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Abstract: Charonia tritonis (Charoniidae), one of the largest marine gastropods and an echinoderm

specialist, preys on Crown-of-Thorns starfish (CoTS), a recurring pest that continues to be a leading

cause of coral mortality on Indo-Pacific reefs. Widespread historical exploitation has impacted

their numbers, with standing populations considered rare throughout their habitat. Their life-

stage attributes, i.e., teleplanic larvae, planktotrophic phase spanning years permitting transoceanic

dispersal, and recruitment to coral reefs through oceanic influx with intense larval mortality, have

likely hindered their recovery. Decline in numbers is hypothesised to account partially for periodic

CoTS outbreaks, yet predator-prey dynamics between these two species that might influence this

are poorly understood. The C. tritonis excretory secretome elicits a proximity deterrence effect on

CoTS, the nature of which is under investigation as a possible tool in CoTS biocontrol scenarios.

However, specificity and zone of impact in situ are unknown, and whether the mere presence of

C. tritonis and/or predation pressure has any regulatory influence over CoTS populations remains

to be established. The fundamental taxonomy and distinctive characteristics, biology and ecology

of C. tritonis is summarized, and knowledge gaps relevant to understanding their role within coral

reefs identified. Information is provided regarding exploitation of C. tritonis across its habitat,

and prospects for conservation interventions, including captive rearing and stock enhancement to

repopulate local regions, are discussed. Its predator-prey ecology is also examined and potential to

mitigate CoTS considered. Recommendations to direct future research into this predator and for its

inclusion in a CoTS integrated pest management strategy to improve coral reef health are offered.

Keywords: aquaculture; biocontrol; Crown-of-Thorns starfish; indigenous predator; integrated pest

management; marine gastropod; trophodynamics; predation efficiency

1. Introduction

Charonia tritonis, commonly known as the giant triton, is one of the largest marine
gastropod snails. The historical (and continuing) exploitation of the C. tritonis as a curio
throughout its full habitat range has led to a significant decline in its numbers, to the
point of it becoming rare and endangered, and localised protection has not alleviated the
problem [1,2]. As an echinoderm specialist and the primary predator of adult Crown-of-
Thorns starfish (CoTS; Acanthaster cf. solaris species complex [3,4]), its deliberate removal may
have also altered trophic interactions, triggering cascading effects on coral reef ecosystem
processes [5]. Endean’s [6] ‘predator removal hypothesis’ proposed the decline in the C.
tritonis population as a possible driver for the alarming increase in CoTS numbers (referred
to as outbreaks), a concept that is still being debated several decades later [4,6–9]. The
increase in CoTS outbreak frequency and severity continues to have a devastating impact
on coral reef ecosystems, prompting a resurgence in research and management efforts to
control CoTS numbers [10–12]. A compounding factor is the elevated reproductive success
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of CoTS and high larval survival rates, the latter augmented by the same stressors that
adversely impact coral reefs, further fueling the need to develop novel CoTS management
adaptive tools and methods [13–15]. In contrast, C. tritonis is relatively understudied, and
its role in coral reef trophodynamics is poorly understood [12].

In recent years, biocontrol methods as a strategy to mitigate CoTS outbreaks (i.e., eco-
logical goal to reduce CoTS populations to levels below damaging thresholds) on a regional
scale have gained traction [16,17]. The success of biocontrol programs relies on efficient
selection of effective natural enemies [18–24], and to achieve this, it is critical to have full
knowledge of the pest’s biology, as well as that of their natural enemies. Additionally, in
any biocontrol effort, conservation of natural enemies is a critical component and requires
knowledge not only of the predator’s effectiveness against the pest species, but also the
factors which interfere with or threaten their natural populations. As a natural indige-
nous enemy, the potential restocking of C. tritonis as a conservation intervention may also
present the opportunity to naturally control CoTS populations on selected ‘at-risk’ reefs.
The inclusion of such a strategy within a considered and complementary multi-faceted
CoTS integrated pest management (IPM) program is of interest to reef managers [17,25,26],
however, there exists many clear and evident knowledge gaps, least of all in the breeding
and rearing of juvenile C. tritonis [27] for stock enhancement.

Presented here is a comprehensive review of literature on the C. tritonis taxonomy
and morphology, biogeographical distribution, movement ecology, reproduction and
growth. The state of exploitation and the anthropogenic threats they face are evaluated, and
prospects for their captive rearing and restocking on the Great Barrier Reef (GBR; Australia)
is discussed, the intent being to assist in the effective management and protection of their
populations. Attributes suited to their use as a biocontrol agent to mitigate CoTS population
outbreaks naturally and sustainably in the long-term, are also examined in the context
of predator-prey dynamics, and recommendations to guide future research and establish
environmental management strategies, with respect to their application within an IPM
approach, are offered.

2. Taxonomy and Distinctive Characteristics

Members of Hypsogastropoda (phylum: Mollusca, class: Gastropoda, subclass: Caenogas-
tropoda) are numerically important key predators in shallow water tropical marine environ-
ments [28,29]. Within clade Caenogastropoda, the Hypsogastropoda comprises the Non-
Latrogastropoda clade corresponding largely to the former Littorinimorpha, with radula
typically having 7 teeth per row, and the Latrogastropoda clade, which includes the previously
named Neogastropoda clade and the Calyptraeoidea, Cypraeoidea, Ficoidea, Stromboidea,
Tonnoidea, and Xenophoroidea, with radula having only 1–5 teeth per row [30]. The largest
shells are associated with the Latrogastropoda superfamilies Turbinellidae (Syrinx aruanus)
and Tonnoidea, the latter having been recently updated, based on mitochondrial and nuclear
gene analysis [31], to comprise nine families: Bursidae, Cassidae, Charoniidae, Cymatiidae,
Laubierinidae, Personidae, Ranellidae, Thalassocyonidae and Tonnidae. Some species within
the Tonnidae, Cassidae, Cymatiidae and Charoniidae families are known to prey on echin-
oderms, for example: Tonna perdix, T. galea [32] and T. zonatum [33]; Cassis tuberosa [34] and
Galeodea echinophora [35]; and Charonia spp. [36–38], respectively [31]. Charonia lampas (Lin-
naeus, 1758) [30,39], previously classified into five subspecies (C. lampas capax, C. lampas lampas,
C. lampas pustulata, C. lampas rubicunda and C. lampas sauliae), is the most morphologically
variable of the Charonia genus, driven by ecophenotrypic rather than genetic variation [40,41]
(Table 1). Charonia seguenzae, having been geographically isolated in the Eastern Mediterranean
Sea and therefore split from C. variegata (Lamarck, 1816) [42], has since been reclassified as
C. variegata. C. tritonis (Linnaeus, 1758) is the largest species within the genus and the only
Charonia known to predate on CoTS.
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Table 1. Taxonomic status of the genus Charonia. Key taxonomic groups in bold, * denotes initial

subspecies. Adapted from [30,31,39].

Scheme Author(s) Status Accepted Name

Charonia lampas Linnaeus, 1758 accepted name Charonia lampas
Charonia lampas capax * Finlay, 1926 synonym Charonia lampas
Charonia capax euclioides Finlay, 1926 synonym Charonia lampas

Charonia crassa Grateloup, 1847 synonym Charonia lampas
Charonia euclia Hedley, 1914 synonym Charonia lampas

Charonia euclia instructa Iredale, 1929 synonym Charonia lampas
Charonia lampas lampas * Linnaeus, 1758 synonym Charonia lampas
Charonia lampas macilenta Kuroda & Habe, 1961 synonym Charonia lampas

Charonia (lampas) pustulata * Euthyme, 1889 synonym Charonia lampas
Charonia lampas sauliae * Reeve, 1844 synonym Charonia lampas
Charonia lampas weisbordi Gibson-Smith, 1976 synonym Charonia lampas
Charonia lampas ventricose Grateloup, 1833 Synonym Charonia lampas

Charonia mirabilis Parenzan, 1970 synonym Charonia lampas
Charonia nodifera Lamarck, 1822 synonym Charonia lampas

Charonia lampas rubicunda * Perry, 1811 synonym Charonia lampas
Charonia powelli Cotton, 1956 synonym Charonia lampas

Charonia tritonis Linnaeus, 1758 accepted name Charonia tritonis
Charonia variegata Lamarck, 1816 accepted name Charonia variegata

Charonia variegata seguenzae * Aradas & Benoit, 1870 accepted name Charonia variegata
Charonia tritonis variegata Lamarck, 1816 synonym Charonia variegata

An extraordinary adaptive radiation driven through diet and competition has seen
the morphological, physiological, behavioural and ecological diversity of the Hypsogas-
tropoda expand [43–45]. Several apomorphic forms (or derived traits) within this clade of
caenogastropods, and which are shared by Charonia spp., predominantly relate to the diges-
tive system, specifically: a distinct rectal gland, salivary glands that do not pass through
the nerve ring, tubular accessory salivary glands, possession of a 1–5 toothed radula, an
esophageal gland detached from the esophagus, an enlarged radula ventral tensor muscle
to aid sliding [28,45,46], formation of an eversible proboscis, a specialised siphon, and
repeated folding in the chemoreceptor osphradium to increase the surface area capable of
selective and acute chemical sensitivity [47]. Furthermore, they differ from herbivorous
gastropods, having complex behaviour adaptations that include searching, capture, immo-
bilization and penetration of prey, as well as an altered biochemical composition suited to
the digestion of animal tissues [47,48].

