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Abstract: It is often of interest to biologists to evaluate whether two populations are alike with
respect to a similarity index; assessing the numbers of shared species is one way to do this. In
this study, we propose two Turing-type estimators for the probability of discovering new shared
species and two jackknife-type estimators for the number of shared species in two populations.
We use computer simulation and empirical data analysis to evaluate the proposed approach. The
jackknife-type estimators provide stable and reliable estimates, for both the probability of discovering
new shared species and the number of shared species. We also compare the jackknife-type estimates
with that of using sample coverage to estimate the number of shared species. The estimate of using
sample coverage has better performance in the case of even populations, while the jackknife-type
estimates have smaller bias in the case of unbalanced populations. When combined with a stopping
rule based on the probability of observing new shared species, confidence intervals based on the
proposed jackknife-type estimators can provide better coverage probability for the true number
of shared species. The jackknife-type estimates can provide coverage probability close to 0.95 in
all examples.

Keywords: species diversity; number of share species; comparing populations; jackknife estimator;
simulation

1. Introduction

Species diversity is a feature often used to compare populations. Among all measures,
the number of species is a simple descriptor but its estimation is remarkably challenging.
Indeed, there were over 550 papers on the topic as of 1991, as summarized by Bunge and
Fitzpatrick [1]. Our primary interest in this paper is to study and evaluate the estimators of
the number of shared species in two communities, borrowing ideas from the estimators of
number of species in one population.

Good proposed an elegant idea for estimating the probability of discovering new
species (Turing’s estimator) [2], using only the information of species observed exactly once
in the sample. Following Good’s idea, Burnham and Overton applied a jackknife technique
to obtain a nonparametric estimator of the number of species in one population based on
the distribution of observed species frequency [3]. Chao and Lee proposed an alternative
nonparametric estimator based on the concept of sample coverage [4], and Chao et al. later
modified this estimator using the information of species appearing not more than 10 times
in the sample [5].

The estimation of the number of shared species in two populations can be generalized
from the species richness in one population. Using the information of sample coverage,
Chao et al. proposed a nonparametric estimator of the number of shared species [6] and
Chuang et al. developed three different types of jackknife estimators [7]. However, neither
of these approaches takes advantage of jackknifing the sample and we don’t know if there
are enough observations to make the final decision. In a different approach, Yue and
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Clayton modified Good’s idea and proposed an estimator for the probability of observing
new shared species in two populations [8]. They used this probability as an indicator
to stop collecting more observations, which can lower overall study cost, in comparing
species similarity between two populations. Therefore, in addition to developing two
jackknife-type estimators for the number of shared species and comparing them to that by
Chao et al. [6], we also evaluate if it is possible to use stopping indicator for estimating the
number of shared species.

Note that, in addition to the proposed two jackknife-type estimators of the number of
shared species in two populations, we also consider the feasibility of using the probability
of observing new shared species as stopping rule. In the next section we briefly review the
concept behind jackknife estimators, including Turing-type estimates of the probability of
discovering new shared species. We then develop two nonparametric estimators for the
number of shared species in two populations and discuss the variances of those estimators.
We will use computer simulations and empirical analysis of varies data sets to evaluate the
proposed approach.

2. Methodology

Suppose there are two populations and let
→
p = (p1, p2, . . . , ps) and

→
q = (q1, q2, . . . , qs)

denote the species proportions of the two populations, where s is the number of distinct
species in the pooled communities. In other words, if we randomly select a single sample,
then the probabilities of observing the species i are pi and qi (1 ≤ i ≤ s) in populations 1
and 2, respectively. Let s0 be the number of shared species and, without loss of generality,
let the species 1, 2, . . . , and s0 be the shared species in both populations. Also, let Xi(n)
and Yi(n) denote the numbers of times of species i is observed based on n observations
from each of populations 1 and 2, respectively, and let s0(n) denote the number of observed
shared species from n (pairs of) observations.

The probability of observing a previously unseen species (which is listed) in a single
sample draw from population 1 can be expressed as u(n) = ∑

i
pi × I(Xi(n) = 0), where I(·)

is indicator function [9]. The Turing estimate for the probability of discovering new species
is based on the number of species appearing exactly once in the sample, i.e., û(n) = g1

n
where g1 ≡ ∑

i
I(Xi(n) = 1) is the number of singletons [2]. However, Turing’s estimate has

a positive bias since E(û(n)) = ∑
i

pi(1− pi)
n−1 is larger than E(u(n)) = ∑

i
pi(1− pi)

n [9].

The Turing-type estimator for the probability of discovering new shared species can
be derived similarly. First, the probability of discovering new shared species after n
observations is

v(n) =
s0

∑
i=1

pi qi × I(Xi(n) = Yi(n) = 0) +
s0

∑
i=1

(pi × I(Xi(n) = 0, Yi(n) > 0) + qi × I(Xi(n) > 0, Yi(n) = 0)) (1)

where (p1, p2, . . . , ps) and (q1, q2, . . . , qs) are the species proportions of the two popu-
lations [8]. We propose two Turing-type estimators, denoted v′1(n) and v′2(n), based on
Equation (1): the first is from [2] and the other is a direct extension from the one-population
case. The first estimator is derived from E(v(n)), and g1

n is used to replace u(n) as in
Turing’s estimate. Thus, v′1(n) can be expressed as

v′1(n) =
s
∑

i=1

I(Xi(n)=1)
n +

s
∑

i=1

I(Yi(n)=1)
n +

s
∑

i=1

I(Xi(n)=Yi(n)=1)
n

−
s
∑

i=1

I(Xi(n)=0,Yi(n)=1)
n −

s
∑

i=1

I(Xi(n)=1,Yi(n)=0)
n .

(2)

Equation (2) is the probability that a shared new species occurs at the nth sample point,
given the sample statistics Xi(n), Yi(n) for i = 1, 2, · · · , s. Since Turing’s estimate has a
positive bias, v′1(n) is also biased, as described in the Appendix of [8].
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Another Turing-type estimator is to treat the two populations as two independent
populations and then the two-population Turing’s estimate is the sum of Turing’s estimates
from each population. Specifically, for the new shared species, we only consider the case
where they are observed in one population but not yet observed in the other population.
The estimator is expressed as

v′2(n) =
s

∑
i=1

I(Xi(n) = 1, Yi(n) > 0)
n

+
s

∑
i=1

I(Xi(n) > 0, Yi(n) = 1)
n

. (3)

The difference between v′1(n) and v′2(n) is v′1(n)− v′2(n) =
s
∑

i=1

I(Xi(n)=Yi(n)=1)
n , and

thus v′2(n) has the potential to reduce the bias of v′1(n); in fact this will be shown to be the
case in the next section.

