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Abstract: Negative binomial modelling is one of the most commonly used statistical tools for
analysing count data in ecology and biodiversity research. This is not surprising given the prevalence
of overdispersion (i.e., evidence that the variance is greater than the mean) in many biological and
ecological studies. Indeed, overdispersion is often indicative of some form of biological aggregation
process (e.g., when species or communities cluster in groups). If overdispersion is ignored, the
precision of model parameters can be severely overestimated and can result in misleading statistical
inference. In this article, we offer some insight as to why the negative binomial distribution is
becoming, and arguably should become, the default starting distribution (as opposed to assuming
Poisson counts) for analysing count data in ecology and biodiversity research. We begin with an
overview of traditional uses of negative binomial modelling, before examining several modern
applications and opportunities in modern ecology/biodiversity where negative binomial modelling
is playing a critical role, from generalisations based on exploiting its Poisson-gamma mixture
formulation in species distribution models and occurrence data analysis, to estimating animal
abundance in negative binomial N-mixture models, and biodiversity measures via rank abundance
distributions. Comparisons to other common models for handling overdispersion on real data are
provided. We also address the important issue of software, and conclude with a discussion of future
directions for analysing ecological and biological data with negative binomial models. In summary,
we hope this overview will stimulate the use of negative binomial modelling as a starting point for
the analysis of count data in ecology and biodiversity studies.

Keywords: hierarchical modelling; mixed effects modelling; Poisson-gamma mixture models;
overdispersion; species distribution modelling; species richness and diversity; zero-truncation and
-inflation

1. Introduction

Discrete count or abundance data are one of the most commonly collected response
types in ecological, environmental, and biodiversity studies [1]. Typical examples include
counts of different species of plants in sites/quadrats/populations [2,3], the number of
animal calls at fixed sites [4], the observed abundance of arthropods collected in pitfall
traps [5], the number of animals caught in traps in capture–recapture studies [6], counts
of micro-organisms observed in experiments [7], and plant–herbivore interactions [8],
among many others. In general, when modelling count data, many researchers (and indeed
almost all introductory statistics textbooks) will consider Poisson models (i.e., a statistical
method that assumes the counts follow a Poisson distribution at some level) as a starting
point [9]. Within the context of ecological and biodiversity studies, however, Poisson
models tend to be a poor fit to count data, because of the strong presence of overdispersion
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(i.e., empirical evidence that the variance is greater than the mean). There are several
ways of dealing with overdispersed counts, and in this article we focus our attention on
the negative binomial or NB model, that is, a statistical method that assumes the counts
follow a negative binomial distribution at some level. Indeed, we argue that the NB model
should become the "new default" starting choice (as opposed to the Poisson distribution)
for quantifying and modelling count data in ecological and biodiversity studies.

Overdispersion arises naturally in ecological and biodiversity studies for a number
of reasons: (1) populations being frequently heterogeneous (non-uniform) such that
individuals tend to cluster or aggregate, say within a preferred habitat or within a particular
combination of trait characteristics such as mother-offspring groups; (2) dependence
between the observations due to environmental filtering (e.g., when there is spatial or
temporal auto-correlation present); and (3) zero-inflation (i.e., the data set contains lots of
zero counts). We refer the reader to Lindén and Mäntyniemi [10] and Conn et al. [11] for
further discussion on the ecological underpinnings behind the presence of overdispersion in
ecology. When overdispersion is present, a Poisson model without additional modification
is unable to reproduce the amount of excess variation, since it assume the variance is exactly
equal to the mean. Subsequently, ignoring overdispersion in the statistical analysis can lead
to overestimation of the precision of model parameters, which can result in misleading
conclusions and poor interpretation [12–14].

Many approaches have been developed for analysing overdispersed counts, including
quasi-Poisson and Poisson log-normal models [13], generalised Poisson models [15],
and models using Conway–Maxwell Poisson distribution [16,17]. Note that some of these
models can also handle the case of underdispersion (i.e., when the variance is less than
the mean), although this tends to occur far less often in ecological and biodiversity studies
and is not focused on in this article. The most popular approach by far, however, is
the NB model [18,19]. In fact, searching the keywords “negative binomial”, “ecology”,
and “biodiversity” together in Google Scholar (accessed on 8 April 2022) for research
outputs from the years 1990 to 2021 offered over 15,900 hits, compared to (for example)
“quasi-Poisson”, “ecology”, and “biodiversity”, which only produced 2970 hits.

The NB model handles overdispersed counts by allowing the variance to vary as a
quadratic function of the mean, with the inclusion of an additional dispersion parameter
governing the slope of the quadratic term and hence the severity of overdispersion.
It is precisely the quadratic nature of this mean-variance relationship that makes the
NB model a useful and realistic approach for handling overdispersion; see Warton [20],
Martin et al. [21], O’hara and Kotze [1], Warton et al. [22], and Blasco-Moreno et al. [8],
among others, who have provided empirical evidence for the frequency of the quadratic
mean-variance relationship in ecological/biological count data. Besides this, the NB model
offers two other attractive features: (1) the convenient and direct interpretation of the
dispersion parameter as an index of clustering or aggregation, and (2) its tractable form
(i.e., a closed form expression for its probability mass function), which facilitates more
straightforward model estimation and inference. As we shall examine later in Section 3,
the latter benefit has allowed the NB model to be straightforwardly integrated into modern
statistical methods for ecological/biological data analysis. Note also that the NB model
includes the Poisson model as a special case, when the dispersion parameter tends to
infinity. Of course, it is important to acknowledge that for any specific dataset, the NB
model may not necessarily be the best method to use, and it is imperative that practitioners
check the validity of assuming a negative binomial distribution, among other assumptions
made, for their count data. However, it is for the above reasons, along with its increasingly
prevalence of overdispersed counts in ecology, that we advocate for the NB model as the
default starting point for the analysis of count data in ecological and biodiversity studies.

In this article, we provide a selective overview of how NB modelling is used and/or has
inspired modern applications in statistical ecology and biodiversity. There already exists a
number of excellent systematic reviews of the NB models in ecology and biodiversity (see,
for instance, Lindén and Mäntyniemi [10], Lynch et al. [16], Ver Hoef and Boveng [19], White
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and Bennetts [23]). However, these articles do not aim to capture the full breadth of how
NB models are broadly used across modern ecology and biodiversity, as we seek to do.
Such a style of review is especially relevant given the rapidly changing landscape of both
data collection and statistical model building in recent years. In particular, ecological
data are now routinely collected in greater quantities and usually consist of many species,
communities, populations, or other biological taxonomic levels [24]. An important advance
in recent times has been the application of hierarchical Bayesian methods [25], spurred
on by spatio-temporal and hidden Markov analysis, for instance. Bayesian methods in
particular facilitate greater model complexity when fitting NB models and their mixture
model counterparts. As such, they have contributed to this recent explosion in the use of
NB modelling in ecology and related areas (see Millar [26], Hui [27], and Conn et al. [11]
for specific developments). We explore examples of their use on real data in Section 3.

The remainder of this article is structured as follows: after formulating the negative
binomial distribution, we selectively cover several so-called “traditional” applications of
NB modelling in ecology/biology primarily based on regression-type models. We then
present some modern applications of NB modelling, including its use in cutting-edge
statistical methods that are capable of handling the modern challenges of high-volume,
high-dimensionality, and joint analyses of correlated count data. A real-data example is
provided to demonstrate some recent developments of NB modelling. Afterwards, we
discuss the important issue of model fitting and software, focusing particularly on NB
modelling approaches in R [28]. We conclude with a discussion of future directions for
analysing ecological and biological data with NB models. Ultimately, we hope that by
adopting an expansive approach to this overview, readers can appreciate the growing ease
yet broad scope with which NB modelling can be employed, and will subsequently choose
to use the NB model as the starting point of their own analyses of count data.

2. Traditional Negative Binomial Modelling

We first offer a brief overview of the negative binomial distribution, which suffices
for the purposes of summarising its broad use. We then provide some “traditional”
applications of negative binomial (NB) modelling that have become standard in ecology,
biology, and biodiversity.

