 0 1 35 3.30 × 10−9 Y
Luan 3 1 33 18 1.83 4.41 0.04 Y

Nanchang
City

Jinxian County 100 895 842 1.06 1.62 0.20 N
Jinxian County 1 100 112 0 - 112 2.2 × 10−16 Y
Jinxian County 2 1 56 12 4.67 28.47 9.51 × 10−9 Y
Jinxian County 3 1 0 90 - 90 2.2 × 10−16 Y
Huangjiacun 1 1 34 11 3.09 11.76 6.1 × 10−4 Y
Huangjiacun 2 1 0 34 1 34 2.2 × 10−16 Y
Huangjiacun 3 1 26 0 1 26 3.41e−7 Y
Huangjiacun 4 1 43 0 1 43 5.47 × 10−11 Y
Huangjiacun 5 1 27 30 0.90 0.16 0.69 N
Huangjiacun 6 1 0 30 1 30 4.32 × 10−8 Y
Huangjiacun 7 1 29 27 1.07 0.07 0.79 N

3.3. CCA Results
3.3.1. Characteristics of the Environmental Factors

The environmental factor indices of 19 samples are listed in Table 3.
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Table 3. Characteristics of the environmental factors of P. criopolitanum.

Sample
Population

No.
Altitude

(m)

Height
Gap to the
Adjacent
Water (m)

Soil Water
Content

Habitat
(1: Aquatic, 2:

Hygrocolous, 3:
Xeromorphic)

Annual
Precipitation

(mm)

Annual
Average
Tempera-

ture
(°C)

Slope
(°C)

Canopy
Den-
sity

pH
Organic
Matter
(g/kg)

Total
Nitro-
gen

(g/kg)

Total
Phosphorus

(g/kg)

alt heig wat hab pre tem slo cad pH orm ton top

WushiTown 1 18 0.5 0.39 2 1564.5 15.4 6 0.7 6.56 38.5 0.409 0.208
Taiping Lake 2 17 0.8 0.38 2 1564.5 15.4 12 0.56 6 50.4 0.254 0.45

AnqingYingjiangTower 3 21 1 0.32 2 1400 15.5 49 0.1 5.6 48.6 0.102 0.345
Guichishibasuo 4 17 1.2 0.25 2 1578.3 15.9 8 0.32 5.72 19.5 0.393 0.41

Tonglingshizishan 5 156 2.1 0.34 2 1589.1 15.8 32 0.38 7 22.7 0.327 0.208
Yangzi River 1 6 6.5 0 1 1 1054.8 16.2 12 0 7.32 33.5 0.256 0.467
Yangzi River 2 7 7.5 1 0.38 2 1054.8 16.2 25 0.75 6.33 21.9 0.278 0.285
Yangzi River 3 8 9.5 3 0.32 2 1054.8 16.2 25 0.76 6.38 34.6 0.346 0.156
Yangzi River 4 9 11.5 5 0.09 3 1054.8 16.2 25 0.56 6.36 34.9 0.165 0.234
Zhang River 1 10 9 0 1 1 1054.8 16.2 6 0 7.39 44.6 0.287 0.35
Zhang River 2 11 11 2 0.519 2 1054.8 16.2 23 0.63 7.17 29.3 0.158 0.4
Zhang River 3 12 12 3 0.485 2 1054.8 16.2 25 0.42 7.14 28.6 0.402 0.321
Zhang River 4 13 13 4 0.123 3 1054.8 16.2 26 0.35 7.52 44.7 0.483 0.235
LongwoLake 1 14 10 0 1 1 1054.8 16.2 42 0 7.23 45.6 0.306 0.408
LongwoLake 2 15 11 1 0.34 2 1054.8 16.2 12 0.23 7.26 48.9 0.415 0.296
LongwoLake 3 16 13 3 0.26 2 1054.8 16.2 28 0.25 7.42 21.3 0.439 0.318
LongwoLake 4 17 15 5 0.45 3 1054.8 16.2 12 0.27 7.05 20.5 0.308 0.375

Pi River 1 18 56 1.5 0.29 2 1100 16.3 21 0.32 5.67 42.6 0.446 0.284
Pi River 2 19 62 5 0.03 3 1100 16.3 19 0.29 5.62 38.6 0.479 0.368
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3.3.2. Characteristics of Ecological Factors

The ecological factor indices of 19 samples are listed in Table 4.

Table 4. Characteristics of ecological factors of P. criopolitanum.

