
Citation: Wadkin, L.E.; Golightly, A.;

Branson, J.; Hoppit, A.; Parker, N.G.;

Baggaley, A.W. Quantifying Invasive

Pest Dynamics through Inference of a

Two-Node Epidemic Network Model.

Diversity 2023, 15, 496. https://

doi.org/10.3390/d15040496

Academic Editors: Tiiu Kull and

Jonne Kotta

Received: 26 January 2023

Revised: 6 March 2023

Accepted: 21 March 2023

Published: 28 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diversity

Article

Quantifying Invasive Pest Dynamics through Inference of a
Two-Node Epidemic Network Model
Laura E. Wadkin 1,* , Andrew Golightly 2 , Julia Branson 3 , Andrew Hoppit 4, Nick G. Parker 1

and Andrew W. Baggaley 1

1 School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
2 Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK
3 GeoData, Geography and Environmental Science, University of Southampton, Southampton SO17 1BJ, UK
4 Forestry Commission England, Nobel House, London SW1P 3JR, UK
* Correspondence: laura.wadkin@newcastle.ac.uk

Abstract: Invasive woodland pests have substantial ecological, economic, and social impacts, harming
biodiversity and ecosystem services. Mathematical modelling informed by Bayesian inference can
deepen our understanding of the fundamental behaviours of invasive pests and provide predictive
tools for forecasting future spread. A key invasive pest of concern in the UK is the oak processionary
moth (OPM). OPM was established in the UK in 2006; it is harmful to both oak trees and humans,
and its infestation area is continually expanding. Here, we use a computational inference scheme to
estimate the parameters for a two-node network epidemic model to describe the temporal dynamics
of OPM in two geographically neighbouring parks (Bushy Park and Richmond Park, London).
We show the applicability of such a network model to describing invasive pest dynamics and our
results suggest that the infestation within Richmond Park has largely driven the infestation within
Bushy Park.

Keywords: invasive pests; network epidemic models; compartmental epidemic models; oak processionary
moth; Bayesian inference; SIR model; linear noise approximation; Markov chain Monte Carlo

1. Introduction

The spread of invasive pests, including non-native insects within urban treescapes,
woodlands, and forests is having profound environmental, economic and social impacts [1–3].
In the UK, invasive species are estimated to have cost GBP 5–13 billion since 1976 through
damages and management costs, and impacts on ecosystem services [4]. Thus, the UK
government has identified enhancing biosecurity as a key priority, aiming to control existing
pests and build resilience against emerging concerns by harnessing computational modelling
methods [5].

Statistical and mathematical computational models can be used to explore the funda-
mental behaviours of pest infestations and facilitate quantitative predictions of the future
spread. Commonly employed models include dynamical system models consisting of differ-
ential equations that describe pest population numbers and movements across landscapes,
such as those for the grey squirrel in Wales [6]. Stochastic epidemic models [7] are more
commonly used to describe disease dynamics within a population, but are transferable to
the application of invasive pest spread [8]. In our previous work [9], we demonstrated that
such an approach was indeed transferable to exploring invasive pest dynamics, and we
build upon that framework here.

A key invasive pest of concern for treescapes within the UK and northern mainland
Europe is the oak processionary moth (OPM), Thaumetopoea processionea (Linnaeus,
1758) (Lepidoptera: Notodontidae). OPM is a univoltine Lepidoptera that feeds on the
Quercus species [10]. Female moths lay eggs in branches of the tree canopy in the summer,
with larvae (caterpillars) emerging in the spring of the next year [11,12]. The larvae go
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through six instars, grouping together to form aggregates and constructing communal silk
nests in the later instars [12]. The larvae pupate in the nests with adult moths emerging in
mid-July [12,13]. Native to southern Europe, OPM was first established in the UK in 2006
through an accidental import.