2.1. The Negative Binomial Distribution

Perhaps the most common formulation of the negative binomial distribution, found in
many introductory statistical textbooks, is as follows: Consider a sequence of independent
Bernoulli trials where the probability of success 0 < p < 1 in each trial is the same. If Y
denotes the number of failures before the r > 0-th success occurs, then Y is said to follow a
negative binomial distribution, with probability mass function

pY(y) =
(

r + y− 1
y

)
pr(1− p)y; y = 0, 1, 2, . . . . (1)

A concrete example of this is when each trial is the flip of a coin, where p is the
probability of obtaining a head for each flip. Then, Y represents the number of times that
a coin should be flipped to obtain a certain number r of heads. With this formulation,
the mean of the distribution is given by E(Y) = µ = pr/(1 − p), and its variance is
Var(Y) = pr/(1− p)2.

In the context of ecology and biodiversity, a more relevant parametrisation and
interpretation of the negative binomial distribution relates to the counting process of
some random phenomena (e.g., occurrences of plants or animals, abundance of species).
This is achieved by reparametrising Equation (1) in terms of its mean µ and a dispersion or
aggregation index κ governing the count variation. Specifically, let p = κ/(κ + µ), where
κ = r. Then, we can write Equation (1) as
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pY(y) =
Γ(κ + y)
Γ(κ)y!

(
µ

κ + µ

)y( κ

κ + µ

)κ

y = 0, 1, 2, . . . , (2)

where we extend r to allow it to take any positive value, and Γ(·) denotes the gamma
function. From Equation (2), we say that Y follows a negative binomial distribution and
write Y ∼ NB(µ, κ). Importantly, we have E(Y) = µ, and the quadratic mean-variance
relationship Var(Y) = µ+ µ2/κ. The dispersion parameter is by definition positive, and the
smaller it is, the greater the overdispersion. In addition, the Poisson distribution arises as a
special case of the NB model when κ → ∞. However, as discussed in Section 1, the Poisson
distribution should be avoided when overdispersion is present, as fitting Poisson models
to overdispersed count data can lead to biased estimates and incorrect standard errors.
For most count datasets in ecology and biology, the variance is very often greater than the
mean, and thus why we advocate for an alternative to the Poisson model as the default
starting point for analysing count data. For example, as mentioned in Alexander et al. [29],
counts of parasites are usually overdispersed relative to the Poisson distribution, and are
often described well by an NB model. That being said, one should always complement the
choice of the distribution with diagnostics tools to assess for overdispersion (e.g., testing for
overdispersion in Poisson models [30] and examining residuals plots to check for evidence
of a fanning shape, or employing goodness-of-fit tests to diagnose overdispersion [31,32]).

There are several well-known texts that offer extensive details on the negative binomial
distribution, including alternative parametrisations, theoretical characteristics and potential
extensions, and estimation and inference (see, for instance, [33,34]). One important issue
that is worth discussing here is the multiple forms for the mean-variance relationship that
can arise from the negative binomial distribution, with the two most common forms being
the NBI (Type I) form with Var(Y) = µ + µ/κ, and the NBII (Type II) form with Var(Y) =
µ + µ2/κ. We focus on the latter in this article, given its quadratic form. The former
form allows for overdispersion only in a linear manner (similar to so-called quasi-Poisson
models) [19]. See also Lindén and Mäntyniemi [10] for even more flexible flavours of the
quadratic mean-variance relationships for the NB distribution.

2.2. Traditional Uses of Negative Binomial Models

In this section, emphasis will be given to the breath of application, and we limit full
details but offer relevant references as appropriate. Furthermore, we point out that the
majority of these methods are designed for a wider range of response types (e.g., generalised
linear models (GLMs)), but include NB modelling as a particular case. Figure 1 presents a
flowchart of selected examples of existing, modern, and extensions of NB models for count
data to address a variety of ecological applications.

For the majority of this paper, we will adopt the following notation. Suppose we
have counts of a particular biological species/taxa, denoted by Yi for i = 1, . . . , n, where
n is the number of sampling units (e.g., sites). To keep the application broad, we allow
the number of observations within each sampling unit to be either univariate (i.e., Yi is
single count), or multivariate, for example, Yi = (Yi1, Yi2, . . . , Yini ), where ni is the number
of observations (e.g., abundance or richness) within unit i. The latter allows for multiple,
potentially correlated observations (e.g., repeated measures or multiple sampling occasions
within a site). In addition, if we have counts of multiple species, then we will denote Y(k)

i as

the count(s) at sampling unit i for species k = 1, . . . , s species; Y(k)
ij is defined analogously.

Finally, in many ecological/biological studies, covariates or predictor variables are also
measured (e.g., temperature or soil types), and we will denote these by Xi for the vector of
p covariates available at unit i.

Log-linear NB regression models: We can model the mean of the negative binomial
distribution, µ, as a function of the covariates, commonly through the log link function.
The resulting model is often referred to as a log-linear NB regression model, with
log(µi) = β0 + X>i β, where β0 denotes the intercept and β denotes a vector of regression
coefficients associated with the covariates. The estimates β̂ provide a natural interpretation
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of changes in abundance over environmental gradients. Note that a special case of log-
linear NB models arises with the intercept-only model, commonly referred to as a relative
abundance model [23]. This is the simplest application of NB models in modelling counts
of frequencies (Yi) of a single species, without covariates or other ancillary information.
To estimate µ and κ, the observed counts of Yi are typically modelled and fitted directly
using Equation (2).
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Figure 1. Flowchart of selected examples for existing, modern, and extensions of negative binomial
(NB) models for count data to address a variety of ecological applications.

In the log-linear NB regression model, the linear predictor X>i β can include polynomials
or interactions, or be replaced with a smoothing term to reflect a more data-driven approach
to determining the relationship between the counts and covariates. The latter often leads
to NB generalised additive model (or NB GAM) [35], where, for example, log(µi) = β0 +
f1(Xi1) + · · ·+ fp(Xip), where fl(·) for l = 1, . . . , p denote a set of smoothing functions such
as penalised regression splines or kernel smoothing, applied to each covariate separately.

NB species distribution models: Species distribution models (SDMs) are often used
to predict how a species’ spread across sites varies with geographical/environmental
factors [36]. When analysing a single taxa, SDMs may employ the same log-linear NB
regression models or NB GAMs discussed above to analyse the species–environmental
relationships; see Wang et al. [37] for some examples of alternative modelling approaches.
For multi-species count data, a stacked SDM using log-linear NB regression models permits
the regression coefficients and dispersion parameters to be species-specific, which we can
write as log(µ(k)

i ) = β
(k)
0 + X>i β(k).
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Sometimes information on species traits is also available (e.g., functional groupings,
body weights, specific leaf area), and we denote this by a vector tk for species
k = 1, . . . , s. The NB stacked SDM can then be extended to incorporate such information
on species traits, leading to what is known as the NB fourth-corner model [38]—for
example, log(µ(k)

i ) = β
(k)
0 + (Xi ∗ tj)γ, where (Xi ∗ tj) denotes a vector of interaction

terms formed from the covariates and the species traits, and γ is a corresponding vector of
fourth-corner regression coefficients.

NB Generalised Linear Mixed Models: A common extension of NB GLMs is the
inclusion of random effects when ni > 1 and correlations within a sampling unit are
anticipated (e.g., they represent measurements collected over time, or replications within
a site [9]). Specifically, the NB generalised linear mixed model (NB GLMM) includes a
vector of random effects bi for each unit, which are generally assumed to independently
follow a multivariate normal distribution, to model any heterogeneity above and beyond
that of the fixed effects. That is, we have log(µij) = β0 + X>ij β + Z>ij bi, where µij is the j-th
observation in unit i, and Zij denotes a set of random effects covariates.

Alternatively, in many observational studies in biogeography and ecology, it is common
that the n sampling units are spatially indexed, and thus exhibit spatial auto-correlation [39,
40]. To account for this, the NB GLMM above can be modified such that the random
effects are correlated across units. The simplest example is an NB spatial GLMM, where
log(µi) = β0 + X>i β + bi, and the n-vector (b1, . . . , bn) is assumed to follow a multivariate
Gaussian distribution where the covariance matrix is characterised by a spatial covariance
function. See Cressie and Wikle [41] for some popular choices of spatial covariance
functions, such as the exponential and conditional auto-regressive structure.