Charonia spp. are readily distinctive, having a large, tall shell measuring up to 500 mm
in length, with a pointed spire. The shell consists of a large body whorl with broad cords
within a single narrow thread filling each interspace and a pronounced flaring outer lip.
Well-developed varices are evenly spaced approximately every 270◦ around the shell, each
merging abaperturally and bearing the remnants of older outer lips. The shell is high gloss
with a contrasting colour pattern of red-brown crescentic splashes against a cream to pink
background [39]. There is no periostracum. The brown oval shaped operculum is distinct
in that it has concentric growth lines. The radula is the most distinctive non-shell feature,
consisting of a central broad tooth with a very narrow basal plate that curves downward
at the extremities and is surrounded by several narrow, elongated teeth [39]. Prominent
features of the C. tritonis shell include the presence of smooth, broad, and flattened spiral
ribs, the edge of which are wavy and puckered, and a broad, short siphonal canal with thin
folds along the columellar wall.

3. Distribution, Habitat and Abundance

Charonia spp. have an extensive geographical distribution (Figure 1A). C. lampas ranges
from the temperate waters of the Atlantic [49] to the sub-tropical waters of the Indian and
Pacific Oceans [41,50] (Figure 1A). It is commonly found in the western Mediterranean, but
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largely absent in the eastern Mediterranean [42,50]. The species has been documented in the
northern coast of Natal in South Africa, southern and eastern Australia [51,52], New Zealand,
the Chatham, Kermadec, Raoul, Norfolk and Lowe Howe Islands and around the islands
of Japan and Taiwan [53]. C. variegata (Lamarck, 1816) is distributed through the western
tropical Atlantic, the Caribbean and subtropical regions of the Mediterranean [42,50,54,55]
(Figure 1A). As a result of the late Pliocene uplift of the Isthmus of Panama C. variegata has
been geographically, and hence genetically, separated from C. tritonis.

 

Figure 1. Distribution and range of (A) the Charonia genus, coloured by species, and Acanthaster

cf. solaris [10], shown by hashed overlay, and (B) locations of reported sightings and collections of

Charonia tritonis in Australia, shown by orange dots. Adapted from [56–58].

Of all the Charonia spp., C. tritonis has the greatest distribution, extending throughout
the tropical Indo-West Pacific region [57,58] (Figure 1A). It has been documented from
central Japan [59], tropical Australia (Figure 1B), New Zealand and the Pitcairn, Cocos,
Galapagos, Easter and Hawaiian Islands [50,60,61]. Its range also extends from the Red Sea
to southern East Africa and across the islands of the Indian Ocean to western Australia [52].

Charonia tritonis inhabits hard and sandy bottoms in and around shallow water coral
reefs [62,63], although some specimens have been observed at depths of several hundred
meters [39]. They are generally considered nocturnal, and their cryptic nature (hiding in
crevices during the day) makes accurate sampling to survey population size non-trivial [64].
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With the full-length mitochondrial genome of C. lampas [65] and C. tritonis sequenced [66],
the identification of candidate sequences suitable for use as species-specific barcodes in
environmental DNA (eDNA) technology [67,68], in combination with impromptu citizen
surveys, may assist in establishing their current spatial distribution and true numbers.
Accurate mapping of their spatial co-occurrence with CoTS (Figure 1A) will also provide
some insight into their potential role in CoTS outbreaks and biocontrol.

4. Movement Ecology

Understanding movement ecology (e.g., foraging, dispersal and seasonal migration) has
proven critical to the management and conservation of several marine species [69]. Importantly,
such information underpins a species’ population distribution, which is also influenced by
seasonal phenology and predator-prey interactions [70,71]. Yet, information is scarce regarding
the habitat and home range of the C. tritonis, their fine-scale movements as they move through
their habitat, their normal (non-stressed) behaviours and how they interact with prey species
(including CoTS) in situ. Recently, modelling of acoustic array data found C. tritonis have the
capacity to move across an entire local reef [72] and are likely to be able to move between
adjacent reef systems, having been found at depth on sandy bottoms [39]. Conversely, acoustic
tagging of CoTS revealed they did not move beyond a single receiver within a linear array over
a four month deployment, moving less than 100 m [73]. If these results prove robust, the home
range of C. tritonis is well beyond that of their CoTS prey, at least on reefs in non-outbreak
status. The small home range of CoTS is likely linked to food availability, sedentary coral prey
and limited predation pressure, whereas the larger home range of C. tritonis is more likely a
consequence of their low population, mobile and cryptic prey (not just CoTS), and the need to
locate a mate. Preliminary findings [16,74] have shown the CoTS excretory secretome acts as
an attractant to C. tritonis and that CoTS exhibit a flight response to C. tritonis predator odor.
Yet, revealing the nature and role of specific excretory semiochemicals (e.g., kairomones and
pheromones) in motivating both predator and prey behaviors [75] is required to establish the
parameters that describe the full range of each animal’s behaviour and movements, as well as
their predator-prey dynamics, in the field.

The movement rates of C. tritonis and CoTS need to be considered in tandem to estab-
lish the extent to which the predator alters the behaviour of CoTS and exerts downward
pressure on the population. Based on modelling of acoustic tagging data, release of C.
tritonis on a local reef has the potential to alter CoTS behaviour in the short-term [72],
possibly forcing them to become more cryptic and forcing them take greater risk. How-
ever, it remains to be seen whether increasing C. tritonis populations (via conservation or
restocking) over the longer-term will impact local or regional CoTS populations.

5. Reproduction

Members of the Tonnoidea are always gonochoric. Female C. tritonis can pair with
multiple males during a single copulation event, the pairing lasting for several hours [76].
Copulation in captivity has been observed from August to September (Yongxing Island,
China) with egg laying approximately 130 days after [76] (Table 2). A similar gestation
period has been observed in other northern Pacific Charonia species [77], although much
shorter time periods of 30–60 and 90 days have been reported [78,79]. No seasonality was
observed in the reproduction of captive C. tritonis held for over two years at the Phuket
Marine Biological Station, Thailand [78,80], indicating the photoperiod is not necessarily
the cue for spawning. Furthermore, several species of Cymatiidae, held in captivity under
ambient conditions (i.e., without controlled lighting), were observed spawning at precisely
the same time over three consecutive years [81], giving credence to the suggestion that
water temperature is a primary determinate [82]. This has since been confirmed for C.
tritonis [25].

Detailed observations of C. tritonis reproduction, including copulation, spawning, em-
bryogenesis and hatching, have been described in detail [25,78,79,83]. Internal fertilization
represents a major innovation in the Caenogastropoda, along with encapsulation of the
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eggs, both of which provide a protected environment during early trochophore develop-
ment [28]. Briefly, the male sperm and prostatic fluid is transferred during copulation via
the penis located behind the right tentacle [81]. Fertilization takes place internally in the fe-
male [55,84,85], the inseminated sperm embedding in the non-ciliated nutrient-rich surface
cells of the pallial oviduct [81]. Under the right conditions (~26 ◦C water temperature; April
to June coinciding with the austral winter solstice photoperiod and the dry season [25])
mature eggs are discharged into the pallial oviduct where they are fertilized, producing
between 2000–2750 heavily yolked orange-coloured embryos ~360–600 µm in diameter
(Figure 2A) (Table 2). Batches of embryos are deposited into ootheca (oblong tear-dropped
shaped gelatinous capsules ~34–60 mm long and ~10 mm diameter), each containing a clear
albuminous fluid. As each individual ootheca passes from the oviduct it is cemented via
one end to a vertical (often cryptic) rocky surface [55,78,80]. The outer layer hardens upon
exposure to the seawater offering protection against biofouling, pathogens and predation.
The egg mass of 50–1000 oothecae, containing up to 1.47 × 106 eggs (Table 2) [78,80] may
take up to a week to deposit [81,86]. At the end of the breeding season both the testis and
ovary degenerate [81].

Table 2. Reproductive statistics for Charonia tritonis reported from ex situ breeding programs.

CoTS = Crown-of-Thorns starfish; PSU = practical salinity unit.

Berg (1971) [79]
Nugranad et al.

(2000) [80]
Nugranad et al.