OPM is destructive to oak trees, causing defoliation, which can leave infested trees
vulnerable to other stressors [12]. Protecting the oak tree population is crucial for pro-
moting biodiversity, with thousands of species known to be supported by the oak [14,15].
Additionally, OPM larvae have poisonous hairs, which contain a urticating toxin that is
harmful to both human and animal health [16,17]. Despite great efforts to contain the UK
infestation to the originally affected area of south-east England [17], the extent of OPM
continues to spread, with an expansion rate estimated at 1.7 km/year for 2006–2014, with
an increase to 6 km/year from 2015 onward [13]. There is evidence to suggest that the
regions surrounding the current infestation area are particularly climatically suitable [18]
and, thus, the prediction and control of the OPM population at its outer extent are especially
crucial. Previous models for OPM have included species distribution models to predict
future infestation under climate change [18] and electric network theory models to predict
high-risk regions [19].

In our previous work [9], we considered the temporal population of OPM in two
London parks (Bushy Park and Richmond Park), applying a novel Bayesian inference
scheme to estimate the parameters for a compartmental epidemic model with a time
varying infestation rate. This showed that the infestation rate in both parks remained
relatively constant between 2013 and 2021, despite the control methods in place, resulting
in the observed continual expansion of the infestation area [13].

In this paper, we build upon the work in [9], challenging the assumption that the
infestations within the two parks are independent of each other, due to their neighbour-
ing geographical locations. Thus, here we consider a two-node compartmental epidemic
model, using analogous computational inference methods (making use of a linear Gaussian
approximation to the stochastic susceptible-infected-removed (SIR) model and a Markov
chain Monte Carlo scheme) to estimate the infestation parameters, including a quantifica-
tion of each park’s influence upon its neighbour. The data, model, and inference scheme
are detailed in Section 2, with the results presented in Section 3 and further discussion in
Section 4. Our findings demonstrate the applicability of a two-node compartmental model
to describe OPM spread and provide a framework applicable to other partially observed
time series for infestations.

2. Materials and Methods

In this section, we present the observational OPM data (Section 2.1), detail the two-
node SIR epidemic model (Section 2.2) and outline the statistical methods used to estimate
the model parameters (Sections 2.3 and 2.4).

2.1. The Data

We consider the OPM infestation within two London parks: Bushy Park and Richmond
Park. The data consist of the numbers and locations (eastings and northings) of removed
OPM nests between 2013 and 2021. The data are collected and processed by The Royal
Parks and shared with the Forestry Commission to inform the national OPM Control
Programme. The University of Southampton (GeoData) provides analyses and support,
and holds the data on behalf of the Forestry Commission.

A summary of the OPM nest presence (and immediate removal) in both parks is shown
in Figure 1a,b. We consider the cumulative time series of previously infested trees (those
recorded as having nests removed) as our observed data in the following sections, shown
in Figure 1c. This corresponds to the ‘Removed’ category prevalence in the compartmental
SIR model presented in the next section, as in [9]. We refer to this as a partially observed
dataset as we only have information about one of the categories in the compartmental
SIR model. The neighbouring geographical location of the two parks, shown in Figure
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1d, motivates our choice to consider a two-node epidemic network model, outlined in the
next section.

Figure 1. Satellite images with eastings and northings (obtained from EDINA Digimap Aerial
© Getmapping Plc [20]) of (a) Bushy Park and (b) Richmond Park with locations of nest removals
between 2013 and 2021. (c) The ‘Removed’ prevalence time series, R(t) ≡ Rt (the cumulative numbers
of tree locations where nest removal has taken place) is used as our observational data set. Bushy Park
is shown in blue with open diamonds and Richmond park is shown in orange with filled circles. (d) A
subsection of the Ordnance Survey map OS Open Data [21]) with eastings and northings showing
the location of the two parks.

2.2. The Two-Node Model

In [9], we applied a stochastic SIR epidemic model [22] to the spread of OPM in Bushy
Park and Richmond Park between 2013 and 2021. Here, we expand this model, noting that
the two parks are close in geographical location, as shown in Figure 1d and, thus, the OPM
dynamics within each park may not be independent of each other. We therefore consider a
similar stochastic SIR model but for two connected nodes (here representing each of the
two parks) as illustrated in Figure 2. Further mathematical details of the stochastic SIR
epidemic model can be found in [22,23], with details of its formulation as a discrete-valued
Markov jump process (MJP) in [24].