In Web Tables S1–S3 of the Supplementary Materials, we provide further details and
examples from the literature where NB models have been fitted to real ecological and
biodiversity type data.

3. Negative Binomial Modelling in the 21st Century

In this section, we discuss several modern approaches to modelling overdispersed
ecological and biological count data, which either directly use or are inspired by NB
models. It is important to acknowledge that the models described here are not necessarily
new, but we classify them as modern since their usage and associated computational/
methodological research has seen a rapid rise over the past decade. For several methods
listed here, we also present an analysis using a motivating data set consisting of acoustic
calls of different species of bats.

3.1. Negative Binomial as a Poisson Mixture Model and Beyond

An alternative and increasingly popular approach to modelling overdispersed count
data is to assume the underlying distribution is Poisson, where the rate (or intensity)
parameter is treated as a random variable (e.g., the normal or gamma distribution). Of these,
the Poisson-gamma mixture model (or the Poisson-compound gamma model) is perhaps
the most commonly used, and it is well-known that the NB model arises as a limiting case
of this [42]. To see this, let Y ∼ Poisson(Λ), where we treat Λ as a random variable and
assume it follows the gamma distribution with a shape parameter equal to κ and a scale
parameter equal to µ/κ. Following some basic algebra, we obtain the marginal distribution
of Y as

pY(y) =
1

Γ(κ)(µ/κ)κ

∫ ∞

0

e−λλy

y!
λκ−1e−κλ/µdλ

=
1

Γ(y + 1)Γ(κ)(µ/κ)κ
Γ(κ + y)

(
µ/κ

µ/κ + 1

)(κ+y)

=

(
κ + y− 1

y

)(
1

µ/κ + 1

)κ(
1− 1

µ/κ + 1

)y
y = 0, 1, 2, . . .
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which is equal to the probability function given by (1) with r = κ and p = 1/(µ/κ + 1).
Moving beyond this, the gamma random variable can be replaced with other distributions.

A popular alternative is the Poisson log-normal mixture model, where the response is
assumed to be Poisson, but now the rate parameter follows the log-normal distribution,
that is, Y ∼ Poisson(Λ), where Λ ∼ LN (η, σ2

ε ) and σ2
ε is the variance of the observation-

level random effect modelling any unobserved heterogeneity between counts. While
this approach differs from that of the NB form (i.e., the density of the Poisson-log-normal
mixture model cannot be written in closed form), the idea is nevertheless to view unobserved
heterogeneity as a form of overdispersion. In fact, the Poisson-log-normal mixture model
induces the same quadratic mean-variance relationship as the NB model. More generally,
these “overdispersed Poisson models” are considered to be mixture models because they
involve a mixture of compound probability distributions; see Harrison [13] for details.

More recently, Bonat et al. [43] considered a class of Poisson–Tweedie mixture models,
where Y ∼ Poisson(Λ) and Λ ∼ T W p(µ, φ) is the Tweedie distribution. Here, µ is the
mean, φ = 1/κ is now defined as a dispersion parameter, and p is the power index
parameter. These models are even more flexible and cover both the Poisson-gamma and
Poisson-log-normal mixture models as special cases (e.g., when p = 2, this yields the
Poisson-gamma and hence the NB model).

Over the past decade, Poisson-gamma mixture models (and their other mixture
counterparts) have emerged as a promising tool for modelling overdispersed count data
thanks to growing computational advances. For example, a major advantage in using the
Poisson-gamma mixture model over standard NB models is that unobserved heterogeneity
between individuals is flexibly modelled through the shape and scale parameters of the
gamma distribution component via covariates, random effects, and so on. Computationally,
this is relatively straightforward to handle, as the hierarchical nature of the Poisson-
gamma mixture model form is very stable and lends itself to fast updates when employing
techniques such as Markov chain Monte Carlo (MCMC) sampling or variational
approximation [44] (VA). Indeed, Poisson mixture models are popular in Bayesian MCMC
sampling settings [45] where, practically speaking, the estimation and prediction of model
parameters and their precision is quite straightforward computationally even if the model
itself is quite complex. This becomes especially powerful when dealing with high-dimensional
overdispersed count data (e.g., the number of observed species exceeds the number of
sites), or when considering complex regression structures on the mean and/or variance.
For example, Millar [26] analysed 46 species of fish abundance data collected on transects.
The overdispersion in these counts arises because several species are known to highly
aggregate in small groups, thus a Poisson-log-normal model (and others) were used with
Bayesian MCMC sampling techniques.

Other, non-Bayesian methods that have incorporated Poisson mixture models in
ecological and biodiversity include the use of Poisson-gamma mixture distributions for
spatio-temporal analysis Tran and Waller [46], and approximate likelihood Poisson-gamma
GLLVMs to model joint effects of multiple species [44].

To illustrate the practicality of Poisson mixture models on overdispersed count data,
we used a data set consisting of acoustic surveys on a bat community collected in California,
USA, within blue oak (Quercus douglasii) woodlands. Counts of bat calls were collected
using acoustic bat detectors for 2–5 nights across 20 sites, yielding 455 observed counts.
Seven bat species were recorded in oak woodlands of California: Tadarida brasiliensis (Tabr),
Eptesicus fuscus (Epfu), Lasionycteris noctivagans (Lano), Lasiurus cinereus (Laci), Parastrellus
hesperus (Pahe), Myotis yumanensis (Myyu), and Myotis californicus (Myca). For further
details on these data, see Hwang et al. [4]. In Figure 2, we plotted the sample variance of
observed counts against the sample mean for each species. The mean-variance relationship
exhibits a quadratic shape, indicating evidence of overdispersion.
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Figure 2. The sample variance of observed counts against the sample mean for seven bat species
(spp.) using the acoustic count data. The mean-variance relationship is clearly non-linear (in fact,
close to quadratic), indicating evidence of overdispersion. Seven bat species were recorded in oak
woodlands of California labelled by the following abbreviation: Tadarida brasiliensis (Tabr), Eptesicus
fuscus (Epfu), Lasionycteris noctivagans (Lano), Lasiurus cinereus (Laci), Parastrellus hesperus (Pahe),
Myotis yumanensis (Myyu), and Myotis californicus (Myca).

For each species, we used a Poisson-log-normal mixture model with Gaussian random
effects to account for overdispersion, fitted using the HierarchicalGOF package in R, and a
Poisson-gamma mixture model fitted using the bsamGP package. Both methods used
Bayesian MCMC sampling for estimation with three chains with 10,000 MCMC iterations
following a burn-in of 2000; see Conn et al. [11] for more details on priors and model
fitting. We also fitted a Poisson (log-linear regression) GLM and a NB GLM, both were
fitted using the mvabund package and a Poisson–Tweedie mixture model fitted using the
ptmixed package. These methods used maximum likelihood estimation. For all models,
we included two environmental covariates to model the (conditional) mean of the response:
minimum temperature (Xi,1) and stem density of adult trees (Xi,2), which are known to
correlate with abundance [4]. Thus, we write

log(µ(k)
i ) = β

(k)
0 + Xi,1β

(k)
1 + Xi,2β

(k)
2

for i = 1, . . . , 65 and k = 1(Tabr), . . . , 7(Myca) where we wish to compare estimates of β
(k)
0 ,

β
(k)
1 , and β

(k)
2 for each fitted model.