(2001) [78]
Zhang et al. (2013)

[76]
Motti et al. (2019)

[25]

Location Oahu, USA Phuket, Thailand Phuket, Thailand
Yongxing

Island, China
Townsville,
Australia

Number of females 1 1 5 2 4

Number of males At least 1 - At least 1 At least 1 At least 2

Broodstock diet Natural diet

CoTS, Culcita
novaeguineae,

Holothuria atra
and Stichopus

chloronotus

CoTS, C.
novaeguineae, H.

atra and S.
chloronotus

CoTS and
Stichopus horrens

CoTS, Linckia sp.
and S. chloronotus

Date of
reproductive

behaviour
Oct - Year round

August–
September

March-June

Temperature of
broodstock tank

- 25.5–33.0 ◦C - -
23 ◦C (winter)–
30 ◦C (summer)

Copulation until
laying (days)

120–150 - 30–60 133 -

Duration of
spawning (days)

42–56 19 60 21–35 -

Temperature of
egg hatchery

- - - 24 ◦C 24.5 ◦C

Total capsules
spawned female−1 88+ 50 500–1000 549–602 ~400

Egg diameter (µm) 450–600 400–430 360–440 428 -

Capsule dimen-
sions, H ×

L (mm)
25 H × 9 L 17–39 H × 9–10 L 17–39 H × 9–10 L 34 H × 9 L -

Number of eggs
per capsule

- 2000–3400 2000–4400 2740–3000 ~2500

Total number of
eggs produced

- ~1.5 × 105 1.6 × 106–3.2 × 106 1.5 × 106–1.6 × 106 -
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Table 2. Cont.

Incubation
period (days)

49–56 - 35–60 55–63 52–68

Hatching success
of capsules

- 0% unfertilized 43–96% 86–96% -

Veligers
per capsule

1140–1447 - 973–1459 2046–2110 -

Total veligers
produced female−1 - -

0.26 × 106–
1.47 × 106

1.12 × 106–
1.27 × 106 ~0.8 × 106

Shell length at
hatching (µm)

768–934 - 720–925 664–700 740

Temperature of
larval rearing tank

- - - - 24.5 ◦C

Larval diet - - -

Immediately post
hatching: Isochry-
sis zhanjiangensis,

Chaetoceros muelleri
and Phaeodactylum
tricornutum (1:1:1,

2.0–3.0 × 104

cells mL−1).
Two weeks

post hatching:
formulated brine

shrimp flakes (52%
protein, 8% crude
fat, 5% crude fiber,
and 7% moisture)

at a rate of
0.3 mg L−1 every

other day.

Isochrysis galbana,
Diacronema lutheri,

Nannochlorop-
sis oceania,

Dunaliella sp.

Other conditions 32–34 PSU
34–36 PSU

0.7 veliger mL−1

Settlement None at 30 days - None at 300 days None at 140 days None at 83 days

All eggs within the ootheca have an equal chance of undergoing embryogenesis as
there are no nurse cells [81]. This post-fertilization process occurs within the egg capsule
and can take anywhere from 35 to over 60 days [25,76,78,79]. Throughout this incubation
period the female does not feed. She exhibits maternal care, using her foot muscle to clean
the outer surface of the egg capsule, thereby preventing biofouling [76,87], and physically
protect the oothecae from predation [81,88–90]. Other females in the vicinity may also
protect and care for the clutch [81,87].

C. tritonis embryos gastrulate at ~7 days post-fertilization (dpf). Trochophore develop-
ment occurs between 9–12 dpf followed by protoconch I (or embryonic shell) formation at
15–18 dpf [76]. This development phase is typified by the formation of the first two shell
whorls. As yolk reserves are depleted, there is an overall whitening of the egg capsules,
their texture becoming granular. The two eyespots develop 25 dpf (Figure 2B), the oper-
culum and foot begin to form at 29 dpf, and a larval (false) heartbeat can be detected at
~35 dpf [76]. After ~63 dpf, trochophores, having a shell length of between 664–934 µm,
emerge from the ootheca through a terminal pore [81] and enter their planktotrophic phase.
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−

 

Figure 2. The early life history stages of Charonia tritonis. (A) Adult female depositing egg capsules

in the SeaSim laboratory at AIMS (Photo: Peter Thomas-Hall, AIMS), (B) side profile of 25-day post

fertilization veliger showing yolk reserve (orange) and eye spot (black) (Photo: Tom Barker, AIMS)

and (C) front view of 14-day post hatched veliger with two eye spots visible and velum extended

(Photo: Thomas Armstrong, AIMS).

In captivity, a female C. tritonis has been observed to produce 0.26–1.47 × 106 veligers
per spawning season (Table 2). This level of fecundity, assuming it holds true for wild
breeding females, raises the question: why are C. tritonis rare in locations where they have
been actively protected by policy? The relative population densities on coral reefs of adult
gastropod species which have planktonic and planktotrophic larval development compared
to those with intracapsular development, i.e., Cypraeidae (pelagic phase 10–50 days) versus
Volutidae, is reported to be 1:10 [91]. Therefore, larval survival in Charonia spp. is likely to
be extremely low and/or their dispersal so great that settlement to any one reef, especially
the natal spawning reef, is rare [92], possibly hindering population recovery [93].

A lack of understanding of the rudimentary requirements of the C. tritonis veliger,
including information regarding the biochemical and physiological processes that regulate
adult reproduction, larval development and larval growth [25,94], have hampered attempts
to rear them in captivity. A recent de novo assembly of transcriptomes from the C. tritonis
cerebral ganglion identified 38 neuropeptide precursor genes encoding for conserved mol-
luscan neuropeptides, including several associated with reproduction [74]. Future studies
with a focus on de novo whole-genome sequencing of the C. tritonis genome and additional
transcriptomic studies targeting the functional characterisation of these conserved mol-
luscan neuropeptides are needed to decode the C. tritonis reproductive neuroendocrine
pathway [95] and better understand their social behaviour. In addition, complementary
genetic studies to maximize egg and embryo viability and survival of veliger and juveniles
are needed ([96] and references therein). For example, genomic estimated breeding values
established based on genome-wide single nucleotide polymorphisms and growth traits
(i.e., shell length, height, width, and weight, and body weight), has imparted significant
growth advantages to offspring of the commercially important freshwater triangle sail
mussel, Hyriopsis cumingii [97]. Such knowledge of C. tritonis will promote the develop-
ment of more reliable aquaculture methods to support stock enhancement and will be
especially important should it prove an important conservation biocontrol agent against
CoTS [98–101].
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6. Juvenile Growth, Development and Morphological Relationships

The veliger of Ranellidae, Cymatidae and Charoniidae, including C. tritonis, hatch at
an advanced protoconch stage I and complete their development in the water column [102].
They are teleplanic, having an extraordinarily long larval development phase capable of
dispersing across oceans [103–105]. For example, the larval duration of Fusitriton oregonensis
(Cymatiidae), from hatching to metamorphosis, can extend up to 4.5 years, the longest
teleplanic larval period recorded for any marine organism [106].

The shell length of newly hatched C. lampas veliger measures 430 µm. For C. variegata
the shell measures between 770–930 µm [79,86], with some specimens collected from the
Atlantic exceeding 5000 µm [105]. Shell length of C. tritonis veligers maintained for over
140 days [76], 164 days [25,107] (Figure 2C) and 300 days [80] all progressively increased
over time, reaching approximately 2000 µm. However, although shedding of the velar cilia
was observed, none achieved the protoconch II phase [90,104] or successfully advanced
to settlement [78], and factors such as the minimum shell size required for the transition
remain unknown.

Attainment of settlement competency relies on numerous factors including a minimum
shell size, sufficient energy reserves and the development of specific receptors and neural
connections [108,109]. Even once competency is achieved these veliger can halt growth
and limit calcification enabling them to remain planktonic and, endowed with four large
velar lobes extending up to 10 times the diameter of the larval shell length, transit oceans
[103,105,110–113] presumably until they encounter a suitable and often highly specific
settlement cue [114–119]. High density monocultures of various commercially important
molluscan bivalves, i.e., oysters, clams, scallops, etc., can be induced to settle with high
success when presented with various substrates and/or environmental chemical cues
(Table 3). Late development stage teleplanic Tonnoidea larvae captured in ocean plankton
tows have metamorphosed and settled in aquaria, with biofilms on the tank walls specu-
lated to be the source of the settlement signal [103,110]. Some gastropod juveniles start as
ectoparasites and there is direct evidence larval settlement in these species is induced by
waterborne cues from their adult (mostly sedentary algae, sponge and coral) prey [120],
although for Tonnoidea veligers there remains only indirect evidence. For example, lar-
vae of Monoplex (M. aquatilis, M. nicobaricus, and M. pilearis) and Gutturnium muricinum
(both previously Cymatium) will settle in the presence of adult tridacnid clam prey [121].
Unidentified juvenile gastropods, speculated to be those of C. tritonis, have been reported
to settle and parasitize starfish, especially Echinaster lozonicus and Linckia multifora [64].
Overall, there is only indirect evidence that Tonnoidea veligers rely on the odor of their
future prey as a settlement cue [122]. For C. tritonis the cues that induce settlement remain
elusive [25] (Table 3).