We next develop jackknife-type estimators for the number of shared species similar to
those used for the number of species [3]. For a single sample, their (first-order) jackknife
estimate of the number of species in a single population is given by: ŝJ = s∗0(n) +

n−1
n
(

f ∗1
)

where s∗0(n) is the number of observed species and f ∗1 is the number of singletons. A similar
idea can be applied to the case of two populations and we can use the number of species
appearing once to develop the jackknife type estimate of number of shared species. Let f1+
(or f+1) be the numbers of species appearing exactly once in the first (or second) population,
which also appear at least once in the other population. Let f11 be the number of species
appearing exactly once in both populations. Then, by analogy of using the singletons
and the Equations (2) and (3), the jackknife-type estimators ŝJ = s∗0(n) +

n−1
n × (singleton)

for the number of shared species can be expressed as ŝJ1 = s0(n) + n−1
n ( f1+ + f+1 + f11)

and ŝJ2 = s0(n) + n−1
n ( f1+ + f+1). The derivation of these two estimators is outlined in

Appendix A.
Using techniques similar to those used in the previous study [3], the jackknife-type

estimators can also be expressed in the following form,

ŝJ1 = s0(n) +
n− 1

n
f̂1 =

n

∑
i=1

ai fi (4)

where

f̂1 =
s
∑

i=1
I(Xi(n) = 1) +

s
∑

i=1
I(Yi(n) = 1) +

s
∑

i=1
I(Xi(n) = Yi(n) = 1)

−
s
∑

i=1
I(Xi(n) = 0, Yi(n) = 1)−

s
∑

i=1
I(Xi(n) = 1, Yi(n) = 0)

(5)

a1 = (n−1)( f1+2 f11)
n f1

+ 1, a2 = · · · = an = 1, and fi is the number of species appearing
exactly i times (i ≥ 1) in either population.

One of the advantages of using the jackknife procedure is that the variance of the
jackknife-type estimators can be derived easily. The variance of the first estimator is

Var(ŝJ1) =
n

∑
i=1

a2
i fi − ŝJ1. (6)

The second estimator can also be expressed in a form similar to Equation (5):

ŝJ2 = s0(n) +
n− 1

n
f̃1 =

n

∑
i=1

bi fi (7)

with variance

Var(ŝJ2) =
n

∑
i=1

b2
i fi − ŝJ2 (8)
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where b1 = (n−1)( f1+ f11)
n f1

+ 1, b2 = · · · = bn = 1. Since the difference between the two
estimators from Equations (2) and (3) for the probability of discovering new shared species
is ∑s

i=1
I(Xi(n)=Yi(n)=1)

n , the difference between the two jackknife-type estimators from

Equations (4) and (7) is (n−1) f11
n .

Note that the jackknife-type estimators in Equations (4) and (7) are constructed similar
to the form of jackknife estimator for one population, where the estimate of number
of species is the sum of the number of observed species with (n− 1)/n multiplying the
number of singletons in the sample. Interestingly, Chao’s estimator for the number of shared
species [6] also has the same form as Chao’s estimator for the number of species in one
population [4,5]. In particular, using a homogeneous population case as an example, Chao’s
estimator for the number of shared species can be expressed as ŝChao = s0(n) +

srare(n)
Ĉ

,

where srare(n) is the number of observed rare shared species and Ĉ is the estimate of sample
coverage for the shared species. Using our notation, srare(n) = ∑

i
I[0 < Xi(n), Yi(n) ≤ 10]

is the number of observed shared species appearing at most 10 times in both populations

(i.e., rarely), and the sample coverage estimate is Ĉ =

s12(n)
∑

i=1
p∗i ×q∗i ×I[Xi(n)>0, Yi(n)>0]

s12(n)
∑

i=1
p∗i ×q∗i

, with

p∗i =
pi

1−
s
∑

i=1
{pi × I[Xi(n) > 0, Yi(n) > 10] + pi × I[Xi(n) > 10, Yi(n) > 0]}

and

q∗i =
qi

1−
s
∑

i=1
{qi × I[Xi(n) > 0, Yi(n) > 10] + qi × I[Xi(n) > 10, Yi(n) > 0]}

.

3. Simulation Studies

We first use computer simulation to evaluate the performance of v′1(n) and v′2(n),
especially when used to form stopping rules that lead to estimates of the number of shared
species, and compare three nonparametric estimators of the number of shared species in
two populations: ŝJ1, ŝJ2, and Chao’s estimate [6]. As pointed out in the previous study [8],
the probability of observing new shared species can be used as a stopping indicator for
sampling. We shall extend its role to develop the estimate for the number of shared species,
and use the probability as a stopping indicator.

Similar to Yue and Clayton [8,10], we use geometric distributions to model the dis-
tribution of species within each population. That is, we assume that pi ∝ αi and likewise
for qi ∝ αi. In addition, we assume that the shared species are dominant in both popula-
tions [10,11]. We shall first evaluate the performance of estimators for the probability of
discovering new shared species v′1(n) and v′2(n), using v(n) as a benchmark. Note that the
computer simulations conducted in this study are based on an Intel-based PC, using the
statistical software R, version 2.12.0. All results are from 1000 simulation replications for
each case.

Example 1. Suppose that the species proportions of the two populations follow
geometric distributions and pi = qi ∝ αi with α = 0.9, 0.8, 0.7, and 0.6. Note that a larger
α indicates a more even (or balanced) population structure, while a smaller α means that
some species are dominant and the population structure is more unbalanced. Let the
numbers of species in the two populations be 100, the number of shared species be 20 or 50,
and the shared species are the most dominant species in each population. The results are
each based on 1000 simulation runs.

Table 1 lists the probability and its estimates of discovering new shared species given
that n observations are taken from each population and that the species proportions follow
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the geometric distributions stated above. As expected, the estimate v′1(n) has a larger
bias, especially in the cases of smaller sample sizes. On the other hand, the estimate v′2(n)
performs better in terms of bias for all cases and it is not influenced by the population
structure (i.e., even or unbalanced). It seems that the deduction of ∑s

i=1
I(Xi(n)=Yi(n)=1)

n
from v′1(n) is reasonable since v′1(n) has a positive bias [8], although it looks like v′2(n)
could be under-biased from Equation (3). Nonetheless, based on these simulation results, it
appears that the estimate v′2(n) is a better estimate for the probability of discovering new
shared species.