In Web Figure S1 of the Supplementary Materials, we plotted Dunn–Smyth residuals
against the linear predictor values for the (a) Poisson GLM (top) and (b) NB GLM (bottom).
Notice the obvious funnelling (or fanning) effect in the residuals plot for the Poisson GLM
but no obvious pattern in the analogous figure for the NB GLM. This further suggests
that there is strong overdispersion present in the data, and subsequently, that a Poisson
GLM is not an appropriate fit. We report parameter estimates with either 95% confidence
or credible intervals for each model and each species in Table 1, except for the NB GLM
results which are given in Table 2. We also estimated the overdispersion parameter from
the NB model for each species (not reported here), and ordered the model results from
smallest to largest based on the amount of estimated overdispersion for each species.
As expected, species with low estimated overdispersion (Laci and Lano) gave similar
results for all four models (i.e., Poisson mixture models were comparable to the Poisson
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GLM). On the other hand, species with larger overdispersion resulted in differences in
parameter estimates between the Poisson GLM and Poisson mixture models. Results for
the Poisson-gamma mixture model and the Poisson–Tweedie model were similar, even
though different estimation techniques were used. Finally the Poisson-log-normal mixture
model gave somewhat different results compared to other mixture models, which was
expected since Poisson-log-normal mixture models are parametrised differently.

Table 1. Parameter estimates with either 95% confidence or credible intervals when fitting a Poisson
GLM, a Poisson-log-normal mixture model, a Poisson-gamma mixture model, and a Poisson–Tweedie
mixture model to each species (spp.) in the bat acoustic count data. Seven bat species were recorded
in oak woodlands of California, labelled by the following abbreviations: Tadarida brasiliensis (Tabr),
Eptesicus fuscus (Epfu), Lasionycteris noctivagans (Lano), Lasiurus cinereus (Laci), Parastrellus hesperus
(Pahe), Myotis yumanensis (Myyu), and Myotis californicus (Myca).

Spp. Model β̂
(k)
0 β̂

(k)
1 β̂

(k)
2

Laci
Poisson −0.38 (−0.69, −0.06) −0.01 (−0.30, 0.29) −0.47 (−0.83, −0.11)

Poisson-log-normal mixt. −0.42 (−0.76, −0.13) 0.01 (−0.28, 0.31) −0.45 (−0.77, −0.12)
Poisson-gamma mixt. −0.39 (−0.73, −0.04) 0.07 (−0.29, 0.43) −0.46 (−0.87, −0.06)

Poisson–Tweedie mixt. −0.37 (−0.43, −0.31) −0.00 (−0.06, 0.06 −0.44 (−0.52, −0.37)

Lano
Poisson −0.88 (−1.30, −0.46) 0.63 (0.19, 1.08) −0.02 (−0.35, 0.32)

Poisson-log-normal mixt. −1.09 (−2.07, −0.54) 0.71 (0.21, 1.34) −0.04 (−0.51, 0.34)
Poisson-gamma mixt. −0.97 (−1.50, −0.44) 0.77 (0.08, 1.46) 0.00 (−0.42, 0.42)

Poisson–Tweedie mixt. −0.89 (−0.98, −0.80) 0.64 (0.55, 0.74) −0.08 (−0.16, −0.00)

Myyu
Poisson −0.36 (−0.72, −0.01) 0.81 (0.55, 1.07) −1.39 (−1.72, −1.05)

Poisson-log-normal mixt. −0.86 (−1.63, −0.31) 0.46 (−0.06, 0.98) −0.99 (−1.65, −0.43)
Poisson-gamma mixt. −0.03 (−0.47, 0.40) 0.36 (−0.14, 0.86) −1.02 (−1.58, −0.46)

Poisson–Tweedie mixt. 0.13 (0.07, 0.19) 0.53 (0.45, 0.61) −0.87 (−0.97, −0.78)

Tabr
Poisson 2.08 (1.98, 2.17) 0.34 (0.25, 0.44) −0.53 (−0.63, −0.42)

Poisson-log-normal mixt. 0.87 (0.39, 1.29) 0.82 (0.37, 1.33) −0.48 (−0.93, −0.05)
Poisson-gamma mixt. 1.98 (1.64, 2.33) 0.74 (0.15, 1.33) −0.75 (−1.17, −0.33)

Poisson–Tweedie mixt. 2.09 (2.06, 2.12) 0.56 (0.53, 0.59) −0.22 (−0.25, −0.19)

Epfu
Poisson 1.39 (1.26, 1.52) 0.30 (0.18, 0.42) 0.62 (0.54, 0.70)

Poisson-log-normal mixt. 0.07 (−0.59, 0.61) 0.61 (0.06, 1.25) 0.57 (0.06, 1.10)
Poisson-gamma mixt. 1.50 (1.02, 1.97) 0.18 (−0.58, 0.93) 0.59 (0.06, 1.12)

Poisson–Tweedie mixt. 1.58 (1.53, 1.62) 0.36 (0.32, 0.40) 0.31 (0.2, 0.34)

Myca
Poisson 2.16 (2.07, 2.24) 0.31 (0.21, 0.40) 0.14 (0.06, 0.21)

Poisson-log-normal mixt. 0.64 (0.11, 1.10) 0.32 (−0.15, 0.78) 0.09 (−0.35, 0.55)
Poisson-gamma mixt. 2.16 (1.70, 2.62) 0.52 (0.03, 1.02) 0.25 (−0.24, 0.74)

Poisson–Tweedie mixt. 2.20 (2.17, 2.24) 0.09 (0.05, 0.13) 0.11 (0.07, 0.15)

Pahe
Poisson 0.75 (0.55, 0.94) 0.34 (0.18, 0.51) −0.83 (−1.04, −0.62)

Poisson-log-normal mixt. −1.39 (−2.58, −0.57) 1.16 (0.40, 2.12) −1.32 (−2.34, −0.51)
Poisson-gamma mixt. 0.70 (0.14, 1.26) 0.71 (−0.07, 1.49) −1.04 (−1.75, −0.29)

Poisson–Tweedie mixt. 0.71 (0.64, 0.79) 0.65 (0.57, 0.74) −0.66 (−0.76, −0.57)
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Table 2. Parameter estimates with either 95% confidence or credible intervals when fitting a negative
binomial (NB GLM), zero-inflated Poisson (ZI-Poisson), and zero-inflated NB (ZI-NB) model to each
species (spp.) in the bat acoustic count data. Seven bat species were recorded in oak woodlands of
California, labelled by the following abbreviations: Tadarida brasiliensis (Tabr), Eptesicus fuscus (Epfu),
Lasionycteris noctivagans (Lano), Lasiurus cinereus (Laci), Parastrellus hesperus (Pahe), Myotis yumanensis
(Myyu), and Myotis californicus (Myca).

Spp. Model β̂
(k)
0 β̂

(k)
1 β̂

(k)
2

Laci
NB GLM −0.38 (−0.74, −0.01) 0.03 (−0.33, 0.38) −0.47 (−0.88, −0.05)

ZI-Poisson 0.08 (−0.40, 0.57) −0.05 (−0.41, 0.31) −0.34 (−0.85, 0.17)
ZI-NB 0.08 (−0.40, 0.57) −0.05 (−0.41, 0.31) −0.34 (−0.85, 0.17)

Lano
NB GLM −0.91 (−1.41, −0.41) 0.72 (0.16, 1.27) 0.01 (−0.42, 0.43)

ZI-Poisson −0.62 (−1.05, −0.19) 0.50 (0.02, 0.97) 0.61 (0.08, 1.14)
ZI-NB −0.64 (−1.14, −0.14) 0.57 (−0.03, 1.17) 0.66 (0.01, 1.31)

Myyu
NB GLM −0.02 (−0.50, 0.46) 0.34 (−0.14, 0.81) −0.96 (−1.53, −0.39)

ZI-Poisson 0.51 (0.08, 0.94) 0.44 (0.09, 0.78) −1.05 (−1.46, −0.63)
ZI-NB 0.17 (−0.31, 0.65) −0.06 (−0.63, 0.51) −1.35 (−1.99, −0.72)

Tabr
NB GLM 1.96 (1.58, 2.34) 0.71 (0.32, 1.11) −0.73 (−1.13, −0.34)

ZI-Poisson 2.41 (2.32, 2.51) −0.02 (−0.13, 0.09) −0.46 (−0.57, −0.35)
ZI-NB 2.16 (1.75, 2.58) 0.24 (−0.36, 0.85) −0.69 (−1.11, −0.28)

Epfu
NB GLM 1.44 (0.99, 1.88) 0.24 (−0.21, 0.69) 0.51 (0.07, 0.95)