The application of -omics techniques has identified the molecular mechanisms and
settlement cues for a range of gastropod veliger [95]. Recently, reference C. tritonis tran-
scriptomes have been derived from adult tissues [37,74,148] and early life developmental
stages (embryo and veliger) [101]. A diversity of rhodopsin-like G protein-coupled recep-
tors (GPCRs), all representing candidate olfactory receptors, were located within adult
cephalic tentacles, supporting earlier studies showing C. tritonis use chemosensing to locate
CoTS prey [16,37]. In addition, several GPCR genes were identified as being unique to
veligers providing insight into the chemosensory capacity of this early life stage with
possible function in settlement. While such findings are beginning to address the knowl-
edge gaps, further investigations of C. tritonis are warranted to establish gene function,
identify candidate settlement cues and explore their possible application in aquaculture
and conservation.
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Table 3. Inducers of metamorphosis and settlement for gastropod veliger larvae (updated and

modified [123]). Species for which data is limited to only settlement in presence of live prey (i.e.,

chemical has not been identified) have been omitted here, but are listed in [123]. Cues tested for

Charonia tritonis [25] but found to be ineffective are listed as a comparision.

Species Compound
Solution/Dose/Time/

% Metamorphosis
Reference

C
on

ch
ol

ep
as

co
n

ch
ol

ep
as

Adult conspecific shells covered in barnacles Up to 4–5 days, 100% [124]

C
re

pi
du

la
fo

rn
ic

at
a

20 mM KCl 50% settlement after 30–50 min [125]
Adult conspecific conditioned water 40% settlement after 50 min [125]

Conspecific pedal mucus 25% settlement after 50 min [125]

Raise KCl to 20 mM
55%, Highest settlement in those fed Isochrysis sp.

(4 × 105 cells/larva/day)
[126]

Elevated KCl above background by
15–20 mM

50% within 4 h [127]

Tested serotonin, dopamine and FMRFamide
(10−5 M/L)

Measured whether larvae go up (serotonin) or
down (dopamine, FMRFamide) in the water

column
[128]

Dibromomethane (DBM)
90–100% metamorphosis at 5000 ppm,

combined DBM and KCl
[129]

Red algae extract, γ-aminobutyric acid
(GABA), Hydrogen peroxide

70–95% metamorphosis [130,131]

A
li

ge
r

gi
ga

s Nursery habitat sediment, KCl [132,133]
Hydrogen peroxide (H2O2) 100% at 10 h in 50 µM H2O2 [130]
Extract of Laurencia poiteaui;

Phycoerythrins and related protein conjugants
88% metamorphosis [132,134,135]

Bromomethane 90% at 600 ppm [136]

H
al

io
ti

s
di

sc
u

s
ha

n
n

ai
,H

.r
u

fe
sc

en
s

H
.d

iv
er

si
co

lo
r,

H
.a

si
n

in
a

conc KCl in normal seawater 9 mM 40% at 19 mM KCl [136]
1 × 10−6 M (final) GABA 37–99% [137]

Whole Ulva australis and U. compressa and
Amphiroa anceps and Corallina officinalis

0.05–0.1 g wet wt algae or 1 cm2 of 95% cover
rock (CCA) added to 5 mL wells in 4 mL of

seawater. CCA best (80%)
[138]

Supplemented KCl 50% in 5–10 mM KCl (supplemented) [139]
GABA 40% 10−6 M GABA [139]

KCl, GABA >40% 20 mM KCl, >75% 10−6 M GABA [140]

Biogenic amines
% metamorphosis at 10−6 M of GABA (98%),

L-glutamate (80%), L-glutamine (0%), β-alanine
(16–68%)

[141]

GABA, δ-aminovaleric
acid (5-AVA), L-glutamic acid, monosodium

glutamate (MSG)

10−1 mM 5-AVA (62% at 6 h) > 10−3 mM GABA
(58% at 72 h) > 25 mM MSG (50% at 72 h) > 10−3

mM L-glutamic acid (48% at 72 h).
[142]

10−3, 10−4, 10−5, 10−6 M GABA 10−6 M GABA at 2 days, 73% [143]
5 spp. Benthic diatoms (Navicula spp. and

Nitzschia spp.)
If fed 5 spp., at 2 days 90–94% [143]

P
he

st
il

la
si

bo
ga

e

Catecholamine precursor
L-3,4-dihydroxyphenylalanine (L-DOPA)

20–50-fold increase in dopamine and 2-fold
increase in norepinephrine production in

6–9-day larvae, treated with L-DOPA (0.01 mM
for 0.5 h) potentiated the frequency

of metamorphosis

[144]

H
er

m
is

se
n

da
cr

as
si

co
rn

is

Ectopleura crocea water soluble
secretion; GABA, choline,

serotonin, glutamate, K+, Cs+.
induces high proportion of metamorphosis [145]
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Table 3. Cont.

Species Compound
Solution/Dose/Time/

% Metamorphosis
Reference

A
da

la
ri

a
pr

ox
im

a

Presence of Electra pilosa; peptide
with low molecular
weight (<500 kDa)

[146,147]

C
ha

ro
n

ia
tr

it
on

is

Adult conspecific
5000 L tank with adult conspecific, >10,000

veliger, 0%

[25]

Adult conspecific conditioned water
45 L tank conditioned for 12 h with adult female

conspecific, ~2000 veliger, 12 h, 0%

Conspecific intracapsular fluid
6-well plates; 6 veliger per well, 20 µL

intracapsular fluid added to each well, 12 h, 0%

Adult prey 45 L tank, adult CoTS, ~2000 veliger, 12 h 0%

Adult prey conditioned water
45 L tank conditioned for 12 h with adult CoTS,

~2000 veliger, 12 h, 0%

Adult prey mucous
6-well plates; 6 veliger per well, 20 µL CoTS

mucous added to each well, 12 h, 0%

Juvenile prey
500 mL tank, 10× juvenile CoTS, ~2000 veliger,

12 h, 0%

Environmental cue: crustose
coralline algae (CCA)

6-well plates; 6 veliger per well, CCA chip, 24 h,
0%

Environmental cue: CCA methanolic extract
6-well plates; 6 veliger per well, 5, 10 µL mL−1,

12 h, 0%

Sediment (1–1000 µm) from aquaria (live rock,
coral, macroalgae, assemblage of other reef

organisms)
500 mL tank, ~2000 veliger, 12 h, 0%

Filtered (60 µm mesh) sediment from aquaria
(live rock, coral, macroalgae, assemblage of

other reef organisms)
500 mL tank, ~2000 veliger, 12 h, 0%

Multivitamin
500 mL roller tank, ~2000 veliger, 0.05

multivitamin capsule, 12 h, 0%

KCl 500 mL tank, ~2000 veliger, 10, 20 mM, 12 h, 0%

Synthetic peptides: Serotonin, GLW-amide,
WW-amide, APGW-amide, FRMF-amide,

sCAP-amide, FF-amide, FF-amide 2, FV-amide,
ADRYSFFGGL, Allotropin, Cerebrin,

Conopressin, Myomodulin, KPGW-amide,
GnRH, Egg laying hormone, Dopamine,

L-DOPA

6-well plates; 6 veliger per well, 10 µM mL−1,
12 h, 0%

The post-settlement biology, including juvenile growth rates, of some marine gas-
tropods is understood. In newly settled juvenile Cabestana spengleri (Tonnoidea: Cymati-
idae), growth rates have been estimated at 0.3 mm (shell length) day−1 and C. muricinum
at 0.3–0.4 mm day−1 [149,150]. In contrast, the growth rate of recently settled juvenile G.
muricinum, M. aquatilis and M. pilearis (Tonnoidea: Cymatiidae) is much higher, averag-
ing 0.6–0.7 mm day−1 for an extended period up to 6 weeks, the highest rates reaching
0.8–0.9 mm day−1 [121]. Such high growth rates, coupled with an abundance of food, allow
these tritons to achieve formation of the first varix, e.g., within 33 days of settlement for
G. muricinum and between 50–57 days for M. aquatilis and M. pilearis [121]. Reaching this
life stage is critical for reducing vulnerability to predators [151], but the factors that govern
this transition remain a significant knowledge gap in the life cycle of C. tritonis. Similarly,
adult growth rates are unreported [151].
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7. Management of Charonia tritonis

7.1. Threats to Population Recovery

Throughout their habitat range Charonia spp., including C. tritonis, are considered un-
common, rare or with seriously depleted populations approaching extirpation [2,57,152,153].
Unregulated harvesting of C. lampas and C. variegata has severely impacted numbers in the
Mediterranean Sea [154–156]. Similarly, in the 1950s C. tritonis were regularly observed in the
Atlantic and Caribbean, but are now reported to be uncommon to rare throughout [55,157].
Anecdotal evidence indicates that C. tritonis were abundant on the GBR prior to incidental
collection in the 1930s [6]. Between 1947 and 1960, income from commercial harvesting of
Bêche-de-mer (sea cucumber) and Rochia spp. (a top-shelled sea snail commonly known as
Trochus) in northern Australia was supplemented with C. tritonis, with anecdotal records
indicating over 800 C. tritonis shells were collected from Cooktown to Palm Island in a sin-
gle trip [8]. Based on these records, an estimated 10,000 C. tritonis shells were collected
annually [8] and by the 1970s they were considered uncommon [7]. Trade statistics of orna-
mental shell collections and sales reveal there was a considerable increase in the volume of
C. tritonis shells traded in the 1970s along with a further depletion of their populations on
harvested reefs [9,158,159]. However, as insufficient scientific data exists for harvesting or
trade figures, it is difficult to accurately determine whether their rarity today is a result of
overexploitation alone.