Table 1. Probability of Discovering New Shared Species. Numbers of species in two populations are
s1 = 100 & s1 = 100, the number of shared species is s0 = 20 or s0 = 50, and species proportions
follow Geom(α).

n α = 0.9 α = 0.8 α = 0.7 α = 0.6
v(n) v

′
1(n) v

′
2(n) v(n) v

′
1(n) v

′
2(n) v(n) v

′
1(n) v

′
2(n) v(n) v

′
1(n) v

′
2(n)

s0 = 20

100 0.04469 0.05077 0.04436 0.04196 0.05126 0.04144 0.02723 0.03558 0.02825 0.01931 0.02476 0.01966
200 0.00705 0.00730 0.00686 0.01804 0.02310 0.01900 0.01366 0.01841 0.01461 0.00979 0.01154 0.00935
500 0.00007 0.00006 0.00006 0.00408 0.00488 0.00425 0.00564 0.00686 0.00547 0.00408 0.00466 0.00373

1000 0 0 0 0.00068 0.00072 0.00068 0.00281 0.00331 0.00268 0.00191 0.00238 0.00191
1500 0 0 0 0.00011 0.00012 0.00012 0.00170 0.00198 0.00162 0.00133 0.00156 0.00126
2000 0 0 0 0.00003 0.00003 0.00003 0.00110 0.00140 0.00115 0.00102 0.00112 0.00091
3000 0 0 0 0 0 0 0.00061 0.00073 0.00062 0.00068 0.00079 0.00064
4000 0 0 0 0 0 0 0.00038 0.00044 0.00038 0.00049 0.00062 0.00049
5000 0 0 0 0 0 0 0.00026 0.00026 0.00023 0.00039 0.00050 0.00040

s0 = 50

500 0.01816 0.02208 0.01784 0.00880 0.01111 0.00890 0.00550 0.00718 0.00574 0.00383 0.00487 0.00388
1000 0.00793 0.00941 0.00778 0.00461 0.00550 0.00441 0.00276 0.00339 0.00273 0.00197 0.00240 0.00192
1500 0.00433 0.00514 0.00437 0.00308 0.00379 0.00303 0.00185 0.00237 0.00191 0.00131 0.00155 0.00125
2000 0.00263 0.00303 0.00262 0.00225 0.00279 0.00222 0.00143 0.00167 0.00134 0.00095 0.00123 0.00098
3000 0.00110 0.00127 0.00114 0.00154 0.00186 0.00148 0.00093 0.00123 0.00097 0.00063 0.00086 0.00068
4000 0.00047 0.00055 0.00052 0.00110 0.00144 0.00115 0.00071 0.00086 0.00069 0.00048 0.00062 0.00049
5000 0.00024 0.00026 0.00024 0.00090 0.00113 0.00090 0.00056 0.00070 0.00056 0.00038 0.00049 0.00039

We shall continue the comparison of estimators for the number of shared species,
despite the fact that the estimate v′1(n) is over-biased. Note that both the original and
modified versions of Chao’s estimates are considered in this study. However, we will
only show the modified Chao’s estimate (denoted as ŝC2 for the rest of this study) since it
performs better than the original Chao’s estimate. In the next example, we compare two
jackknife-type and Chao’s estimators for the number of shared species in two populations.

Example 2. We now consider the comparison of estimates for the number of shared
species using the same settings as in Example 1 and show the averages and variances of
estimates from 1000 simulation runs. In addition, we also include the case where the species
proportions follow the Zipf’s law, similar to that in [6]. We assume that pi = qi ∝ iδ with
δ = 1, 1.5, and 2, and show only the averages of estimates. In general, more observations
are required in the case of more unbalanced populations (i.e., smaller α and larger δ). To
simplify the discussion, the cases where pi = qi ∝ αi with α = 0.9 and 0.7 will be used. The
details of the simulation results can be found in Appendices B and C.

We first show the comparison of two jackknife-type and Chao’s estimators for the
number of shared species (Figures 1 and 2). In the even population case, Chao’s estimate
has the best performance for both s0= 20 and 50. It converges much faster and does not
have larger bias like the jackknife-type estimates. On the other hand, for the unbalanced
population cases, the jackknife-type estimators (especially ŝJ1) have a smaller bias, for both
s0= 20 or 50. But all estimators converge very slowly in the case of larger s0 and unbalanced
populations. It seems that, by analogy, the overbiased property of v′1(n) also carries over
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to the estimation of number of shared species in ŝJ1. In particular, since the behaviors of
singletons can be very discrete in the cases of unbalanced populations, it is reasonable to be
conservative and choose a slightly overbiased estimator.
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Note that, although we found that Chao’s estimate performs well in the even popu-
lation case, it can still produce undesirable results. For example, assume that the species
proportions satisfy pi = (0.99)i and qi = (0.9)i, and that the number of shared species is 80.
Under this setting, there will be no observed rare shared species once the sample size is
big enough. As shown in Table 2, we cannot compute Chao’s estimate since all observed
shared species appear more than 10 times. On the other hand, the jackknife-type estimators
converge to the true number of shared species as the sample size increases.

Table 2. Estimates for the Number of Shared Species (Numbers of species in two populations are
s1 = 100 & s1 = 100, the number of shared species is s0 = 80, and species proportions are from
Geom(0.99) and Geom(0.9); J1 & J2: 1st & 2nd Jackknife estimates, C2: Chao’s estimate, s0(n): number
of observed shared species).

n s0(n) ŝC2 ŝJ1 ŝJ2

500 42.68 51.40 53.74 53.42
1000 49.46 54.75 58.85 58.85
2000 55.87 55.97 64.88 64.88
3000 59.44 NA 68.21 68.21
5000 63.92 NA 72.36 72.36
8000 67.66 NA 75.57 75.57

10,000 69.57 NA 77.21 77.21
15,000 72.31 NA 78.96 78.96
20,000 74.18 NA 80.16 80.16

Note: Chao’s estimates become N/A if the sample coverage = 0.