ZI-Poisson 1.98 (1.85, 2.12) −0.09 (−0.27, 0.10) 0.56 (0.47, 0.65)
ZI-NB 1.68 (1.22, 2.13) −0.44 (−1.10 ,0.22) 0.76 (0.34, 1.18)

Myca
NB GLM 2.12 (1.67, 2.56) 0.51 (0.06, 0.95) 0.25 (−0.19, 0.69)

ZI-Poisson 2.49 (2.40, 2.57) 0.26 (0.17, 0.34) 0.07 (0.00, 0.14)
ZI-NB 2.12 (1.67, 2.56) 0.51 (−0.02, 1.04) 0.25 (−0.25, 0.74)

Pahe
NB GLM 0.62 (0.03, 1.21) 0.67 (0.05, 1.29) −1.08 (−1.75, −0.41)

ZI-Poisson 1.84 (1.63, 2.04) −0.23 (−0.42, −0.03) −0.55 (−0.79, −0.31)
ZI-NB 1.43 (0.53, 2.32) −0.27 (−1.09, 0.55) −0.81 (−1.81, 0.18)

3.2. Occurrence/Presence-Absence Data

Occurrence data arises when the complete frequency count is not observed in a
sampling unit (also commonly referred to as a quadrat), and only whether or not an
individual is observed is recorded. As in previous sections, consider a random sample
Y1, . . . , Yn from an NB(µ, κ) model, representing the number of individuals occupying
the n quadrats. However, we now have binary observations Y∗i , i = 1, . . . , n, where
Y∗i = I(Yi > 0), which take the value zero for an absence and 1 otherwise. These data
are sometimes known as occurrence map data or presence-absence data, since the Y∗i ,
i = 1, . . . , n are independent Bernoulli random variables. Overdispersion in these data can
still arise if different species happen to clump or aggregate amongst quadrats. However,
fitting an NB model directly to these data is not appropriate due to parameter identifiability
issues [2,47].

To overcome this problem and ensure the NB model can still be fitted, Solow and
Smith [3] developed a simple approach where each presence observation is identified as
two separate cases: a singleton, which represents the case when there is exactly a single
individual observed in the quadrat, and two or more, when there is more than one individual
observed in the quadrat. Let m0 = n−m, where m = ∑i Y∗i , and denote m1 as the number
of singletons and m2 = m−m1 as the number two or more cases. Then, it can be shown
that (m0, m1, m2) follows the multinomial distribution with corresponding probabilities
(p0(µ, κ), p1(µ, κ), p2(µ, κ)), where pj(µ, κ) = fµ,κ(j) for j = 0, 1 and p2(µ, κ) = 1 −
p0(µ, κ) − p1(µ, κ). Estimates of κ and µ can then be obtained by maximising the log-



Diversity 2022, 14, 320 11 of 25

likelihood function `(µ, κ) = ∑2
j=0 mj log

{
pj(µ, κ)

}
. These models were extended by

Hwang et al. [47], who incorporated detection times in the above model structure.
Building on the above, Hwang and Huggins [48] developed a paired negative binomial

model to account for correlation between two quadrats from occurrence data. They derived
method of moments estimators using the number of empty cells, which allowed for
general estimation and inference of the total abundance, mean abundance, and dispersion
parameter. They illustrated their methods on simulated and real forestry plot occurrence
data collected on Barro Colorado Island in Panama, having identified strong dependence
and heterogeneity amongst 44 different tree species. Further extensions are given in
Huggins et al. [49], who used the aforementioned Poisson-gamma mixture models to
model dependence between multiple neighbouring quadrats, vastly improving interval
estimation, and Hwang et al. [50], who developed a model for analysing spatial or temporal
clustered occurrence data by introducing a community parameter in the framework and
also using a Poisson-gamma mixture type model. In particular, these two studies noted
that it was considerably easier to formulate a model based on a Poisson-gamma mixture
when modelling local associations compared with standard NB models.

3.3. Zero-Truncated and Zero-Inflated Data

We describe a family of NB models where the outcome of zeros is affected by two
different sources. Although these models have existed in the literature for some time, they
are starting to make important inroads in ecological and biodiversity applications.

Zero-truncated NB models: Zero-truncated count data arises when the range of
possible responses values is restricted to a set of positive integers [51]. In other words, there
is an impossibility of obtaining a zero count due to the data-generating mechanism. Zero-
truncation is similar to, but considered to be distinct from, censoring. More importantly,
ignoring this zero-truncation and simply fitting an NB model or variation thereof can
lead to biased estimated parameters and incorrect standard errors [52]. The log-likelihood
function for a zero-truncated NB model is given by `p(µ, κ) = ∑n

i=1 log{p+Y (yi; µ, κ)}, where
p+Y (y; µ, κ) = pY(y; µ, κ)/{1− pY(0; µ, κ)} and pY(y; µ, κ) is given in Equation (2).

In ecology and biological studies, a classic example of zero-truncated count data arises
from capture–recapture experiments, since the observed capture history data only consists of
those individuals that have been observed at least once [6]. Traditionally, capture–recapture
data are modelled using zero-truncated binomial distributions. However, there has been
some recent development using zero-truncated Poisson-type models (see Hwang et al. [53]
and Zhang and Bonner [54]). To account for heterogeneity and overdispersion, closed
population size estimators were developed by Boyce et al. [55], who used a zero-truncated
negative binomial distribution, and more recently by Anan et al. [56], who considered the
Conwway–Maxwell–Poisson distribution for capture–recapture count data. To the best of
our knowledge, a detailed investigation on overdispersed capture–recapture count data in
open population settings (i.e., birth, deaths, emigration, and immigration are not assumed
to be constant) has yet to be fully made, and remains as an open research problem. Species
diversity estimation models (as will be discussed in Section 3.4) are also regarded as being
zero-truncated data since these observation contain a missing zero class n0, the number of
species that are not represented at all in the collection.

Zero-inflated NB models: Zero-inflated data count arises when there is an underlying
mechanism generating zeros with some unknown probability π—in other words, when
we have a data set with an inflated number of zero counts [21,57]. Traditionally, zero-
inflated models were developed for Poisson models since overdispersion can also be a
result of excess numbers of zeros in the data. However, as mentioned in Zuur et al. [52],
the excessive number of zeros may cause overdispersion, and Warton [20] showed that
there was very little difference between NB and zero-inflated Poisson models. This would
suggest that fitting zero-inflated NB models could resolve both overdispersion and an
excessive number of zeros in count data. The probability mass function for a zero-inflated
NB model is given by p̃Y(y; µ, κ, π) = πIy=0 + (1− π)pY(y; µ, κ), and the log-likelihood
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function follows as `z(µ, κ, π) = ∑n
i=1 log{ p̃Y(yi; µ, κ, π)}. We refer to Warton [20] and

references therein for methods on testing to see if zero inflation is real, and Yee [58] for
details on fitting zero-inflated NB models in R.

Zero-inflated models are not new to ecology/biology, but there have been some
exciting recent developments and applications. For example, Balderama et al. [59] developed
a double-hurdle model to account for spatial heterogeneity and seasonal variation applied
for estimating abundances of 24 species of marine bird that spanned the Atlantic coastline
from Maine to Florida. Sadykova et al. [60] used zero-inflated NB models on counts of 8
mobile marine species to analyse spatial physical habitat selection driven by competition
and/or predator–prey interactions, and Blasco-Moreno et al. [8] examined plant–herbivore
interactions for each species to evaluate the suitability of different zero-inflated and/or
overdispersion counts models.

As an illustration, we once again used the bat acoustic data, and noted that the number
of zeros in the data accounted for 48.5% of all counts. With this in mind, we consider the
same analysis as in Section 3.1 but compare the NB GLM with a zero-inflated Poisson (ZI-
Poisson) and a zero-inflated NB (ZI-NB) model to each bat species (spp.), and we present
these results in Table 2. For almost all species, the NB model gave different parameter
estimates compared with ZI-Poisson and ZI-NB, while the latter two models gave quite
similar estimates except for a few species (e.g., Myyu, Tabr, and Myca). Given almost
half the data consisted of zero counts, this may explain why these results differ from
the standard NB model and other variants (see Table 1), and perhaps suggests that a
zero-inflated type model is better suited.