Between 1966 and 1972, dive surveys conducted on over 130 GBR reefs located only
78 C. tritonis [160]. Another study surveying the reefs between Princess Charlotte Bay and
the Palm Islands and spanning two years (1966–1968) only found 28 C. tritonis [6]. By the
late 1980s, as part of the program to cull CoTS on the GBR, 30 divers making 90 dives over
2 weeks were successful in locating only 12 individuals [161]. Furthermore, a population
density of <1 C. tritonis per km2 was extrapolated based on a 12 month survey (430 h diving
time; 1993 to 1994) of 12 GBR reefs between Port Douglas and Airlie Beach [162]. By 2016,
divers of the ‘Targeted Crown-of-thorns Starfish Control Program’ reported sighting, on
average, one C. tritonis triton per 10 day CoTS culling trip [163]. Similar anecdotal evidence
extends to other countries. In the 1960s, local Tongan fisherman regularly collected up to
seven C. tritonis per day, whereas by 1993, and despite a bounty, none were located over a
two-month period [162]. During a 6-month survey of Guam reefs, divers sighted only seven
C. tritonis [164]. Despite the Thailand Tropical Marine Mollusc Programme [165] listing
C. tritonis as a ‘target’ species of interest, only three specimens were procured between
1997–1998. Such anecdotal evidence within the grey literature suggests extreme rarity, and
at such low population densities, and as a dioecious species, the probability of encountering
a mate and successful reproduction may be severely limited, even after the introduction of
marine protected areas [166], as has been the case for the endangered Caribbean Queen
conch, Aliger (formerly Strombus) gigas [167,168]. However, it should be noted that the
cryptic and nocturnal nature of C. tritonis may impede visual counts during daylight hours
and result in underestimated population estimates.

Chesher [164] hypothesized that the reduction in the standing stock of C. tritonis
associated with over-harvesting might have been sufficient at the time for CoTS populations
to rise above a critical minimum leading to conditions conducive to outbreaks. Modelling
studies have since predicted that in higher numbers C. tritonis may suppress CoTS numbers
and potentially limit population outbreaks [169–171], yet these models suffer from a lack of
verified or adequate information describing the predator-prey dynamics between C. tritonis
and CoTS [172] and rely on best guestimates of previous and current C. tritonis populations.

Collection of C. tritonis has been prohibited in Australia since 1983 [173], although illegal
poaching has been reported on the GBR. In addition, as a demonstration of latent demand, C.
tritonis shells have continued to be imported annually into Australia (David Savage, QNPWS
pers. comm. in [162]) and more recently traded over the internet [174]. To secure its future, a
proposal was submitted in 1993 to include C. tritonis on the CITES Appendix II list as a species
that may become threatened or extinct unless trade is closely controlled. This proposal was
unsuccessful due primarily to the lack of evidence on its biological and trade status, i.e., the
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Berne criteria for listing could not be met [175–177]. Regardless, and independent of interna-
tional agreement, many Indo-Pacific countries have banned the collection or exportation of
C. tritonis: Australia (1969), India (1972), Seychelles (1969/1978), Fiji (1971), Indonesia (1987)
and Philippines (2001). Other countries and jurisdictions, including Guam, Vanuatu and
Kenya, have regulated collection [2,9,153–156,178–182], yet several Charonia spp. continue to
be illegally traded in large volumes [2,183,184]. In countries where collection is not banned, C.
tritonis are deemed to be locally extinct or extremely rare, i.e., Thailand [57].

With C. tritonis now protected on the GBR, the presumption is that populations
are slowly returning to pre-1960 levels yet predicting population recovery timeframes is
challenging as little is known of the natural pressures they face. In the Caribbean, predation
on C. variegata by rays (Aetobatus sp.) and turtles (Caretta caretta and Eretmochelys imbricata)
has been observed, these predators crushing the shells [55]. Groups of moribund and dead
C. variegata were also observed; their opercula found near their intact shells with no obvious
cause of death, although Octopus sp. was ruminated [55]. Living and dead shells have been
observed to be badly pitted by bioeroding boring sponges of the genus Cliona [55,185], and
X-ray has revealed the extent of internal damage sustained by larger (presumably older)
specimens [185]. While such infestations have been observed in other gastropods [186]
and found to be responsible for extensive shell damage in larger C. tritonis shells it is not
known whether they cause mortality. Aside from these natural pressures, anthropogenic
and environmental stressors present a real and continuing threat to all C. tritonis life stages:
eggs [187], larval development [188,189], larval diet [190], adult growth [191], shell [192,193]
and predator-prey interactions [194]. The cumulative impacts of these, together with the
shell still being highly coveted by collectors and the long planktotrophic development
phase, may slow recovery to a point where C. tritonis numbers will never be naturally
restored. A genetic study of Columbella adansoni (Family Columbellidae), which also has
planktotrophic development, revealed no phylogeographic structure, low interpopulational
variance, low genetic diversity and a lack of spatial structure in the distribution of the
genetic diversity confirming pelagic larval dispersal to be a critical factor driving high
genetic connectivity [195]. Similarly, pelagic larval dispersal was established as the primary
factor driving the high level of genetic connectivity in Talisman scrobilator (Family Bursidae)
over vast distances and throughout its habitat [196]. Unfortunately, no such data is available
for C. tritonis. Targeted conventional and eDNA surveys, in combination with population
connectivity studies and further research into the planktotrophic and juvenile life phases,
are essential to assess the gene flow between local and regional C. tritonis populations
and determine the influence of pelagic larval dispersal. Revealing the pattern of genetic
connectivity in C. tritonis is highly relevant for its conservation and is particularly important
if the population is reliant on the influx of planktotrophic larvae from regions where the
shell continues to be overexploited.

7.2. Aquaculture and Stock Enhancement Potential

Food security and pharmaceutical biodiscovery has driven the development of aqua-
culture programs for over 36 marine gastropods (Table 4), including several endangered
species [122,197–201]. Some of these programs have also been instrumental in species’ con-
servation. For example, native populations of A. gigas have been severely depleted through-
out the Caribbean to the point of being threatened and several aquaculture programs to
restock these for commercial harvesting have now been established [135,166,199,202–206].
Similarly, wild populations of Rochia nilotica in Vanuatu and Vietnam have been successfully
replenished through captive breeding [207,208]. More recently, Ostrea lurida aquaculture
programs have been established along the west coast of North America, with the primary
aim being conservation of the species and recovery of locally extinct communities to restore
ecosystem functions; harvesting being a secondary (i.e., future) consideration [209].
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Table 4. Marine mollusks which are produced at commercial scale through aquaculture. Modified

from [210,211]. c carnivore, h herbivore, d detritivore, f filter feeder, * conservation achieved.

Group Species

Bivalvia (44)

Oysters d/f Ostrea edulis, O. chilensis, O. conchaphila, Magallana gigas, Crassostrea virginica, Saccostrea glomerata

Mussels d/f Mytilus edulis, M. galloprovincialis, M. chilensis, Perna canaliculus, Anodonta cygnea, Aulacomya atra,
Choromytilus chorus, Modiolus spp.

Scallops d/f Mizuhopecten yessoensis, Aequipecten opercularis, A. (Agropecten) irradians, Argopecten purpuratus,
Mimachlamys varia, Pecten maximus

Clams d/f Mercenaria mercenaria, Corbicula fluminea, Anadara broughtonii, Cyclina sinensis, Venus verrucosa, Donax
spp., Mya arenaria, Leukoma staminea, Saxidomus gigantea, Tresus nuttallii

Carpet shells d/f Ruditapes decussatus, Ruditapes philippinarum, Venerupis corrugata, Polititapes rhomboides

Razor clams d/f Sinomovacula spp., Ensis ensis, Panopea abrupta

Cockles d/f Tegillarca granosa, Cerastoderma edule, Cardiidae

Pen shell clams d/f Atrina spp.

Gastropoda (+5)

Snails
Rapana spp. c, Babylonia spp. d/c, Buccinum undatum c, Aliger gigas d/h,*, Strombus pugilis d/h, Rochia

nilotica h,*, Stromboidea h/d

Abalone h Haliotis rufescens, H. discus, H. tuberculata

Cephalopoda (1)

Octopus c Octopus spp.

There are four critical biological stages which require optimization for successful
gastropod aquaculture: (1) broodstock procurement, (2) seed (egg and larvae) production,
(3) juvenile nursery culture, and (4) sub-adult grow-out to commercial size. However,
almost all successful aquaculture programs involve species that are easily collected, spawn
year-round, and have lecithotrophic non-feeding larvae that hatch, settle within days,
and quickly transition to herbivorous juveniles achieving a minimum market size in
2–3 years [211–216].