Within each node, the fixed population of the tree transition between the compartmen-
tal states: S, susceptible (not yet infested), I, infested (currently infested), and R removed
(no longer infested or contributing to the infestation spread). The transition between the
infested and removed state is governed by the removal rate parameter, γ. The transition
between the S and I compartments is governed not only by the standard infestation rate
parameter β (the rate at which contact of one infested tree with one susceptible tree will
result in infestation, referred to as the ‘effective contact rate’), but also an additional infesta-
tion ‘pressure’ from the neighbouring node, described by the parameters αij, where α12 is
the pressure applied by node 1 on node 2, and α21 the pressure from node 2 on node 1. A
similar model has been previously proposed to describe national surveillance counts from
the 2013 to 2015 West Africa Ebola outbreak [25].
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Figure 2. Illustration of the two-node epidemic network model. In each node, the tree population
transitions through the available states: Susceptible (S), infested (I), and removed (R). The transition
between I and R is governed by the removal rate parameter, γ, which (in this case) is chosen to
be identical within each node. For the transition between S and I, there is the standard infestation
rate parameter, β, plus an additional infestation pressure resulting from the other node, with α12

corresponding to the infestation pressure from node 1 on node 2, and α21 the infestation pressure
from node 2 on node 1. The resulting stochastic differential equation model for this scenario is given
in Equations (1)–(5).

We assume that the effective contact rate β and the removal rate γ are the same in
both parks as parameters inherent to the OPM population under similar conditions. The
effective contact rate β can be expressed as β = κτ/N, where κ is the number of contacts
(opportunities for transmission) and τ is the transmissibility of the disease (here, the pest).
Since τ is inherent to the system, the assumption of equal effective contact rates in each
node results in κ1/N1 = κ2/N2 and, thus, a number of contacts κ that is proportional to the
population size within each node.

The dynamics of all compartment states in the two-node model above are most
naturally described by a MJP, whereby state numbers are described via a continuous-time
Markov process with a discrete state space, reflecting the fact that states change abruptly
and discretely in time [7]. As noted in [26], this can be computationally prohibitive for
models in which typical population sizes are more than a few hundred. Therefore, we
eschew the MJP representation in favour of a tractable continuous approximation via a
stochastic differential equation (SDE). We describe the SDE below before considering a
further tractable approximation known in the stochastic kinetics literature as the linear
noise approximation (LNA). We refer the reader to [27] for further details on the SDE and
LNA approximation of an MJP.

The corresponding stochastic differential equation model considers the latent process
Xt = (S1,t, I1,t, S2,t, I2,t)

′, where Si,t and Ii,t denote the number of trees in each of the
compartments S and I in node i at time t ≥ 0. The complete SDE model can be described by

dXt = a(xt, θ)dt +
√

b(xt, θ)dWt, (1)

where xt = (s1,t, i1,t, s2,t, i2,t) is the state of the system at time t, θ = (β, γ, α12, α21)
′ is

the vector of parameter values and dWt = (W1,t, W2,t, W3,t, W4,t)
′ denotes uncorrelated

standard Brownian motion processes on each of the compartmental states. The SDE drift
function a(xt, θ) and diffusion coefficient b(xt, θ) are given by

a(xt, θ) =


−β(i1,t + α21i2,t)s1,t

β(i1,t + α21i2,t)s1,t − γi1,t
−β(i2,t + α12i1,t)s2,t

β(i2,t + α12i1,t)s2,t − γi2,t

, (2)

and

b(xt, θ) =

(
b11 02,2
02,2 b22

)
, (3)
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where

b11 =

(
β(I1,t + α21 I2,t)S1,t −β(I1,t + α21 I2,t)S1,t
−β(I1,t + α21 I2,t)S1,t β(I1,t + α21 I2,t)S1,t + γI1,t

)
, (4)

and

b22 =

(
β(I2,t + α12 I1,t)S2,t −β(I2,t + α12 I1,t)S2,t
−β(I2,t + α12 I1,t)S2,t β(I2,t + α12 I1,t)S2,t + γI2,t

)
, (5)

and 02,2 is the 2 × 2 zero matrix. Since the SDE specified by (1)–(5) cannot be solved
analytically, we replace the intractable analytic solution with a tractable Gaussian process
approximation: the LNA, described in the next section.