3.4. Species Richness and Biodiversity Estimation

For the NB modelling methods described so far, we have primarily focused on
estimation, inference, or prediction on the average abundance µ and the dispersion
parameter κ. In many cases, however, the main interest is in estimating species richness
or the true number of species or taxa in the given study area. This area of research
is tremendously rich, having a long and important history in ecology [61]. Of course,
overdispersion can arise in these settings (since most species or taxa will aggregate amongst
themselves), and so NB models and others have played and continue to play an important
role in modern species richness estimation.

First, we briefly discuss Fisher’s log-series model, which can be used to measure
species richness from the well-known “Fisher’s alpha” parameter. We direct the reader to
Chen and Shen [62] for an excellent review on Fisher’s log-series model. Suppose there
are S species where each species has an abundance N, which is assumed to follow the
negative binomial distribution. Assuming that the aggregation parameter goes to zero and
eliminating the possibility of the zero abundance yields the so-called Fisher’s log-series
distribution [61], which consists of two parameters α and x. The former parameter is known
as Fisher’s alpha, which can be estimated using the observed number of species and the
total number of individuals seen in the study. For further details, extensions and examples,
see Slik et al. [63] and ter Steege et al. [64].

Next, suppose we are interested in estimating the true number of species S from a
sample consisting of s observed species. Let nr be the number of species with abundance
equal to r = 1, 2, . . .. We consider a parametric approach, where we model the number
of species with abundance equal to r with an appropriate distribution, say, pR(r; θ) for
r = 0, 1, 2, . . .. The log-likelihood for the number of species with abundance nr is written as

`(θ) = log(s!) +
n

∑
r=1

[nr log{pR(r; θ)} − log(nr!)]− s log{1− pR(0; θ)}, (3)

where n is the total number of observed individuals in the sample, and 1− pR(0; θ) is the
probability that a species has been observed at least once in the sample. Once an estimate of
θ is available, S is estimated as Ŝ = s/{1− pR(0; θ̂)}. When there is both overdispersion and
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heterogeneity of detection between species, pR(r; θ) in Equation (3) is often modelled using
the negative binomial distribution where θ = (µ, κ). This model differs from estimating
the population sizes as in capture–recapture modelling, because histories of each observed
individual are not available; however, the idea is similar in that we aim to estimate the
number of species/taxa that have not been observed during sampling.

A recent development in this area was given by Foster and Dunstan [65], who
considered a similar framework as above and developed a suite rank abundance distribution
model. They provided an example of their methods using a large-scale marine survey
off the coast of Western Australia, resulting in a substantial advancement in the analysis
of biodiversity. Other recent methods include Connolly and Thibaut [66], who extended
model (3) by including the number of unobserved species as one of the estimated parameters,
and Chen et al. [67], who used a negative multinomial distribution for species estimation
on community-level species’ correlated data.

3.5. Occupancy-Detection and Distance Sampling Methods

Thus far, we have assumed that the observed counts have been perfectly detected.
In practice, however, observers may not be always able to perfectly detect each individual
in the sampling unit. Imperfect detection of this type can arise due to various reasons, such
as survey-specific conditions (e.g., lack of visibility at the time of the survey) or site-specific
conditions (e.g., the sampled terrain is not uniform across the sampling area).

Occupancy-detection models: A popular approach to correct for imperfect detection
is to include an additional parameter known as the detection parameter (or parameters)
to model the probability that an individual is observed when present at a particular
sampling unit during the survey period. Repeated measures at the unit are often required
to ensure that there is sufficient data to estimate the imperfect detection parameter and
avoid identifiability issues (i.e., the detection probability may be confounded with the
mean parameter). These models are commonly known as occupancy-detection models [68],
and while they were originally developed for presence–absence (or binary) response, they
have been also been extended to count responses. They are very closely related to capture–
recapture models, where sites are replaced with observed individuals, and no recapturing
is involved, making occupancy-detection models somewhat advantageous.

Occupancy-detection models have become extremely popular in the last few decades,
and are the method of choice when correcting for imperfect detection. These include
the traditional likelihood-based occupancy-detection models of MacKenzie et al. [68],
N-mixture models [69–71], and continuous point process models [72]. For N-mixture
models, the observed counts yit are recorded across i = 1, . . . , n sites and t = 2, . . . , T times
points, assumed to follow the binomial distribution Yit ∼ Binomial(Ni, q), where q is the
detection probability. The true abundance Ni may then be assumed to follow an negative
binomial distribution, that is, Ni ∼ NB(µ, κi), to accommodate often seen high levels of
overdispersion. Kéry [73] considered these models among several others, fitting them to 137
bird species sets from 2037 units. Another example is given in Knape et al. [71], who found
that even relatively low levels of overdispersion can lead to considerable underestimation
of abundance if the N-mixture models did not properly account for this characteristic of
the data.

An alternative approach to the above is to use a Poisson mixture model (discussed
in Section 3.1) within the N-mixture framework. For instance, Conn et al. [11] used a
Poisson-gamma N-mixture model, where Ni ∼ Poisson(λi) and λi ∼ Gamma(αλ, βλ),
along with q ∼ Beta(αq, βq), and applied this to count data collected on sea otters from
aerial surveys in Glacier Bay National Park, southeastern Alaska. Further extensions to
N-mixture models include a generalised multinomial N-mixture model, which allows for a
three-level hierarchical model, and decomposing the detection probability to allow for new
arrivals entering the population [74].

Recall that the bat acoustic data used in Section 3.1 consists of repeated counts collected
at the same site. These multiple sightings allow us to correct for imperfect detection whilst
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accounting for overdispersion in the observed counts. In this example, we combined all
species counts together and fitted a Poisson-gamma N-mixture model with no covariates.
Once again, we use a Bayesian MCMC sampling approach via the HierarchicalGOF
package, where we set αλ = βλ = 0.001, αq = βq = 1 with 50,000 MCMC iterations
following burn-in of 5000. The sampled posterior distribution for predicted bat abundance
is given in Figure 3. Based on this, the total number of bats across all sites is predicted to
be approximately 610, or between 580 and 630 based on the 2.5th and 97.5th percentiles of
the distribution, respectively (dotted blue lines in Figure 3). Compared with the observed
number of 450, this suggests there were approximately 160 unaccounted for bats throughout
the sampling period.

Distance sampling models: Distance sampling models are structurally different from
the aforementioned occupancy-detection models, but they share the commonality of
accounting for imperfect detection of individuals during sampling. They are a popular
method used for estimating population density. This technique involves surveying transects
or points, estimating the distance to detected animals, and fitting a detection function to
the estimated distances, which allows the number of undetected animals to be estimated.
Hierarchical distance sampling models permit spatial variation in abundance as a function
of covariates. As shown in Chapter 8 of Kéry and Royle [74], distance sampling models
where an NB model is assumed for the abundance component are an exemplar of this.
They applied such models to data collected on the Island scrub-jay (Aphelocoma insularis),
a species that is endemic to Santa Cruz Island, California, described as having an extremely
local distribution and declining population sizes; see also Sillett et al. [75].

Figure 3. Sampled posterior distribution for predicted bat abundance when fitting a Poisson-gamma
N-mixture model with no covariates. In this example, we combined all species counts and account for
imperfect detection as well as overdispersion. Based on the median (blue dashed line), the predicted
bat abundance is just below 610. The dotted blue lines represent the 2.5th and 97.5th percentiles of
the distribution, respectively.