Adult C. tritonis are rare in the wild, yet they can be collected in sufficient numbers
(typically under permit) to establish a broodstock population [25,76,78,217]. Broodstock will
breed spontaneously in captivity, with both fertilization and larval hatching readily achieved
(Table 2). However, the husbandry requirements of the planktotrophic larvae are substantial,
and reliant on suitably nutritional adult and larval diets, the latter typically a cocktail of phyto-
and zooplankton [218,219]. Aquaria-reared C. tritonis veliger will actively hunt and ingest
mixed microalgae, copepod nauplii and adults, artemia nauplii and adult rotifers [25], yet this
diet was found to be deficient or suboptimal. Veliger survived for up to 300 days but there
was no evidence of larval growth, development or settlement. C. lampas veliger fed a diet of
diatom and Artemia salina survived for 21 days [156]. C. lampas (sauliae) fed Chaetoceros simplex
var. calcitrans, Isochrysis galbana, and Diacronema lutheri achieved the highest larval survival
rate (23% at 15 ◦C) and shell growth (408 ± 21.52 µm to 625 ± 19.76 µm) over 60 days [220]. In
this instance, significant increases in larval survival and growth rates were also achieved when
the broodstock (i.e., parental) diet included the preferred starfish prey, Asterias amurensis [221].
Marine larvae, including the planktotrophic larvae of many gastropod species [133,135],
rely on a hierarchy of environmental sensory cues to locate suitable settlement sites and
initiate metamorphosis (Table 3) [222–224]. The critical challenge in rearing C. tritonis for
stock enhancement remains the identification of these chemical cues (likely mediated by
chemosensory receptors [94]) that trigger the cascade of intercellular signaling events and
induce metamorphosis and settlement.
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Comparative transcriptomic, proteomic and metabolomic (i.e., multi-omics) tech-
niques have proven critical to revealing the underlying molecular mechanisms that regulate
hatching, growth, settlement and metamorphosis of commercially and scientifically impor-
tant molluscan larvae [95], including Aplysia, Biomphalaria, Haliotis, Cornu, Lottia, Lymnaea
and Aliger [225–228]. Proteomic, transcriptomic and associated expression profiling studies
of A. gigas have provided significant insight into the reproductive mechanisms and genetic
factors that underpin successful spawning in wild populations [226,229]. Furthermore,
microsatellite analysis of Caribbean populations separated by 600 km found they were not
panmictic (i.e., having limited gene flow) even though the veliger are capable of remaining
in the plankton for up to two months and susceptible to environmental factors that promote
larval dispersal. Overall, a global deficit of gene heterozygosity was detected, with only
four stock populations identified, a finding that led to a reassessment of both local and
regional management and conservation efforts [227]. Mitogenomic and transcriptomic re-
sources, based on both larval and adult life stages, have been established for C. tritonis and
are now revealing information regarding reproduction, and larval development, growth,
and competency [37,66,74,94]. However, sequencing the complete nuclear genome and
establishing genetic connectivity and diversity of C. tritonis is essential for identifying criti-
cal stock populations to guide local and/or regional conservation efforts, and to develop
species-specific aquaculture methodologies for potential stock enhancement.

8. Predator-Prey Dynamics—Charonia tritonis and CoTS

8.1. Direct Interactions

As pivotal as agents of natural selection, predators drive rapid evolution of key sur-
vival behaviors, defensive morphologies and chemical defenses in prey [230,231]. However,
despite the various anti-predatory attributes of CoTS (reviewed in [232]) approximately
14 invertebrate and vertebrate species have been observed to hunt, attack or consume live
adult CoTS [4,10,233,234] (Table 5). These predators are mostly generalized feeders and
not obligate to CoTS, many preying on injured CoTS or autotomized tissues rather than
healthy individuals [10,235].

Table 5. Predators observed to prey on healthy live juvenile, sub-adult and adult Crown-of-Thorns

starfish. Modified from [4].

Taxa (Class) Species Reference

Anthozoa
Stoichactis sp.

Paracorynactis hoplites
Pseudocorynactis sp.

[164,233,236,237]

Polychaeta Pherecardia striata [235,238]

Gastropoda Charonia tritonis [239–242]

Malacostraca
Hymenocera picta

Tumidodromia dormia
[235,242–244]

Actinopterygii

Epinephelus lanceolatus
Lethrinus spp.

Cheilinus undulatus
Arothron hispidus, A. stellatus

A. nigropunctatus
Balistoides viridescens

Pseudobalistes flavimarginatus

[10,164,239,241,245–251]

Although there is limited literature available documenting in situ predation by C. tritonis
(reviewed by [4]), they have been observed by divers to hunt and feed on CoTS [7,239]. In
addition, early field studies reported C. tritonis actively seeking and attacking caged CoTS [6].
Preferential predation of CoTS by C. tritonis was observed on Grubb and John Brewer reefs
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even though Linckia laevigata (blue star) was also abundant [161]. Recently, opportunistic
surveys in 2020 have photographed C. tritonis feeding on adult CoTS (Figure 3).

 

α
β β

Figure 3. Observations of Charonia tritonis feeding on Crown-of-Thorns starfish (CoTS). (A) Horseshoe

Reef, remnants of CoTS limbs evident (Photograph: Kate Osbourne, AIMS Voyage 27, 4 October 2018)

and (B) Llewellyn Reef, 9 m, ~30 cm shell length [252]; Photograph: crew of Escape GBRMPA Voyage

43, 30 September 2020).

8.2. Hunting

Many species of Tonnoidea are specialist predators [33,35]. They are distinct from
grazers, having a siphonal canal located within the anterior lip of the shell; the pallial
mantle margin folds to fit the lip and directs inhalant water current to a highly developed
osphradium containing chemoreceptors capable of detecting prey odors [253]. They also
have a long pleurembolic proboscis that has been adapted to deliver, via insertion, toxins
and acidic pH 2.0 saliva that are discharged from associated glands [33,254]. Such attacks
can cause almost instant immobilization of prey and death, while for some marine gas-
tropods the function of the proboscis is to activate parasitism, as is the case for G. muricinum
preying on tridacnid clams [121].

Charonia tritonis primarily hunts at night. When hunting prey, they randomly sweep
their tentacles from side to side. Upon detection of prey odor, this sweeping motion
intensifies, and as the odor gradient strengthens, their velocity increases and movement
becomes directional [16,37,55]. When in close proximity, the fully extended proboscis (up
to 400 mm) perforates the outer skin of the prey targeting its central disc. Rapid paralysis
is induced by injection with either a toxin or acidic saliva [55,255,256]. Once paralysed,
the prey is held firm by the large muscular foot, after which it is completely enveloped
in a thick mucus allowing the radula to rasp the CoTS, rendering the thorny outer skin
ineffectual. CoTS secrete toxic hemolytic saponins [257–259] and other toxins into the water
column [37] as a chemical defense [260–262] and this mucus likely functions to prevent
entry of this toxic cocktail into mantle cavity where it could potentially cause damage to
the delicate filaments of the monopectinate ctenidium.

Asterosaponins produced by many species of starfish act aposematically as a signal
of unpalatability to potential predatory fish, [263–267], annelids, mollusks, arthropods
and vertebrates [257,268–270]. Ultimately, they can prove lethal [262,267,271]. C. tritonis,
however, are immune to these toxic saponins, readily feeding on live adult CoTS [37].
This immunity may arise from glycosidases. In the liver of C. lampas, the glycosidases α-
fucosidase, β-xylosidase and β-glucosidase breakdown the asterosaponins by cleaving off
the oligosaccharide chain to yield the free non-toxic sterol [272,273]. The sulfur scavenging
enzyme arylsulfatase, which is capable of catalysing the breakdown of sulphated saponins,
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has also been detected in the salivary glands of C. tritonis [37]. This finding supports earlier
studies of C. tritonis tissues, whereby the principal sterols of CoTS: ∆

7-sterols (34.4% of
total sterols), 24-methylcholest-7-enol (15.5%), cholest-7-enol (5.4%), 24-methylcholest-7,22-
dienol (6.7%) and acansterol (4.9%) [274], were isolated in significant amounts. Together,
these chemical investigations provide indirect evidence for the dietary preference of C.
tritonis, i.e., asteroids and specifically CoTS.

Not all attacks by C. tritonis on CoTS are immediately fatal. CoTS can autotomize the
injured arm(s) and later regenerate them [38,64,164], yet observations in captivity have
revealed many individuals that initially survive an incomplete C. tritonis attack ultimately
perish if the proboscis has penetrated the outer skin [185].

8.3. Prey Preference

Prey preference is generally explained based on random encounter rates and capture
success, with deviations from this indicative of selective predation. For many gastropods,
simple encounter rates often fail to account for prey selection indicating they make be-
havioural diet selections [253,275,276]. For example, C. (rubicunda) lampas preys on the most
abundant echinoderm within its habitat, but when offered a choice shows a preference
for the asteroids Patiriella regularis and Coscinasterias calamaria [36]. This prey selection
is linked to the well-developed chemosensory organs of the Tonnoidea, which enables
them to discriminate between prey species and guide hunting. In a controlled aquarium
experiment, C. (rubicunda) lampas exposed to odor from prey items placed in an upstream
current respond with hunting behaviour [36]. Similarly, Y-maze aquarium experiments
have shown that waterborne odors released by CoTS attract C. tritonis [37,217]. In exper-
imental aquaria, predators are often maintained on a limited diet and may well become
impacted by ‘ingestive conditioning’, hence extrapolation of results from controlled prey
preference experiments is fraught with ambiguity [253,277,278]. A further consideration is
the ability of predators to undergo dietary switching dependent on the abundance of the
preferred prey species. When abundance is high relative to other prey species the number
of attacks on and the percent mortality of the preferred prey species is disproportionately
large, and disproportionately small when the prey species is relatively rare [279]. Whether
this phenomenon influences the feeding preferences of C. tritonis remains to be established.