2.3. Linear Noise Approximation

The LNA provides a tractable approximation to the SDE given in (1)–(5). We used the
LNA in the same manner for a stochastic SIR model with a time-varying infestation rate,
also applied to OPM, in [9]. Formal details of the LNA can be found in [28–30]; below we
outline the derivation.

Consider a partition of Xt as

Xt = ηt + Zt, (6)

where {ηt, t ≥ 0} is a deterministic process satisfying the ordinary differential equa-
tion (ODE)

dηt

dt
= a(ηt, θ), η0 = x0, (7)

and {Zt, t ≥ 0} is a residual stochastic process. The residual process Zt satisfies

dZt = {a(xt, θ)− a(ηt, θ)} dt +
√

b(xt, θ) dWt,

which will typically be intractable. The assumption that ||Xt − ηt|| is “small” motivates a
Taylor series expansion of a(xt, θ) and b(xt, θ) about ηt, with retention of the first two terms
in the expansion of a and the first term in the expansion of b. This gives an approximate
residual process {Ẑt, t ≥ 0} satisfying

dẐt = Ht ẑt dt +
√

b(ηt, θ) dWt,

where Ht is the Jacobian matrix with (i,j)th element

(Ht)i,j =
∂ai(ηt, θ)

∂ηj,t
.

Therefore, for the SIR model in (1)–(5) we have

Ht =


−β(i1,t + α21i2,t) −βs1,t 0 −βα21s1,t
β(i1,t + a21i2,t) βs1,t − γ 0 βα21s1,t

0 −βa12s2,t −β(i2,t + a12i1,t) −βs2,t
0 βa12s2,t β(i2,t + a12i1,t)s2,t βs2,t − γ

.

Given an initial condition Ẑ0 ∼ N(ẑ0, V̂0), it can be shown that Ẑt is a Gaussian random
variable [31]. Consequently, the partition in (6) with Zt replaced by Ẑt, and the initial
conditions η0 = x0 and Ẑ0 = 0 give

Xt ∼ N(ηt, Vt), (8)
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where ηt satisfies (7) and Vt satisfies

dVt

dt
= VtH′t + b(ηt, θ) + HtVt, V0 = 0. (9)

Further details on the derivation of (9) are given in [9]. Hence, the linear noise approxima-
tion is characterised by the Gaussian distribution in (8), with mean and variance found by
solving the ODE system given by (7) and (9), which can be solved numerically.

2.4. Bayesian Inference

We consider the case in which not all components of the stochastic epidemic model are
observed and that the data points are subject to measurement error, as in [9]. Observations
(on a regular grid) yt, t = 0, 1, . . . n are assumed conditionally independent (given the latent
process Xt) with conditional probability distribution obtained via the observation equation,

Yt ∼ N
(

Pxt, σ2diag{Pxt}
)

, t = 0, 1, . . . , n (10)

where

P =

(
1 1 0 0
0 0 1 1

)
. (11)

This choice of P is due to the data consisting of observations on the removed states in
each node, R1,t and R2,t, which for known population sizes N1 and N2, is equivalent to
observing the sums S1,t + I1,t and S2,t + I2,t. Our choice of observation model is motivated
by a Gaussian approximation of two independent Poisson random variables with rates
given by the components of Pxt. Moreover, the assumption of a Gaussian observation
model admits a tractable observed data likelihood function, when combined with the LNA
(see Section 2.3 and [31,32]) as a model for the latent epidemic process Xt. Details on a
method for the efficient evaluation of this likelihood function can be found in [9].