3.6. Joint Species Distribution and Compositional Data Models

One of the biggest trends that has emerged in the analysis of ecological and biological
data over the past decade is joint modelling of multiple species. That is, rather than
treating each species independently and fitting a separate model to each one (e.g., stacked
SDMs as discussed in Section 2.2), we fit a single joint model that takes into account
(residual) correlations between species arising from, say, biotic interactions, phylogeny,
or missing predictors. Such models are commonly referred to in community ecology
as joint species distribution models (JSDMs), and we refer to Clark et al. [76], Warton
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et al. [77], Ovaskainen et al. [78], and Björk et al. [79] among many others for reviews
and examples of these. Naturally, with multivariate overdispersed count data, an NB
JSDM model or some variation thereof is a recognised choice. That is, we assume Y(k)

i ∼
NB(µ(k)

i , κ(k)) with the mean model

log(µ(k)
i ) = αi + β

(k)
0 + X>i β(k) + U>i λ(k),

where, importantly, for each sampling unit i = 1, . . . , n, we include an additional set of
d � s latent variables Ui, which are assumed to be drawn from a multivariate normal
distribution, and λ(k) denotes the corresponding species-specific loadings. Note also that
we can include a row or unit effect, αi, which can be treated as fixed or random effect to act
as a means of row standardisation and to model relative instead of absolute abundance [27].
The latent component of the NB JSDM accounts for any residual covariation above and
beyond that of the covariates, and does so in a more parsimonious manner relative to
modelling all the possible pairwise residual correlations between species [77].

The NB JSDM can be fitted using both maximum likelihood estimation and Bayesian
MCMC sampling, and research into scalable estimation and inference approaches for
JSDMs remains very active, especially given the increasingly high dimensionality and
volume of multi-species count data being collected [44,80,81]. More generally, the NB JSDM
offers a unified framework for answering many questions about both individual species
and the species assemblage as a whole. One prominent use is in model-based ordination,
where (with d = 2, say) the predicted latent variables Ui along with the loadings λ(k) can
be plotted to visualise site and species patterns on a low-dimensional space [27,82,83].
The NB JSDM can also be extended in a multitude of ways, including accounting for
imperfect detection using techniques similar to those discussed in Section 3.5 (e.g., see
Warton et al. [32] and Tobler et al. [84]), adding structure to the latent variables modelling
spatial and/or temporal correlations both within and between species [85,86], and replacing
the NB assumption in the JSDM with other distributions such as hurdle and zero-truncated
distributions similar to Section 3.3; see also Thorson [87].

One particularly interesting application of JSDM-type models that has emerged of
late is in the analysis of compositional data. That is, the set of s overdispersed counts at a
sampling unit are subject to a total count constraint. Such data most commonly arise in
studies of microbiomes, as well as high-throughput sequencing [88], where the constraint
arises due to sequencing depth. With the row effect αi acting as a means of accounting
for this constant, the NB JSDM formulated above can be used to analyse overdispersed
compositional count data. Not surprisingly, other joint modelling approaches that involve
the negative binomial distribution or some variation thereof are also possible; see, for
example, Zeng et al. [89] and Jiang et al. [90].

We used the bat acoustic data to illustrate fitting an NB JSDM with covariates. Specifically,
we used the boral R-package [91], which utilises Bayesian MCMC modelling; for our
analysis, we used the default package settings (i.e., all priors and MCMC parameters)
and set the number of latent variables to d = 2. In Web Figure S2, we give a caterpillar
plot of regression coefficients with credible intervals, which were somewhat similar to
the estimates given by the fitted mixture models in Table 1. Furthermore, to visualise the
residual correlation between species, in Figure 4 we give the following: (a) a model-based
residual ordination biplot; (b) a plot of the between-species correlation arising from shared
environmental responses; and (c) a plot of correlations between species due to residual
correlations. From the biplot (Figure 4a), there were no obvious patterns of site and species
clustering, with the exception of Site 11, which was characterised by Myca and Myyu.
From the correlation plots, we observed strong positive correlations due to environmental
response (large blue circles in Figure 4b)—for example, species Tabr and Pahe—while the
residual correlation was primarily dominated by strong, negative correlations (large red
circles in Figure 4c)—for example, species Myyu with Lano, Pahe, and Epfu.
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Figure 4. (a) A residual ordination biplot based on latent variable posterior medians; (b) a plot
of the between-species correlation arising from shared environmental responses; and (c) a plot pf
correlations between species due to residual correlations when fitting an NB joint species distribution
to the bat acoustic data. The 20 site numbers are labeled in black, and the seven bat species are shown
in red and labelled by the following abbreviated names: Tadarida brasiliensis (Tabr), Eptesicus fuscus
(Epfu), Lasionycteris noctivagans (Lano), Lasiurus cinereus (Laci), Parastrellus hesperus (Pahe), Myotis
yumanensis (Myyu), and Myotis californicus (Myca).
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4. Model Fitting and Software

There has been extensive research into the issue of general estimation and statistical
inference for NB models; see, for instance, Bowman [92], Binet [93], Lawless [94], Clark and
Perry [95], and Agresti [96], who laid the foundations for various moment and (approximate)
likelihood-based estimation approaches, assuming the n sampling units are independent
observations. In software nowadays, maximum likelihood estimation of the NB model is
among the most popular approaches available based on the explicit optimisation of log-
likelihood function construct from Equation (2); see Lloyd-Smith [97], for instance.

For log-linear NB regression models and NB species distribution models, maximum
likelihood estimation is generally carried via an iterative re-weighted least squares approach
(see Solis-Trapala and Farewell [98] for more details), and in R we refer to the glm.nb
function in the MASS package for fitting parametric NB regression models, the gam function
in the mgcv package for fitting NB GAMs, and the manyglm and traitglm functions in
the mvabund package for fitting stacked NB species distribution models and NB fourth-
corner models. Variations of maximum likelihood estimation also exist, including using
the conditional likelihood [99], or the bias-corrected likelihood [100], although these are
less popular. We also refer to Böhning [31] among others, who examined testing for
overdispersion in Poisson and binomial regression models. Turning to NB (spatial) GLMMs,
likelihood-based estimation of such mixed-effects models are noticeably more complicated,
as the unobserved random effects need to be integrated. While methods for this are
available (see Lindgren and Rue [101], along with Table 3 for some example packages in
R), an arguably more attractive approach in ecology and biodiversity analyses has been
to adopt Bayesian estimation methods, particularly that of MCMC sampling (e.g., [102]).
They are widely used in many ecological applications, and a number of different statistical
software R-packages have been developed to fit these models.

In Table 3, we provide a list of R-packages for fitting various NB models, covering both
traditional uses and modern applications. In particular, while some of the modern usages of
NB modelling have inspired relatively user-friendly software packages (e.g., the unmarked
package for fitting occupancy-detection and N-mixture models discussed in Section 3.5,
and the boral and gllvm packages for fitting NB JSDMs discussed in Section 3.6), many of
the techniques described in Section 3 either do not have associated R-packages or in-built
functions, or are more likely require bespoke R-code implementations (e.g., through the
use of generic MCMC samples like JAGS https://mcmc-jags.sourceforge.io/, accessed
on 17 April 2022, or automatic differentiation tools like Template Model Builder (TMB,
https://cran.r-project.org/web/packages/TMB/index.html, accessed on 17 April 2022)).
We also refer to Hilbe [33], Zuur et al. [52], and Kéry and Royle [74], who give excellent
examples of fitting a variety of different NB models to various applications with all code
provided (the latter two references focus on numerous ecological examples). Finally, we
note that other software such as SAS, MATLAB, and SPSS also have NB implementations.
However, given the popularity of R in ecology and biology, we do not cover their utilities here.

https://mcmc-jags.sourceforge.io/
https://cran.r-project.org/web/packages/TMB/index.html
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Table 3. A selective list of R-packages for fitting various traditional and modern negative binomial (NB) models described in the main text. We denote as s the
number of species/taxa, n the number of sampling units (e.g., sites), and p the number of covariates. Note that generic Bayesian MCMC packages such as the rjags
and R2jags R-packages can also be used to fit many of the models listed below, with some additional coding required for specifying the NB likelihood. Indeed, some
of the modern NB models discussed in Section 3 either do not have currently associated R-packages, or require bespoke R-code. Furthermore, some of the packages
listed can fit multiple types of NB models (e.g., the gamlss package can also fit NB GLMs and GAMs).