The natural diet of Charonia spp. is reported to be predominantly asteroids, followed by
holothurians and, to a lesser extent, echinoids [36,55,280,281]. For C. lampas, its distribution
in the Mediterranean is partially controlled by that of its prey Holothuria forshali and
Paracentrotus lividus [282,283]. In New Zealand, C. lampas preferentially preys upon the
most common and largest echinoderm in its habitat, P. regularis [36]. C. lampas presented
with meal derived from 15 different species, revealed a preference for asteroid > holothurian
> fish > crustacean > other species [284]. A similar preference gradient was observed in C.
lampas presented with live prey over 30 days: asteroids > holothurian > echinoids, with no
predation on mollusks [136]. Based on these findings C. lampas was identified as a possible
biocontrol agent for the predatory starfish Asterias amurensis threatening the security of
economically important shellfish fisheries.

Early reports of predation by C. tritonis indicated a preference for Nardoa sp. [6],
although they were also observed to prey on Stichopus sp., L. laevigata [36] and sub-adult and
adult CoTS [7]. This was supported by caged experiments whereby C. tritonis was observed
preferentially feeding on asteroids other than CoTS if given a choice [239]. Regardless, C.
tritonis (n = 15) held in a fenced enclosure with 100 adult CoTS over three months consumed
1.5 CoTS week−1 [6]. In another study, two C. tritonis consumed ten small and three large
CoTS month−1 [285,286]. Given infested reefs have higher number of CoTS, and that C.
tritonis would presumably consume whichever echinoderm species they first encounter,
these studies suggest they would feed more so on CoTS. Observations of C. tritonis feeding
preferences in the laboratory confirm they favor asteroids, yet the preferred species appears
to vary. When presented with live asteroids (CoTS, Culcita novaeguineae and Echinaster),
echinoid (Diadema setosum) and holothurians (Holothuria atra and Stichopus chloronotus) [80],
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a single adult C. tritonis, maintained in captivity for 2 years, preferentially hunted and
consumed CoTS, while C. novaeguineae were only partially consumed. Both H. atra and S.
chloronotus were also readily consumed, however, they induced symptoms of anesthesia
in C. tritonis post-feeding [80]. When offered both CoTS and Linckia in equal numbers, C.
tritonis attacked and consumed all CoTS entirely within 12 h of being introduced, whereas
some Linckia remained untouched, suggesting a dietary preference for CoTS [161]. C.
tritonis broodstock have been successfully maintained on CoTS, C. novaeguineae, H. atra, S.
chloronotus [78] and Stichopus horrens [76]. Hunting behaviour was initiated 83% of the time
for CoTS, 57% for C. novaeguineae and 24% for both H. atra and S. chloronotus. CoTS were
completely devoured while the other three species were either very slowly or only partially
consumed [78]. Charonia tritonis, fed solely on CoTS, have been observed to complete
the entire hunt, attack and consumption of an adult CoTS within 4 h to 24 h [37]. Recent
citizen science surveys of C. tritonis have observed feeding on CoTS, Linckia sp. and C.
novaeguineae [252].

CoTS not only exhibit a strong predator avoidance reaction when in direct physical
contact with C. tritonis [161], they also display a rapid fleeing response when exposed
to C. tritonis-conditioned water; CoTS will actively move away from the source of the C.
tritonis odor [16]. This chemosensory-driven escape response provides further evidence for
CoTS as the preferred prey of C. tritonis and also supports earlier sightings of C. tritonis on
CoTS infested reefs, feeding predominately on CoTS [6]. However, to determine the true
potential of C. tritonis as a CoTS biocontrol agent, there remains a need to establish its full
feeding spectrum and prey preference, as well as the ‘attractiveness’ of these alternate prey
species to C. tritonis, through both physical presence and choice experiments. Furthermore,
to predict the extent of collateral damage to non-CoTS prey populations, the proximity
deterrence effects of physical presence (i.e., hunting and consumption) and/or odor (i.e.,
non-consumptive) of C. tritonis on the behaviour and mortality of these species needs to be
established.

8.4. Indirect Interactions

Prey population density is generally directly mediated by the predator via kill and
consumption rates [287]. This process is often referred to as a density-mediated indirect
interaction (DMII) and can impact on prey resources as well as other non-prey species
[288–298]. In Trinidad, C. variegata have been observed hunting in pairs, methodically
herding and attacking aggregated spawning Echinaster sentus. Individual prey was only
partially consumed before the pair resumed hunting and feeding on yet more individuals.
This DMII thereby exerted downward pressure on the entire E. sentus population [55]). The
removal (either unintentional or deliberate) of such marine benthic predators can influence
not only the population density of the predominate prey, but also lead to downstream
effects on the broader benthic community [299]. The lack of accurate surveys of C. tritonis on
the GBR pre- and post-exploitation makes it difficult to assess whether this same knock-on
effect is a driver for the increased frequency and intensity of CoTS outbreaks.

The mere presence of predators in a community can have significant influence on
prey, forcing them to modify their condition (i.e., alter a trait), including phenotype (body
shape, armor and size), behaviour (refuge seeking), and physiology (chemical defenses),
a process referred to as a trait-mediated indirect interaction (TMII) [300–311], regardless
whether or not they consume prey items [312–316]. In essence, while modifying traits
minimizes risk of predation, they may inadvertently result in sub-optimal performance of
the prey, i.e., slowing and/or delaying growth and maturity [317]. In aquatic ecosystems,
non-consumptive TMII effects generally exceed DMII consumptive effects [318,319]. Risk
perception by prey, such as that displayed by CoTS in the presence of C. tritonis, therefore
plays a dominant role in marine trophic interactions, both temporally and spatially, and
influences ecosystem stability [319–323].

Quantitative data supporting the ecosystem-wide impacts of TMIIs induced specifi-
cally by waterborne predator signals has been reported [231,294,317,324]. These chemically
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mediated phenomena, referred to anecdotally as ‘landscapes of fear’ [312,319,325], are find-
ing application in biocontrol strategies [317,326] including in the marine environment [327].
Regarding CoTS, when exposed to the waterborne chemical odor of C. tritonis, represent-
ing a short-lived but unpredictable high-risk situation [328–332], they exhibit predator
avoidance behaviour [16]. The intensity, persistence [333,334], scale and direction [335,336]
of the odor source provides prey with crucial information on immediate risk [337–340]
and determines the predator’s zone of impact. Furthermore, chemoreceptor sensitivity
and specificity is critical if the prey to discriminate such signals [341]. In this context,
novel CoTS control technologies are being developed to exploit this predator avoidance
behaviour [16,17].

8.5. Attributes of a CoTS Biocontrol Agent

Biocontrol is the use of natural enemies to control pest species [342] and has been
considered in the context of the marine environment. However, strategies used, especially
the choice of predator, the practicality of implementation, and the scale of the effect required
are serious issues that need to be overcome to effectively control marine pest species,
particularly mobile ones such as CoTS [327,343].

Effective biocontrol agents generally have three attributes: prey specificity, a reproduc-
tive rate similar to that of the pest species, and capacity to thrive in the prey’s habitat [344].
Similarly, their implementation is usually via three main routes: classical, augmentation
and conservation. However, Atalah et al. [327] has warned that “classical biocontrol based
on the deliberate introduction of non-indigenous agents has a high risk of leading to ad-
verse non-target effects in marine environments and cannot be justified”. Augmentative
inundation strategies, which involve the periodic release of a natural enemy without es-
tablishing a permanent predator population, are more amenable to marine environments,
while conservation strategies, which are more complex to implement, are considered the
most acceptable and truly sustainable approach [24]. C. tritonis, being an indigenous species
and a specialist predator of CoTS in their native range, is suited to the latter two strategies
and deserves further investigation. For example, current (laboratory-derived) knowledge
indicates the net predatory effect of C. tritonis on CoTS is largely due to (non-lethal) TMIIs,
yet because of their overexploitation it is not known to what extent they would also con-
tribute to DMII should their population be returned to pre-exploitation numbers, although
their status as a primary predator of the adult CoTS (e.g., targeted hunting and lethal
consumption) suggests this is likely.

CoTS outbreaks represent a unique problem with respect to their pest status. CoTS
are naturally endemic to the Indo-Pacific and play a beneficial role in promoting coral
diversity. As such, efforts to control them are not focused on eradication, as is the case in
most pest control programs, but rather suppression of populations. Although the drivers
of CoTS outbreaks are still highly debated, the release of predation pressure because of
over-exploitation of predators [345] means the implementation of augmentative inunda-
tion and conservation biocontrol strategies are likely to offer a sustainable approach to
suppress CoTS populations in the longer term with the added advantage of restoring C.
tritonis populations.