Samples Sample
Number

Plants
Number

Relative
Coverage Height(cm) Relative

Frequency
Species

Richness
Exist or

Not

Wushi Town 1 118 0.85 16 0.76 3 1
Taiping Lake 2 12 0.34 15 0.54 4 1

AnqingYingjiangTower 3 4 0.16 14 0.12 1 1
GuichiShibasuo 4 3 0.12 11 0.21 2 1

TonglingShizishan 5 4 0.15 13 0.18 5 1
Yangzi River 1 6 0 0 0 0 0 0
Yangzi River 2 7 28 0.8 15 0.76 2 1
Yangzi River 3 8 39 0.82 14 0.82 5 1
Yangzi River 4 9 0 0 0 0 8 0
Zhang River 1 10 0 0 0 0 1 0
Zhang River 2 11 105 0.82 17 0.76 4 1
Zhang River 3 12 90 78 16 0.74 8 1
Zhang River 4 13 0 0 0 0 1 0

Longwo Lake 1 14 0 0 0 0 0 0
Longwo Lake 2 15 7 0.13 15 0.26 5 1
Longwo Lake 3 16 4 0.08 15 0.21 4 1
Longwo Lake 4 17 0 0 0 0 4 0

Pi River 1 18 29 0.76 16 0.35 6 1
Pi River 2 19 0 0 0 0 12 0

Note: pln: plants number; rec: relative coverage; heig: height; ref: relative frequency; spr: species richness; exn:
exist or not; 1 = exist, 0 = absence.

3.3.3. CCA of P. criopolitanum Samples

The relationship between ecological factors and environmental factors is shown in
Figure 6.
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factors are indicated by open circle (#) and open triangle (4), respectively.
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In the CCA ordination diagram, the red lines and arrowheads refer to the environ-
mental factors, and the length of the segment refers to the relationship degree between the
sample distribution and environmental factors. The angle between the ordination axes and
arrowhead connecting the line indicates the correlation degree between the environmen-
tal factor and its ordination axes, and the quadrant where the arrowhead is distributed
indicates the positive or negative relationship between the environmental factor and its
ordination axes. Figure 6 shows the major ecological factors that affect the population
distribution of P. criopolitanum: habitat, soil water content, and height gap to the adjacent
water. Hygrocolous habitat, 20–60% soil water content, and height gap less than 4 m to the
adjacent water were the main limiting factors for the distribution of P. criopolitanum. Annual
precipitation maydirectly influence the soil water content and hygrocoloushabitat. The
population distribution of P. criopolitanum had no obvious relationship with the slope, pH,
altitude, organic matter, TN, and TP. The axes showed that the soil water content increased
progressively from top to bottom.

3.4. Mating System Relationships

The fluorescent experiments showed that the rate of pollen germination in the style of
the intermorph was obviously higher than that of the self- and intramorph (Figure 7A–F).
The statistics showed that the pollen germination rate of pin style × thrum pollen was
72.0 ± 4.0% (n = 10) and that of thrum style × pin pollen was 73.0 ± 3.5% (n = 10). During
intramorph pollination, the pollen germination rate of pin style × pin pollen was 43 ± 2.6%
(n = 10) and that of thrum style × thrum pollen was 42.0 ± 3.1% (n = 10).
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During self-pollination, the rate of pollen germination of the pin self was 9.0 ± 0.7%,
whereas no pollen germination was identified in the case of the thrum self.

3.5. Seed Sets

The statistics showed that the seed sets of P. criopolitanum were very low in the wild
populations; moreover, the seed sets in the population were often 0, and, even in larger
populations with both L- and S-morph, the seed sets were always less than 10% (Table 5).

Table 5. Seed sets of P.criopolitanum in different populations under natural conditions.

Population
Population

Fruit Sets
L-Morph S-Morph

Taipinghu 1 156 32 4.17
Taipinghu2 58 0 0

Luan Pi River 145 0 0
Guichi Shibasuo 0 45 0

Anqing Zhengfeng
Tower 32 0 0

Tongling 49 0 0
Wuhu MafengRiver 176 152 3.16
Wuhu Qingyijiang 65 0 0

Wuhu Longwo Lake 0 47 0
Wuhu Zhang River 1 89 0 0
Wuhu Zhang River 2 80 11 0

Jinxian County 1 215 208 6.67
Jinxian County 2 0 73 0
Jinxian County 3 87 0 0

The statistics showed that the seed set rate was 0 under emasculation, selfing, and
illegitimate pollination conditions. Moreover, the seed set rate was low under legitimate
pollination (Table 6).

Table 6. Seed set rate under different treatment conditions.

Process Mode
Pin Thrum

Flowers Seeds Seed Sets (%) Flowers Seeds Seed Sets
(%)

Emasculation, bagged 100 0 0 100 0 0
Selfing 100 0 0 100 0 0

Illegitimate pollination
(intramorph) 100 0 0 100 0 0

Legitimate pollination 100 3 3% 100 5 5%

3.6. Seed Germination

The statistics showed that the seed germination of L-morph and S-morph was
13.33 ± 3.87% and 16.67 ± 3.87%, respectively, with no significant differences between the
seed germination of L-morph and S-morph (p < 0.01). We found widespread asexual clonal
reproduction phenomena in the fields.

4. Discussion

This study revealed that P. criopolitanum has all the polymorphic intrinsic features with
respect to style and stamen heights and accessorial characteristics with respect to pollen
size and number. The polymorphic density of stigma papillae has recently been reported
for the tristylous Lythrumsalicaria [25] and distylous Polygonum jucundum [12]. However,
in this study, we found no significant differences between the L-morph and S-morph of
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P. criopolitanum, including tepal size; thus, P. criopolitanum is typically distylous in intrinsic
features and not in all ancillary features.