Model: Modelling Usage and Notes: R-Package(s): Common Function:

Generalised linear model (GLM) Single species (s = 1) MASS glm.nb()
Generalised additive model (GAM) Smoothing mgcv gam(family = nb())

gamlss gamlss(family = NBI)
Generalised linear mixed model (GLMM) Random/mixed effects lme4 glmer.nb()

glmmTMB/glmmadmb glmmTMBfamily = nbinom2()
Generalised additive mixed model mgcv gamm(family = nb())
GLM with regularisation penalties High-dimension (n > p) glmnet glmnet(family = negative.binomial)
GLMM with regularisation penalties rpql rpql(family = "nb2")

Species distribution model Stacked SDM (s > 1) mvabund manyglm(family = "negative.binomial")
Stacked and Reduced-rank SDMs/GAMs VGAM vglm(family = negbinomial())

Joint species distribution model (Residual) correlation across species boral boral(family = "negative.binomial")
gllvm gllvm(family = "negative.binomial")

Poisson-log-normal mixture model HierarchicalGOF pois.overd.no.spat()
Poisson-gamma mixture model bsamGP gblr(family = "poisson.gamma")
Poisson–Tweedie mixture model ptmixed ptglm()

Zero-inflated GLM pscl/countreg zeroinfl(dist = "negbin")
VGAM vglm(family = zinegbin())
gamlss family = ZIP()/ZINBI()

Zero-truncated GLM countreg zerotrunc(dist = "negbin")
VGAM vglm(family = posnegbinom())
gamlss.tr gen.trun(family = "PO")

N-mixture models Imperfect detection unmarked pcount(mixture = "NB")
Generalised multinomial N-mixture Three hierarchical levels unmarked gmultmix(mixture = "NB")
Hierarchical distance sampling unmarked gdistsamp(mixture = "NB")
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5. Discussion

The last half-century has witnessed a tremendous growth in the development and use of
the NB model for ecology and biodiversity studies. NB models and their various extensions
and flavours are now recognised as a flexible means for dealing with overdispersion counts,
and indeed, we believe that they should become the “new default” (as opposed to the
Poisson model) for analysing count data in the ecological arena. It is important to recognise
that while the NB model is ideally suited to dealing with overdispersed counts, so-called
apparent overdispersion may also arise in the regression setting as a consequence of model
misspecification (e.g., when assuming linearity although the true effects are non-linear or if
excluding interactions/covariates when they are actually required). Such overdispersion is
apparent in the sense that it is controllable and not necessarily related to real overdispersion,
resulting in the underlying biological processes driving the species counts (see [33] for
further details on these two distinctions). Moreover, this points to the importance of
sensible and methodical model building and checking: using the NB model as the starting
point does not avoid the problems of apparent overdispersion, and the applied researcher
should utilise, for example, standard diagnostic tools, to ensure that mean structure is
adequately modelled and that κ is primarily capturing true overdispersion and little
apparent overdispersion [22].

In Section 3, we demonstrated the use of various modern NB models on real ecological
data, and offered some details regarding implementations of statistical software in R
in Section 4. Whilst we primarily focused on modelling µ with simple structures in
our examples, it is also possible to fit so-called double GLMs, where the (log of the)
overdispersion parameter is also regressed against covariates (e.g., log(κi) = α0 + X>i α,
where κi now also depends on the observation unit through the covariates, and α0 and α
denote the associated regression coefficients). Indeed, we hinted at this in Section 3.1
with Poisson mixture models where both parameters of the mixture distribution are
regressed against covariates. A more substantial example of such an application is seen in
Bonat et al. [103], who simultaneously modelled the mean and covariance structure using
count data collected on prey animals in Pico Basilè, Bioko Island, Equatorial Guinea, via
generalised estimating equations; see also the discussion below.

Although our presented example is of a small to moderate size, big data are now
becoming more abundant in ecology [24]. Advances in computational flexibility and
efficiency have allowed for a range of sophisticated statistical models that handle data of
large quantities and complexity, and some of these were discussed as part of our overview
of modern applications (e.g., NB joint species distribution models) in Section 3.6. However,
many challenges remain, in particular when dealing with high-dimensional overdispersed
count data with many explanatory variables, or when there exists a multiple-complex-
correlation structure due to sampling design and in space and time. Below, we provide
some details on two promising developments that can be used when considering these
challenges for ecological and biodiversity count data.

NB regularisation models: Where there are many explanatory variables and the aim
is to identify only a small set of truly important features (i.e., we want to recover the
underlying sparsity in the regression model), extensions of the methods discussed in
Section 2.2 have emerged that can perform simultaneous estimation and variable selection
for NB regression models. This is achieved by augmenting the objective (typically, the log-
likelihood) function used with a penalty that encourages sparsity. Maximising the resulting
penalised objective function leads to some elements of β being shrunk to exactly zero,
and hence the covariate is removed from the model. The past two decades have seen
an explosion in the statistical development and use of regularised models, spurred on
particularly by settings where the number of covariates p is so large that traditional variable
selection methods such as step-wise selection and information criteria are computationally
infeasible. Some of these possibilities borrow new methodology from the bioinformatics
literature (e.g., Yu et al. [104] and Wu et al. [105]) to efficiently handle overdispersed
counts in very high-dimensional p >> n settings. Several R-packages have also been
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developed to fit NB regularisation models (e.g., glmnet and rpql [106]). Moreover, variable
selection in more complex settings such as NB JSDMs and spatio-temporal/occupancy-
detection count models continues to remain an active area of research, and an increasingly
large array of statistical (e.g., [107,108]) and computational techniques (e.g., [44,60,80,101])
are starting to become available for tackling these cutting-edge model estimation and
inferential challenges.

Generalised estimating equations: For many cases involving multivariate count data,
JSDMs can be used to model correlation or dependencies between species using the
techniques described and seen in Section 3.6. However, an alternative approach that
requires only the specification of the first two moments, along with a working correlation
structure positing the model co-dependence across species or time points (often called
clusters), is available in the form of generalised estimation equations (GEEs). For ecological
applications with overdispersed count data, several key developments on the use of
GEEs have been made by Warton [109] and Warton and Guttorp [110]. More recently,
GEEs have been extended to allow for multivariate adaptive regression splines [111]
that permit a large number of covariates and smoothing on multivariate overdispersed
count data. A particularly interesting area of development would be to incorporate GEE
techniques with divide-and-conquer strategies [24] for large and complex data. Here, GEEs
would be optimised over subsamples, rather than the entire data, in a computationally
efficient fashion.

6. Conclusions

As the global environment rapidly changes, ecological and biodiversity data are
becoming increasingly complex. To analyse these types of data, new count data models
are also being developed; however, many of these implementations still tend to adopt
the Poisson model as a default and do not allow for overdispersion. This article has
presented a selected overview of modern applications of NB-driven methods, whether
these are for single or multiple species, for independent or correlated data, and whether
using likelihood-based or Bayesian techniques. We hope this overview will stimulate
the use of NB models as the new default starting point for the analysis of count data in
ecology and biodiversity studies, and can be used as a guide going forward to inspire
further NB modelling extensions. As one example, we briefly discussed and applied the
Poisson–Tweedie distribution on the bat acoustic data, for which the negative binomial
distribution is a special case. Poisson–Tweedie models are a powerful approach to handling
count data as they are able to capture different levels of heterogeneity (e.g., they can
handle overdispersion much more severe than that of the negative binomial distribution),
although considerable advancements can still be made to ensure their uptake in present
and future areas of ecology and biodiversity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d14050320/s1, Figure S1: Dunn–Smyth residuals vs the linear
predictor values for the (a) Poisson (top) and (b) negative binomial (bottom) GLMs when fitted to the
bat acoustic data, Figure S2: Caterpillar plot of regression coefficients with credible intervals when
fitting a NB joint species distribution to the bat acoustic data; Table S1: Additional notes and examples
for log-linear negative binomial (NB) regression models, Table S2: Additional notes and examples
for negative binomial (NB) species distribution models, Table S3: Additional notes and examples for
negative binomial (NB) generalized linear mixed models. References [10,23,29,37–41,52,111–126] are
cited in the supplementary materials.
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