Gastropod species have been used, with varying degrees of success, as biocontrol
agents (Table 6). Of note are the two predatory marine gastropods Conus textile and
Babylonia areolata. Both have been investigated for their potential as biocontrol agents for
M. pilearis, a gastropod snail that feeds on the commercially important oyster Pinctada
fucata [346,347], and found to be effective agents in reducing predation on the oyster.
Most recently, the presence of Vasula deltoidea has been shown to significantly reduce
Coralliophila galea corallivory and thus improve Acropora cervicornis survival [348]. As for
these gastropods, C. tritonis possesses many of the biological and ecological traits required
for a biocontrol agent (Table 7) and their potential to limit population outbreaks of CoTS
is further supported by modelling and tracking studies [72,169–171]. Yet, lessons learnt
from unsuccessful campaigns, such as that of Euglandina rosea which preferentially hunts
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the native Achatinella lila over the invasive target pest Lissachatina fulica [349], need to be
considered for C. tritonis to understand the likely impact to non-target endemic echinoderm
species and the ecosystem as a whole.

Table 6. Gastropods deployed as biocontrol agents. Modified from [350], see references therein.

Updated entries are individually referenced. * denotes marine species, ** freshwater species.

Species

Target of Control;
(N) = Unsuccessful,

(Y) = Moderate Success,
(P) = Potential

Genome of Gastropod Mitogenome of Gastropod

Babylonia areolata *
Monoplex pilearis (Y)
[346]—mitogenome

reported [351]
No Yes [352]

Conus textile * Monoplex pilearis (Y) [346] No Yes [353]

Edentulina affinis
Lissachatina fulica

(N)—mitogenome
reported [354]

No No

Edentulina obesa bulimiformis Lissachatina fulica (N) No No

Euglandina rosea
Lissachatina fulica (N), Cornu
aspersum (N), Otala lactea (N),

Rumina decollata (N), Slugs (N)
No No

Tayloria kibweziensis
Lissachatina fulica (N), Cornu
aspersum (N), Otala lactea (N),

Rumina decollata (N), Slugs (N)
No No

Tayloria quadrilateralis Lissachatina fulica (N) No No

Gonaxis vulcani Lissachatina fulica (N) No No

Gulella bicolor
Lissachatina fulica (N), Subulina

octona (N)
No No

Gulella wahlbergi Lissachatina fulica (N) No No

Marisa cornuarietis **

Freshwater weeds and snail
vectors of schistosomes;

Biomphalaria glabrata,
Biomphalaria pfeifferi, Bulinus

tropicus, Bulinus truncatus,
Hydrilla verticillata, Eichhornia

crassipes (Y)

No Yes [355]

Melanoides tuberculata **

Biomphalaria glabrata,
Biomphalaria straminea,
Biomphalaria havanensis,
Biomphalaria peregrina,

Biomphalaria helophia (N)

No No

Natalina cafra
Lissachatina fulica (N), Otala

lactea (N), Rumina decollata (N),
Slugs (N)

No No

Oleacina straminea Lissachatina fulica (N) No No

Pomacea glauca **
Biomphalaria glabrata (N), Pistia

stratiotes (N)
No; available for P. canaliculata

No; available for P.
canaliculata, P. diffusa & P.

maculata [356–359]
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Table 6. Cont.

Species

Target of Control;
(N) = Unsuccessful,

(Y) = Moderate Success,
(P) = Potential

Genome of Gastropod Mitogenome of Gastropod

Ptychotrema walikalense Lissachatina fulica (N) No No

Rumina decollata Cornu aspersum (N) No No

Salasiella sp. Lissachatina fulica (N) No No

Streptaxis contusus Lissachatina fulica (N) No No

Tarebia granifera **
Biomphalaria havanensis,
Biomphalaria peregrina,

Biomphalaria helophila (N)
No No

Vasula deltoidea *
Coralliophila galea (Y), [348], C.

abbreviata (P) [360]
No No

Table 7. Summary of characteristics of Charonia tritonis and amenability to Crown-of-Thorns Starfish

(CoTS) biocontrol. Concept modified from [361]. Prey specificity, predation efficiency, lifespan, and

secretion of the ‘landscape of fear’ feature as key attributes. Amenability is ranked as limited (+),

likely (++) and certain (+++).

Characteristic Definition Charonia tritonis Ranking

Narrow host range [362,363]
Generalized predators; preference for the
target pest population in the presence of

alternate natural prey

Echinoderm specialists; preference for
CoTS over other

echinoderms not established
++

Climatic adaptability
[364]

Adaptability to the introduced
environment, including

to environmental extremes
Endemic to GBR +++

Synchrony with prey life cycle
[365]

Should be present when the CoTS
juveniles first emerge.

Long-lived; likely decades—unconfirmed +++

Self-replicating capacity; High
reproductive potential with large

numbers of offspring.

lays large clusters of capsules—2000
larvae per capsule

++

Population growth rates; teleplanic
long-lived oceanic larval phase

Likely slow—unconfirmed +

More than one generation is completed for
each generation of the pest

annual spawner on GBR ++

Longevity Likely decades—unconfirmed +++

Efficient search ability
Prey detection ability even

when prey is scarce
Chemosensory capacity +++

Short handling time

Higher predator consumption rates equate
to greater number of attacks on prey.
Small populations of efficient natural

enemies may be more effective biocontrol
agents than larger populations of less
efficient species. Effective biocontrol

agents reduce or suppress a pest
population below a defined threshold.

Only eat 1–2 CoTS per week +

Survival at low host (prey) density
The type of biocontrol used will depend
on several factors for this to be effective

Will prey on other echinoderms
in the absence of CoTS

+++

9. Future Prospects

Presented here is the current state of knowledge regarding the giant triton, Charo-
nia tritonis, overfished throughout its Indo-Pacific habitat and now considered rare and
endangered. With much of the knowledge limited to their morphology and anatomical
biology, conservation efforts have focused on easy-to-implement local protection measures,
however, these have been shown to be inconsistent, with some governments imposing a
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strict no-take policy, while others none. In addition, population distributions, even within
reef systems such as the well-studied GBR, are limited to historical records and recent
opportunistic sightings, made even more difficult by their cryptic nature. Hence, there is no
way of knowing if C. tritonis populations are recovering, static or continuing to decline. Ex-
tending traditional biogeographical surveys using molecular-based techniques, supported
by a fully sequenced C. tritonis genome, will help establish their spatial extent and true
numbers, providing a baseline against which future populations can be monitored.

On the GBR, there is no evidence demonstrating the regulation of exploitation (through
a no take policy) or the designation of nature reserves (i.e., green ‘no-take’ zones) has
increased C. tritonis numbers. Stock enhancement, usually through the introduction of
advanced juveniles reared in ex situ breeding programs, can restore populations, and
improve the success of conservation outcomes. Yet, attempts to rear C. tritonis in captivity
have, to date, proven unsuccessful with larval growth and settlement key bottlenecks in the
process. Knowledge of their reproductive and early life stage (veliger) biology, particularly
the optimal larval diet and the factors that govern settlement, is crucial to overcome these.
With little data available regarding the juvenile life stage, discovering when they transition
to an echinoderm diet is also imperative (i.e., immediately upon settlement and coinciding
with settlement of CoTS, or longer?).

Coral cover on the GBR continues to decline under the pressure of recurring CoTS
outbreaks despite significant intervention. To avoid the tipping point beyond which
most or all hard corals may disappear, conservation biocontrol, based on the use of an
indigenous enemy, represents a promising complementary and sustainable solution to
protect coral reefs from CoTS over their full geographical range. With supporting field
and laboratory-based evidence suggesting a proclivity for CoTS (i.e., consumptive effect),
the C. tritonis remains a biocontrol agent of interest. There is also mounting experimental
evidence that the chemistry naturally exuded by C. tritonis modifies CoTS behaviour [16]
(i.e., non-consumptive effect), with the application of such chemistry being considered
within the CoTS IPM strategy. However, with predation levels low at 1 CoTS per week, and
with the diffusive spread and dilution of chemosensory cues in the aquatic environment
reliant on hydrodynamic parameters [366,367], neither trait in isolation is likely to impact
on CoTS populations. However, the combination of non-consumptive and consumptive
effects induced by the presence of C. tritonis is likely to have greater success in a proximity
deterrence effect on CoTS in situ. This deterrence could promote effective dispersal or
prevent aggregations of CoTS at opportune times (i.e., spawning events), thereby indirectly
suppressing CoTS populations, especially those under the outbreak threshold. Stock
densities of C. tritonis needed in such scenarios to elicit the desired affect remain to be
determined. These knowledge gaps should be addressed with some urgency.

Mapping of population distributions against those of CoTS, based on knowledge of
their predator-prey dynamics, will also establish evidence of the link (or not) with CoTS
outbreaks, and if proven so, will improve predictions of future outbreaks and provide
another tool (i.e., predator management) for the long-term sustainable control of CoTS
populations.
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CoTS Crown-of-Thorns starfish

dpf days post-fertilization

eDNA environmental Deoxyribonucleic acid

GBR Great Barrier Reef

IPM integrated pest management
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