Next we compute the Monte Carlo variance of the two jackknife-type and Chao’s
estimators, and also the variance of jackknife-type estimators from Equations (6) and
(8). Since all estimators converge to the true value fairly fast in the even population case
(α = 0.8 & 0.9), we will focus on the case of α = 0.7. (Appendix B shows the details of
simulation results for all cases pi = qi ∝ αi with α = 0.9, 0.8, 0.7, and 0.6). Figure 3
shows the sample variances of two jackknife-type and Chao’s estimators from 1000 runs.
On average, the jackknife-type estimators have smaller and smoother variances (ŝJ2 the
smallest). The variance of Chao’s estimate jumps up and down even when there are 2000
or more observations, which might indicate that Chao’s estimate can still be unstable even
when there are a lot of observations.
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We shall also check whether Equations (6) and (8) can provide reliable approximation
to the variance of jackknife-type estimators, by using the sample variance from Monte Carlo
simulation as the baseline. Figure 4 shows the variances from Equations (6) and (8) and
those from Monte Carlo simulations which are marked with “Monte Carlo”. Similar to the
overbias in estimating the number of shared species, the variance of ŝJ1 from Equation (6) is
always larger than that from Monte Carlo simulation. In contrast, the variance Equation (8)
for ŝJ2 is a good approximation to that of Monte Carlo simulation. In any case, the variance
formulae for the jackknife-type estimators provide fairly reliable approximations.

Diversity 2022, 14, 243 9 of 18 
 

 

 
Figure 4. Variance Comparison (Sample vs. Monte Carlo) of Jackknife-type Estimates for the Num-
ber of Shared Species (J1 & J2: 1st & 2nd Jackknife estimates). 

4. Empirical Studies 
In addition to the simulations of the previous section, we also use empirical data to 

evaluate the three estimates of shared species. Four data sets are considered in this study: 
the first two are data on wild birds and on crabs [8], the third one is based on forest data, 
and the last one comes from Chinese literature. Also, we consider the case of sampling 
with replacement since there are finitely many observations in all data sets. In other 
words, we are using these data sets as representing the true populations, and our sam-
pling emulates sampling from these populations. 

Example 3. The Taiwan Bird data [11] contain two communities of wild birds con-
sisting of 184 different species and 144,963 observations. There are 155 and 149 species in 
population 1 and 2, respectively, and 111 shared species (more than half are shared spe-
cies). The shared species are dominant in each population, similar to the setting in the 
previous section. We therefore expect that the results of the jackknife-type estimates to be 
similar to those in the previous section. 

Table 3 shows the estimates of the probability of discovering new shared species and 
the estimates of the number of shared species as a function of sample size. Moreover, we 
also calculate the coverage probability for the number of shared species; that is, the prob-
ability that the confidence interval .).96.1ˆ.,.96.1ˆ( essess ×+×−  covers the true num-
ber of shared species. We expect this interval to behave approximately like a 95% confi-
dence interval and so this coverage probability is intended to verify whether the estimate 
can be used in building confidence intervals. Note that ŝ  is the estimate for the number 
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4. Empirical Studies

In addition to the simulations of the previous section, we also use empirical data to
evaluate the three estimates of shared species. Four data sets are considered in this study:
the first two are data on wild birds and on crabs [8], the third one is based on forest data,
and the last one comes from Chinese literature. Also, we consider the case of sampling with
replacement since there are finitely many observations in all data sets. In other words, we
are using these data sets as representing the true populations, and our sampling emulates
sampling from these populations.

Example 3. The Taiwan Bird data [11] contain two communities of wild birds con-
sisting of 184 different species and 144,963 observations. There are 155 and 149 species in
population 1 and 2, respectively, and 111 shared species (more than half are shared species).
The shared species are dominant in each population, similar to the setting in the previous
section. We therefore expect that the results of the jackknife-type estimates to be similar to
those in the previous section.

Table 3 shows the estimates of the probability of discovering new shared species and
the estimates of the number of shared species as a function of sample size. Moreover,
we also calculate the coverage probability for the number of shared species; that is, the
probability that the confidence interval (ŝ − 1.96 × s.e., ŝ + 1.96 × s.e.) covers the true
number of shared species. We expect this interval to behave approximately like a 95%
confidence interval and so this coverage probability is intended to verify whether the
estimate can be used in building confidence intervals. Note that ŝ is the estimate for the
number of shared species, and its variance is calculated via 1000 simulation runs. Note
that we can also use the variances via Equations (6) and (8) to compute the coverage for
jackknife-type estimators (and the results of coverage probability are fairly close). However,
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the variance of Chao’s estimator can only be computed via Monte Carlo simulation, and
we shall compute the variances all based on simulation.

Table 3. Taiwan’s Bird Data (Numbers of species in two populations are s1 = 155 & s2 = 149 and the
number of shared species is s0 = 111; J1 & J2: 1st & 2nd Jackknife estimates, C2: Chao’s estimate,
s0(n): number of observed shared species).

n v(n) v
′
1(n) v

′
2(n) s0(n)

ŝC2 ŝJ1 ŝJ2
Est. s.e. Prob Est. s.e. Prob Est. s.e. Prob

3000 0.07717 0.09651 0.07691 56.95 65.35 7.53 0.01 74.11 7.33 0.01 71.85 5.71 0.00
6000 0.04532 0.05594 0.04525 67.40 75.11 6.71 0.01 84.55 7.17 0.10 82.54 5.72 0.01
9000 0.03163 0.03872 0.03169 73.49 80.48 6.53 0.02 90.04 7.04 0.21 88.12 5.62 0.06

15,000 0.01924 0.02305 0.01919 80.54 86.72 5.81 0.03 96.39 6.86 0.42 94.60 5.50 0.23
24,000 0.01147 0.01354 0.01152 87.22 93.76 6.30 0.15 102.48 6.68 0.68 100.83 5.41 0.51
30,000 0.00879 0.01020 0.00878 90.08 96.14 5.84 0.24 105.30 6.68 0.76 103.64 5.40 0.66
36,000 0.00697 0.00803 0.00697 92.44 97.47 5.53 0.28 107.20 6.53 0.84 105.68 5.32 0.78
45,000 0.00517 0.00586 0.00516 95.48 100.12 4.85 0.35 109.71 6.36 0.92 108.30 5.23 0.88
51,000 0.00432 0.00489 0.00434 97.08 101.30 4.54 0.38 110.95 6.25 0.94 109.63 5.16 0.91

From the table we can see that, for the probability of discovering new shared species,
v′2(n) again is a better estimate for small and large samples, and v′1(n) is always over-
biased. The first jackknife-type estimate ŝJ1 of the number of shared species again is the
largest among the three estimates, but, unlike the over-biasedness of v′1(n), it is still smaller
than the true s when the sample drawn is large. Its variance decreases gradually as the
sample size increases and becomes stable when the sample size is around 50,000, where
the coverage probability is about 95%. The second jackknife-type estimate ŝJ2 has a similar
behavior but it requires a larger sample to become stable.