Given data y = (y0, y1, . . . , yn) and upon ascribing a prior density π(θ) to the compo-
nents of θ = (β, γ, α12, α21, σ)′, Bayesian inference proceeds via the joint posterior for the
static parameters θ and unobserved dynamic process x = (x0, x1, . . . , xn). We have that

π(θ, x|y) ∝ π(θ)π(y|θ)π(x|y, θ), (12)

where π(y|θ) is the observed data likelihood and π(x|y, θ) is the conditional posterior
density of the latent dynamic process. We use a Markov chain Monte Carlo scheme for
generating (dependent) samples from (12) due to the intractable joint posterior. Briefly,
this comprises two steps: i) the generation of samples θ(1), . . . , θ(M) from the marginal
parameter posterior π(θ|y) ∝ π(θ)π(y|θ) and ii) the generation of samples x(1), . . . , x(M)

by drawing from the conditional posterior π(x|y, θ(i)), i = 1, . . . , M.
The parameters required as input for the inference scheme are given in Table 1. We

take estimates of the number of trees in each park and the infestation initial conditions as
in [9], with N1 = 5000 (Bushy) and N2 = 40, 000 (Richmond) and initial ODE conditions
x0 = (S1,0, I1,0, S2,0, I2,0) = (N1 − I1,0 − R1,0, I1,0, N2 − I2,0 − R2,0, I2,0).

The methodology described above overcomes the challenge of the data being partially
observed and handles a relatively short observed time series (in this case, nine data points).
This is transferable to other epidemic datasets. If the data considered is more limited, this
could result in larger uncertainties in the plausible ranges of the estimated parameters.
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Table 1. The input parameters used in the inference scheme for the two-node model detailed in
Sections 2.2–2.4.

Input Parameters

Total population N1 = 5000, N2 = 40,000

Initial infested I1,0 = 240, I2,0 = 1400

Initial model parameters θ0 = (β0, γ0, α120 , α210 , σ0) = (0.00001, 0.8, 0.3, 2.5, 1)

Prior distributions log θi ∼N(0, 12), i = 1, . . . , 4

Tuning parameter Σ =


0.009 0.003 −0.059 −0.009 0.002
0.003 0.006 0.011 0.001 0.001
−0.059 0.011 0.712 0.072 −0.006
−0.009 0.001 0.072 0.013 −0.002
0.002 0.001 −0.006 −0.002 0.052


Initial ODE mean x0 = η0 = (N1 − I1,0 − R1,0, I1,0, N2 − I2,0 − R2,0, I2,0)

Initial ODE variance V0 = 04,4

Observation matrix P =

1 1 0 0

0 0 1 1


3. Results

We take the data, detailed in Section 2.1 and pictured in Figure 1, for the cumulative
number of trees with removed OPM nests in Bushy Park and Richmond Park. We (arbitrar-
ily) denote Bushy Park as node 1, and Richmond Park as node 2, with the observed data
corresponding to the removal prevalence time series R1,t and R2,t in the two-node model
described in Section 2.2. Through the inference techniques outlined in Sections 2.3 and 2.4,
we infer the parameters for the two-node stochastic epidemic model: the infestation rate β,
and removal rate γ, common to both nodes, along with additional parameters represent-
ing the infestation ‘pressure’ resulting from the neighbouring node, α12 and α21, and an
observation error σ.

The results from the inference scheme are shown in Figure 3 with within-sample me-
dian posterior series for Si,t, Ii,t and Ri,t, and posterior densities of the inferred parameters.
The average parameter results are shown in full in Table 2. The median infestation rate
is β ≈ 1.8× 10−5, the median removal rate is γ ≈ 0.8, and the median observation error
(see (10)) is σ ≈ 1.3. The median posterior estimates of the parameters connecting the
two nodes are α12 ≈ 0.3 (Bushy to Richmond) and α21 ≈ 3 (Richmond to Bushy).