Flower morph frequencies have always received much attention [26], especially with
respect to the consequences for inbreeding [27] or long-term population persistence [28].
In addition, discrepancies in the morph ratio have been found to be much higher in small
rather than large populations of Primula veris [29] and Primula elatior [30], but populations
solely composed of the L-morph or S-morph were seldom reported. Interestingly, we
observed that the monotypic populations of P. criopolitanum were always found in wild
populations, which perfectly accounted for the particularly low seed sets of the species.

Fluorescent microscopy showed that pin × pin crosses do occur at a low rate, and
no pollen germination was identified in the case of the thrum self, which can explain
slight deviations from the 1:1 ratio in a large population. Very common clonal growth in
P. criopolitanum can explain why the populations fixed for the L-morph or S-morph were
always distributed in the fields.

In distylous species, different taxa havebreeding systems with different compatibility
levels. Most heterostylous species have a mating system with strict self-incompatibility;
for example, a diallelic self-incompatibility system was reported in Tylosema esculentum
through in vivo and in vitro diallel crossing experiments. The major site of pollen tube
inhibition in the intramorph crosses was found to be in style [31]. Arnebia szechenyi has also
been recorded to show heteromorphic self-incompatibility, which was further supported by
the fact that no fruit was produced by flowers subjected to self-pollination or intramorph
pollination [32]. In contrast, some species do not exhibit a strict self-compatibility system.
In many species of Primula, selfing or crossing with a plant of the same morph will also
produce a small numberof seeds [33]; for example, the fertility of a legitimate crossof
Primula merrilliana was high, whereas the fertility of an illegitimate cross waslow [34],
and Pulmonaria officinalis and Ceratostigma willmottianum were found to bepartially self-
compatible [35,36]. Unlike most heterostylous species, Primula oreodoxa was found to be
fully self-compatible under controlled self- and cross-pollinations [37]; flowers of Psychotria
carthagenensis were also self-compatible [38], and atypical distylous Psychotria goyazensis
was proven to be an intramorph self-compatible species [39]. In Europe, Armeria maritima is
completely self-incompatible, but it lost its self-incompatibility during its migration to the
New World through the Arctic regions [40]. Seed production is thought to be more sensitive
to habitat fragmentation in heterostylous plants than in plants with other breeding systems
because potential mating partners are more limited [41].

In this study, we nearly found no seed sets in most wild populations and very low
seed sets occasionally occurred in large populations, which was different from other species
of Polygonaceae; for example, the seed set of Polygonum perfoliatum has a high seed set rate
(even up to 84%) [42], and bagging experiments have shown that 47% flowers of Polygonum
thunbergii are self-pollinated because of no pollinator visits. Despite a high probability of
cross-pollination, the probability of fruit set within the ramet was 0.30 because of resource
limitations [43]. What interested us the most was that we found a similar scenario in
Polygonum viviparum. The fruit set of P. viviparum has never been observed in North
American populations, and sexual reproduction is clearly a rare event in this species [44].
The lack of viable seed production in P. viviparum has no single developmental explanation.
A similar adaptive reproduction mechanism may exist in these species. On the basis of a
common monotypic distribution, pollen germination during the stigma experiments, and
the absence of seed sets in the wild populations, we inferred that P. criopolitanum has a strict
self-incompatibility system.

Previous surveys of the incompatibility status of island flora such as the flora of New
Zealand, Hawaii, and the Galápagos have shown a deficit in taxa with heteromorphic
incompatibility when compared with continental areas [45]. We found that the dependence
on water and environmental characteristics of the hydro-fluctuation belt may be important
factors for the establishment of thereproduction system of P. criopolitanum. On the basis
of the seed sets (natural and artificial conditions) and shoreside distribution along the
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Yangzi River or other lakes, the strict self-incompatibility, as well as the sex reproduction
efficiency, of P. criopolitanum was less dominant than asexual clonal reproduction and
uniparental reproduction occurred by clone and not by self-compatible sex reproduction.
Baker (1955) referred mainly to self-fertilization as a trait that would confer reproductive
assurance during colonization, but we found a different scenario in P.criopolitanum [40].
Somes pecies have been reported to abandon sexual reproduction for some form of clonal
reproduction, at least in some habitats or parts of their geographic range [46,47].

In conclusion, P. criopolitanum was typical distylous species with a strict self-incompatibility
reproductive system. The wild population of P. criopolitanum deviated obviously from 1:1,
and 1:1 style-morph ratios were occasionally found in very large populations. The strict
self-incompatibility reproductive system, main environmental factors stress, and common
monomorphic populations resulted in the low seed sets, which can explain the general asexual
clonal reproduction instead of sexual reproduction in the species. To understand the molecular
adaptation mechanism of P. criopolitanum, further studies on pollen flow and gene flow at the
molecular level need to be performed.
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