Chao’s estimate ŝC2, on the other hand, does not reach the true number of shared
species when the sample size is 51,000, and it might need considerably more samples to
reach the true number. It seems that ŝC2 is more conservative in estimating the number of
shared species, and its coverage probability is too small even when there are 51,000 obser-
vations from each population (about 70% of the original sample size 144,963).

Example 4. The Panama Crab data [12] were collected in two coral communities at
two locations in Panama. There are 55 and 50 species in populations 1 and 2, respectively,
and 31 shared species, accounting for 74 different species and 5831 observations. Unlike the
Taiwan Bird data, the shared species in the crab data are not so dominant and the number
of shared species is less than half of the total species.

Among all the examples in these empirical analyses, the crab data have the smallest
numbers of shared species and total observations. Because the smaller population in
the crab data has about 1100 observations in total, we start with 110 observations from
each population and consider only the case where the sample size is a multiple of 110 for
computational simplicity (Table 4). Once again, v′2(n) is shown to be better than v′1(n) for
estimating the probability of discovering new shared species, no matter what the sample
size is. For the number of shared species, ŝJ1 has the largest averages and ŝC2 is the smallest.
Also, Chao’s estimate performs the best in coverage probability.
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Table 4. Panama’s Crab Data (Numbers of species in two populations are s1 = 55 & s2 = 50 and the
number of shared species is s0 = 31; J1 & J2: 1st & 2nd Jackknife estimates, C2: Chao’s estimate, s0(n):
number of observed shared species).

n v(n) v
′
1(n) v

′
2(n) s0(n)

ŝC2 ŝJ1 ŝJ2
Est. s.e. Prob Est. s.e. Prob Est. s.e. Prob

110 0.03572 0.04486 0.03793 11.05 14.06 4.54 0.05 15.94 4.05 0.15 15.18 3.05 0.04
220 0.02167 0.02622 0.02185 14.03 18.65 9.85 0.97 19.77 4.47 0.33 18.81 3.30 0.12
330 0.01588 0.01866 0.01576 16.09 20.57 7.09 0.67 22.23 4.55 0.46 21.28 3.42 0.26
550 0.00995 0.01181 0.01003 18.90 22.58 6.66 0.84 25.38 4.65 0.66 24.40 3.52 0.51

1100 0.00495 0.00544 0.00484 22.70 26.23 4.09 0.78 28.68 4.21 0.82 28.02 3.39 0.77
1320 0.00390 0.00449 0.00402 23.72 27.73 4.69 0.95 29.65 4.16 0.84 29.02 3.38 0.83
1650 0.00315 0.00342 0.00307 24.71 28.63 4.91 0.97 30.36 4.04 0.88 29.78 3.30 0.86
1980 0.00236 0.00256 0.00236 25.67 29.03 4.96 0.98 30.73 3.67 0.85 30.34 3.14 0.85
2200 0.00207 0.00226 0.00209 26.17 29.36 4.47 0.97 31.14 3.66 0.89 30.75 3.11 0.88

The jackknife-type estimates never reached 90% of the coverage probability, although
their estimates increase gradually and their variances are more stable. The reason why
the jackknife-type estimates have smaller coverage probability is the variance, since the
averages of ŝC2 are smaller than those of ŝJ1 and ŝJ2 (and smaller than s0 = 31). This
matches the result that ŝJ2 has the smallest variance and smallest coverage probability.
However, since ŝJ1 has a larger estimate of variance via Equation (6), ŝJ1 would have a
better coverage probability if its variance were computed from Equation (6).

Example 5. Barro Colorado Island’s Forest Data (We would like express our apprecia-
tion to Professor T.J. Shen, Department of Applied Mathematics, National Chung Hsing
University, Taiwan, for providing this data set) are collected around the Gatun Lake area
in Panama. The forest is separated into 4 regions (or populations): A, AB, D, and P. We
choose regions A and AB in this study, containing 308 and 207 species, respectively. The
reason for choosing this combination is that there are 207 shared species, i.e., AB can be
treated as a sub-population of A, and the number of shared species in the two populations
is equivalent to the number of species in AB. Also, the number of observations in region A
is 242,083, much larger than that in region AB (5883).

Corresponding to region AB, the largest sample size considered is about two times its
number of observations (12,000). As expected, v′2(n) is a good estimate of the probability
for discovering new shared species and v′1(n) is always biased (Table 5). The jackknife-type
estimates are fairly accurate estimates for the number of shared species, and they also
have good coverage probabilities. Their variances decrease smoothly as the sample size
increases. On the other hand, Chao’s estimate grows slower, compared to of the jackknife-
type estimates. Chao’s estimate does not have a good coverage probability and it is likely
that more observations are required.

Table 5. Barro Colorado Island’s Forest Data (Numbers of species in two populations are s1 = 308 &
s2 = 207 and the number of shared species is s0 = 207; J1 & J2: 1st & 2nd Jackknife estimates, C2:
Chao’s estimate, s0(n): number of observed shared species).

n v(n) v
′
1(n) v

′
2(n) s0(n)

ŝC2 ŝJ1 ŝJ2
Est. s.e. Prob Est. s.e. Prob Est. s.e. Prob

600 0.06888 0.08510 0.06923 81.4 118.9 15.5 0.00 132.4 13.6 0.00 122.9 9.8 0.00
1200 0.03503 0.04244 0.03496 110.6 144.4 13.8 0.02 161.5 13.4 0.11 152.5 9.8 0.00
3000 0.01311 0.01547 0.01299 148.0 174.3 11.8 0.20 194.4 12.5 0.78 186.9 9.3 0.44
4500 0.00807 0.00935 0.00798 163.1 188.8 10.7 0.57 205.2 11.7 0.95 199.1 8.9 0.83
6000 0.00546 0.00621 0.00540 173.1 193.9 8.8 0.66 210.4 10.8 0.98 205.5 8.4 0.94
7500 0.00392 0.00424 0.00376 179.8 196.0 7.7 0.70 211.6 9.7 0.96 208.0 7.8 0.94
9000 0.00279 0.00316 0.00283 185.3 199.0 6.4 0.75 213.7 9.1 0.96 210.7 7.4 0.96

10,500 0.00208 0.00231 0.00211 188.9 199.9 5.4 0.73 213.2 8.2 0.98 211.0 6.8 0.98
12,000 0.00163 0.00175 0.00161 191.6 200.3 5.1 0.73 212.6 7.5 0.96 210.9 6.4 0.96
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Example 6. The Chinese Novel Data contain two novels from Louis Cha Leung Yung, a
famous Chinese writer. He has 10 famous historical novels, written between 1955 and 1972.
The two novels chosen are “Fox of Snowy Mountain” (A) and “The Legendary Swordsman
Enjoy Itinerant Life” (B) written in 1959 and 1967, respectively. We will treat different
Chinese characters as different species. Then, there are 2591 and 3690 species in A and B,
and 2457 shared species.

Novels A and B have about 110,000 and 420,000 characters (or observations). Thus, for
computational efficiency, the sample size starts at 21,200 observations, about 20% of the
observations in Novel A. We found that v′2(n) is a reliable estimate for the probability of
discovering new shared species (Table 6). On the other hand, although v′1(n) is slightly
over-biased, it is still a good estimate and is about 10% to 20% over-biased.

Table 6. Chinese Novel Data (Numbers of species in two populations are s1 = 2591 & s2 = 3690 and
the number of shared species is s0 = 2457; J1 & J2: 1st & 2nd Jackknife estimates, C2: Chao’s estimate,
s0(n): number of observed shared species).

n v(n) v
′
1(n) v

′
2(n) s0(n)

ŝC2 ŝJ1 ŝJ2
Est. s.e. Prob Est. s.e. Prob Est. s.e. Prob

21,200 0.02421 0.02907 0.02402 1369.2 1681.6 41.2 0 1985.5 46.5 0 1878.4 34.0 0
42,400 0.01147 0.01354 0.01152 1721.3 1966.1 34.1 0 2295.5 43.4 0.04 2209.6 32.9 0
63,600 0.00697 0.00803 0.00697 1909.5 2100.9 27.2 0 2420.2 40.0 0.84 2352.8 31.1 0.09
74,200 0.00568 0.00649 0.00569 1976.8 2148.9 27.0 0 2458.4 38.3 0.96 2398.8 30.2 0.49
84,800 0.00471 0.00534 0.00472 2031.8 2187.5 25.0 0 2484.6 36.7 0.92 2432.3 29.4 0.86
95,400 0.00398 0.00446 0.00398 2078.0 2219.3 22.5 0 2503.8 35.3 0.78 2457.2 28.5 0.97
106,000 0.00341 0.00379 0.00340 2116.0 2245.6 22.3 0 2517.7 33.9 0.59 2476.3 27.7 0.90
127,200 0.00254 0.00281 0.00255 2178.8 2285.8 19.8 0 2536.0 31.5 0.26 2502.9 26.2 0.58
148,400 0.00197 0.00214 0.00198 2226.2 2312.3 17.2 0 2543.0 29.2 0.12 2516.6 24.7 0.28
169,600 0.00155 0.00168 0.00155 2262.7 2334.6 16.8 0 2546.9 27.4 0.05 2524.9 23.4 0.15

Neither Chao’s estimate nor the jackknife-type estimates have desirable results in
coverage probability. Unlike the previous three examples, the coverage probability does
not stabilize as the sample size increases. The coverage probability of Chao’s estimate
is always 0, and those of the jackknife-type estimates decrease to 0 after reaching the
maximum. It seems that the jackknife-type estimates can still provide useful information
about the number of shared species, but the sample size is a very important factor. This
result is similar to the optimal stopping for estimating the similarity index between two
populations in Yue and Clayton [8]. Since it is not possible to sample all the individuals in
the populations, knowing the appropriate time to stop sampling would be more feasible
and cost efficient. Together with the probability of discovering new shared species v′1(n)
and v′2(n), the jackknife-type estimators provide fairly accurate estimates to the number
of shared species. For example, it seems that v′1(n) ≤ 0.005 or v′2(n) ≤ 0.004 is a possible
candidate for stopping, where the coverage probability of jackknife-type estimators is
around 0.95.

5. Conclusions

The rare species are often more important than dominant species in the estimation of
the probability of discovering new species and the number of species in a population [13–15].
For example, two popular methods, Turing’s and Chao’s estimates, use the information
on rare species for estimation of new species. The estimation of shared species in two
populations can be directly extended from the methods used in one population. In this
study, we establish jackknife-type estimates of shared species and compare it with that
developed by Chao et al. [6].

First, we proposed a modified estimate for the probability for discovering new shared
species in two populations, in order to reduce the bias of the estimate suggested by Yue and
Clayton [8]. Then, based on these two estimates for discovering new shared species, we
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extended the jackknife-type estimate of Burnham and Overton [3] to obtain two estimates
for the number of shared species in two populations. We compare these two jackknife-type
estimates with that of Chao et al. [6]. Simulation studies and real examples confirm that the
modified estimate v′2(n) has a smaller bias in estimating the probability of discovering new
shared species, no matter what the sample size is.

For the number of shared species, the performance of estimates is influenced by the
population structure and the sample size. In general, Chao’s estimate has a smaller bias
and converges to the true value much faster in the case of more even populations, and the
jackknife estimates are better in the case of unbalanced populations (i.e., smaller α and
larger δ). In the case of more even populations, all estimates are accurate even when there
are not many observations. On the other hand, in the case of unbalanced populations, more
observations are required and the jackknife-type estimates have a smaller bias. In addition,
the variance of jackknife-type estimates can be approximated by the derived equations,
which can be convenient in empirical analyses.

The coverage probability calculated in the real examples shows another difference
between the jackknife and Chao’s estimates. Applying a normal approximation for a
95% confidence interval, we evaluated the probability of covering the true number of
shared species. Except for the Panama Crab data, Chao’s estimate does not have coverage
probability near 0.95. In contrast, both jackknife-type estimates can provide coverage
probability close to 0.95 in all examples, provided that there are enough observations.
Based on our experience, it seems that v′1(n) ≤ 0.005 (or v′2(n) ≤ 0.004) is a possible useful
indicator for stopping sampling. When the sampling cost c = 0.005, the jackknife-type
estimate ŝJ1 derived from v′1(n) in Yue and Clayton [8] has coverage probability close to
0.95 (except for the Panama Crab data). A similar result holds for another jackknife-type
estimator ŝJ2. This is similar to the results in Yue and Clayton [8], although their interest is
in the similarity index.

Note that we also conducted supplementary simulations to explore group sampling,
group sampling with variable (i.e., random) numbers of observations, and sampling with
one group observed sequentially and one group observed through a fixed sample. By
and large the conclusions remain the same. It seems that the paired sampling represents
the slowest incremental rate of accruing information and provides a useful baseline for
examining the estimators.

As an alternative to our approach, using the sample coverage is another feasible
approach for estimating species numbers, and there has been considerable success in using
that for single populations. Among others, Chao and her colleagues have made important
contributions to that topic [4,6]. However, addressing the sample coverage for estimating
shared species requires a study separate from the work presented here.
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Appendix A. Derivation of Jackknife-Type Estimators

The first estimator ŝJ1 = s0(n) + n−1
n ( f1+ + f+1 + f11) can be treated as a combination

of jackknife-type and moment-type approaches. The jackknife-type estimate of the number
of species for a population is the number of observed species plus (n− 1)× u(n), where
u(n) is the probability of observing new species. Then, plugging into the Turing-type
estimator for the probability of discovering new shared species v′1(n) =

f1++ f+1+ f11
n , we

obtain the jackknife-type estimator ŝJ1 of the number of shared species in two populations.
The second estimator is based on jackknife technique noting that there are quite a

few approaches to obtain jackknife estimators. Considering all possible combinations (i.e.,
permutations) is a natural choice, similar to Burnham and Overton [3]. There are two
ways for counting possible combinations: one is pair-wise and the other is completely
random. For the pairwise case, the observations are drawn in pairs, so (X(i), Y(i)) are chosen
together, where X(i) and Y(i) are the ith sample in the first and second populations, i.e.,
there are n possible jackknife subsamples if one pair of observations are omitted each time.
For the completely random case, the observations are drawn randomly, so (X(i), Y(j)) are
chosen and it is possible i 6= j, which means that there are n× n = n2 possible jackknife
subsamples if one observation is omitted from each population. Since the derivation of
jackknife-type estimators are obtained via listing all possible combinations, we will only
show the final results.

In the pair-wise case, depending on whether X(i) and Y(i) are both shared species and
singletons, the jackknife-type estimator lies between two values

Upper Bound = s0(n) +
n− 1

n
( f1+ + f+1)

Lower Bound = s0(n) +
n− 1

n
( f1+ + f+1 − f11)

where f1+ is the number of species appearing exactly once in first population and at least
once in the second population. The definition of f+1 is similar. The upper bound in the
pair-wise case can be treated as a direct extension of the jackknife estimator of Burnham
and Overton in the one population case, and thus we define the upper bound as the second
jackknife-type estimator ŝJ2. The derivation of jackknife-type estimators in the completely ran-
dom case is similar and the jackknife-type estimator equals s0(n) + n2−1

n2 ( f1+ + f+1 − 2 f11
n ).

Asymptotically, the jackknife-type estimator in the completely random case is very similar
to those in the pair-wise case (closer to the upper bound).

In addition to the previous two jackknife-type estimators, it is also possible to derive
other types of two-sample jackknife estimators. For example, Chuang et al. [7] used the
jackknifing technique by Schechtman and Wang [16] and proposed a jackknife estimator

s0(n) + n−1
n ( f1+ + f+1)− (n−1)2

n2 f11.
We can see that these jackknife-type estimators have similar form, and only differ

in how we weight the singletons. The differences would be more obvious in the case
of small samples and are small if there are many observations. Still, there is another
reason for choosing ŝJ1 and ŝJ2. The proposed estimators are based on the probability
of discovering new shared species v′1(n) and v′2(n), and these probabilities can be used
as stopping indicators. A detailed discussion of this can be seen in our empirical study
(Section 4).
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Appendix B. Estimates for the Number of Shared Species

Table A1. Numbers of species in two populations are s1 = 100 & s2 = 100, and the number of shared
species s0 = 20 or s0 = 50 for the case of geometric distribution (J1 & J2: 1st & 2nd Jackknife estimates,
C2: Chao’s estimate, s0(n): number of observed shared species).

n α = 0.9 α = 0.8 α = 0.7 α = 0.6
s0(n) ŝC2 ŝJ1 ŝJ2 s0(n) ŝC2 ŝJ1 ŝJ2 s0(n) ŝC2 ŝJ1 ŝJ2 s0(n) ŝC2 ŝJ1 ŝJ2

s0 = 20

100 17.59 19.82 22.62 21.99 13.27 16.42 18.35 17.37 9.76 12.14 13.28 12.56 7.52 9.24 9.97 9.47
200 19.58 20.05 21.03 20.94 16.16 18.90 20.75 19.94 11.73 14.40 15.39 14.63 8.86 10.58 11.16 10.72
500 20.00 20.00 20.02 20.02 18.91 20.13 21.35 21.03 14.17 16.51 17.59 16.90 10.60 12.29 12.92 12.46

1000 20.00 20.00 20.00 20.00 19.79 20.13 20.51 20.47 16.03 18.49 19.34 18.70 12.00 13.71 14.38 13.91
1500 20.00 NA 20.00 20.00 19.97 20.06 20.15 20.15 17.08 19.11 20.04 19.51 12.76 14.51 15.10 14.64
2000 20.00 NA 20.00 20.00 19.99 20.02 20.04 20.04 17.81 19.64 20.62 20.12 13.29 14.93 15.53 15.11
3000 20.00 NA 20.00 20.00 20.00 20.00 20.01 20.01 18.26 19.96 20.81 20.39 13.82 15.81 16.36 15.84
4000 20.00 NA 20.00 20.00 20.00 20.00 20.00 20.00 18.66 20.07 20.86 20.52 14.10 15.79 16.48 16.01
5000 20.00 NA 20.00 20.00 20.00 20.00 20.00 20.00 19.11 20.09 20.86 20.62 14.70 16.44 17.17 16.68

s0 = 50

500 36.22 42.49 47.24 45.12 20.61 24.12 26.15 25.05 14.24 16.75 17.82 17.10 10.64 12.44 13.07 12.58
1000 42.06 47.21 51.46 49.83 23.66 27.13 29.16 28.07 16.17 18.55 19.56 18.90 12.00 13.70 14.40 13.91
1500 45.09 49.20 52.79 51.64 25.49 29.22 31.17 30.03 17.32 19.90 20.87 20.18 12.79 14.65 15.12 14.67
2000 46.75 49.63 52.81 51.99 26.87 30.44 32.44 31.32 18.03 20.29 21.36 20.71 13.40 15.18 15.85 15.36
3000 47.93 50.11 52.85 52.25 27.78 31.38 33.36 32.26 18.75 21.27 22.33 21.61 13.79 15.65 16.31 15.80
4000 48.54 50.14 52.34 51.95 28.55 31.98 34.12 32.99 19.26 21.92 22.94 22.18 14.21 16.03 16.77 16.25
5000 49.33 50.15 51.54 51.39 30.01 33.66 35.76 34.59 20.00 22.27 23.45 22.74 14.72 16.51 17.18 16.67

Note: Chao’s estimates become N/A if the sample coverage = 0.

Table A2. Numbers of species in two populations are s1 = 100 & s2 = 100, and the number of shared
species s12 = 20 or s0 = 50 for the case of Zipf’s law (J1 & J2: 1st & 2nd Jackknife estimates, C2:
Chao’s estimate, s0(n): number of observed shared species).

n δ = 1 δ = 1.5 δ = 2
s0(n) ŝC2 ŝJ1 ŝJ2 s0(n) ŝC2 ŝJ1 ŝJ2 s0(n) ŝC2 ŝJ1 ŝJ2

s0 = 20

500 15.00 29.25 17.97 17.97 11.00 19.03 15.95 16.94 8.00 14.00 8.99 8.99
1000 19.00 35.02 20.00 20.00 17.00 29.02 24.96 25.96 8.00 13.00 8.00 8.00
1500 20.00 27.00 20.00 20.00 20.00 33.01 22.00 22.00 14.00 23.00 16.99 16.99
2000 20.00 21.00 20.00 20.00 20.00 27.00 20.00 20.00 19.00 30.00 24.00 24.99
3000 20.00 20.00 20.00 20.00 20.00 24.00 20.00 20.00 19.00 27.00 21.00 21.00
4000 20.00 20.00 20.00 20.00 20.00 21.00 20.00 20.00 20.00 29.00 21.00 21.00
5000 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 28.00 20.00 20.00

s0 = 50

500 19.00 36.63 35.83 40.78 11.00 20.07 17.93 19.91 6.00 10.00 7.00 7.00
1000 34.00 64.50 60.87 67.83 22.00 40.04 37.92 42.90 10.00 17.00 15.97 17.96
1500 46.00 78.04 54.98 56.98 33.00 57.02 49.97 54.96 22.00 38.00 40.96 47.95
2000 50.00 82.00 51.00 51.00 42.00 73.00 53.99 56.99 25.00 43.00 31.99 33.99
3000 50.00 70.00 50.00 50.00 48.00 80.00 55.99 55.99 30.00 51.00 38.99 41.99
4000 50.00 60.00 50.00 50.00 49.00 79.00 52.00 52.00 31.00 50.00 39.00 41.00
5000 50.00 50.00 50.00 50.00 49.00 73.00 49.00 49.00 39.00 65.00 53.00 56.00
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Appendix C. Variance of Estimates for the Number of Shared Species

Table A3. Numbers of species in two populations are s1 = 100 & s2 = 100, and the number of shared species s0 = 20 or s0 = 50 for the case of geometric distribution
(J1 & J2: 1st & 2nd Jackknife estimates, C2: Chao’s estimate, s0(n): number of observed shared species).

n
α = 0.9 α = 0.8 α = 0.7 α = 0.6

ŝC2 Sample ŝJ1 ŝJ2 ŝC2 Sample ŝJ1 ŝJ2 ŝC2 Sample ŝJ1 ŝJ2 ŝC2 Sample ŝJ1 ŝJ2
Sample Equation (6) Sample Equation (8) Sample Equation (6) Sample Equation (8) Sample Equation (6) Sample Equation (8) Sample Equation (6) Sample Equation (8)

s0 = 20

100 5.77 10.75 16.35 7.76 9.79 16.5 15.70 20.08 10.42 9.78 12.89 10.35 14.01 6.69 6.67 8.57 8.57 9.45 4.86 4.56
200 0.73 2.20 3.76 1.76 2.89 11.55 12.18 16.89 8.31 8.62 17.27 11.82 14.79 7.64 7.02 9.44 9.44 9.32 4.84 4.51
500 0.01 0.03 0.08 0.03 0.08 3.33 5.16 7.98 3.72 4.76 12.83 11.11 13.57 7.21 6.58 8.71 8.71 10.21 4.64 4.91
1000 0 0 0 0 0 0.57 1.05 1.73 0.86 1.33 21.94 9.93 12.93 6.70 6.28 10.48 10.48 9.91 4.78 4.78
1500 NA 0 0 0 0 0.17 0.24 0.31 0.21 0.30 10.26 8.62 11.69 5.83 5.83 10.96 10.96 9.59 5.11 4.61
2000 NA 0 0 0 0 0.03 0.06 0.12 0.06 0.12 10.99 7.67 10.28 5.18 5.20 8.89 8.89 9.36 4.94 4.58
3000 NA 0 0 0 0 0.01 0 0.03 0.01 0.03 7.56 6.69 9.27 4.56 4.85 17.26 17.26 9.63 5.15 4.69
4000 NA 0 0 0 0 0 0 0.01 0 0.01 6.55 5.22 8.48 3.63 4.54 8.22 8.22 10.23 4.64 4.86
5000 NA 0 0 0 0 0 0 0 0 0 2.61 3.55 5.98 2.55 3.45 7.77 7.77 9.18 4.70 4.49

s0 = 50

500 29.93 32.19 43.50 21.70 20.92 19.63 16.40 22.71 10.55 10.83 15.83 10.96 13.73 7.11 6.60 10.33 10.33 9.84 5.17 4.65
1000 21.31 27.96 35.24 18.94 17.95 18.93 17.96 21.83 11.81 10.61 15.37 10.67 14.36 6.93 6.86 9.94 9.94 9.91 5.23 4.75
1500 15.98 19.16 27.31 13.34 14.54 23.59 19.64 22.96 12.85 10.85 15.56 10.42 14.04 6.83 6.64 17.62 17.62 10.04 4.92 4.81
2000 9.15 13.82 21.25 10.15 11.99 22.28 17.38 22.73 11.37 10.79 12.05 9.98 13.79 6.63 6.64 10.84 10.84 9.73 5.01 4.74
3000 3.48 7.01 11.24 5.15 7.30 20.05 17.00 22.63 11.08 10.78 17.54 11.75 14.22 7.59 6.75 9.14 9.14 11.01 5.06 5.17
4000 1.41 3.50 6.37 2.75 4.46 17.45 18.09 23.46 11.85 10.97 13.33 11.97 14.28 7.71 6.81 10.41 10.41 10.11 5.23 4.84
5000 0.67 2.10 3.34 1.72 2.53 18.37 17.60 22.54 11.49 10.75 17.25 11.45 14.15 7.53 6.79 9.15 9.15 9.80 5.16 4.70

Note: Chao’s estimates become N/A if the sample coverage = 0.
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