We can consider each of the infestation components (see (2)): the standard intra-
park component βIiSi, and the connecting inter-park component βαij IiSj. Probability
densities for both the intra- and inter-park infestation components using the median
posterior estimates of Si,t and Ii,t, and the full posterior distributions of β and αij, are
shown in Figure 4. Similarly, the expected number of new infestations from each of the
two components, averaged over 50 forward simulations with the median parameters
estimated through the inference scheme (Table 2), are shown in Figure 5. Both Figures
4 and 5 illustrate that in Bushy Park the inter-park dynamics (Richmond–Bushy) are
significantly greater than the intra-park (Bushy–Bushy), whereas in Richmond Park the
intra-park dynamics (Richmond–Richmond) are more significant than the inter-park (Bushy-
Richmond). This suggests that the infestation in Bushy Park has been largely driven by the
infestation in Richmond Park to a greater extent than vice versa.

Predictions of the spread of OPM are required to inform management strategies. We
can use the inferred model parameters to simulate the infestation forwards in time. The
simulated removal prevalence time series resulting from the stochastic two-node epidemic
model with the median inferred parameter estimates is shown in Figure 6 for the years
2013 to 2025. Here, we see the overall alignment with the observational data, with a
deviation between 2017 and 2020 in which the infestation numbers were lower than this
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model predicts, and the future forecasting if the infestation were to continue with these
characteristic parameters.

Figure 3. Inference results for the two-node network model applied to Bushy and Richmond Park.
The within-sample posteriors for (a) the susceptible tree time series for (i) Bushy Park, S1,t, and
(ii) Richmond Park, S2,t, (b) the infested tree time series, I1,t and I2,t, and (c) the removed tree time
series, R1,t and R2,t. The median of the within-sample posteriors is shown for Bushy Park with blue
diamonds and Richmond Park with orange circles. In all cases, the shaded error bars represent the
95% credible interval. In (c), the observed time series for R1,t and R2,t are shown as black dashed
lines. In (d) (i–v) the posterior parameter distributions are shown for β, γ, σ, α12 and α21, respectively.
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Table 2. The posterior means, standard deviations, medians, and 95% credible intervals for the
inferred model parameters.

Parameter Mean Standard Deviation Median 95% Credible Interval

β 1.74× 10−5 1.40× 10−6 1.75× 10−5 (1.44, 2.02)× 10−5

γ 0.78 0.056 0.77 (0.67, 0.90)

σ 1.32 0.289 1.28 (0.88, 1.99)

α12 0.38 0.268 0.32 (0.06, 1.05)

α21 3.12 0.312 3.08 (2.66, 3.83)

Figure 4. The estimated intra-park (βIiSi) and inter-park (βαij IiSj) infestation components (see
(2)) using the median posterior estimations for I and S in each year for (a,b) Bushy Park, and
(c,d) Richmond Park.

Figure 5. An example scenario for possible new infestations occurring in (a) Bushy and (b) Richmond
Park, averaged over 50 simulations of the stochastic two-node epidemic model with the median
parameters estimated through the inference scheme (shown in Table 2). In both panels, the solid lines
show the new infestations resulting from within the park (intra-park), with dashed lines showing
new infestations resulting from the neighbouring park (inter-park). Error bars show the 95% credible
intervals over the 50 simulations.

A possible contributing factor to the dynamics, not considered explicitly in this epi-
demic model, is the density of OPM nests within each park, i.e., the number of nests per
infested tree, shown in Figure 7. Richmond park has a slightly higher infestation density,
with a median of three nests per infested tree, compared to the median of two nests per tree
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in Bushy Park, and an upper quartile of six nests per tree, compared to the upper quartile of
four in Bushy Park. This increased nest density could contribute to the resulting infestation
pressure from the Richmond Park infestation to the Bushy Park infestation.

Figure 6. Forward simulations for the removal prevalence in (a) Bushy and (b) Richmond Park from
the stochastic two-node epidemic model with the median parameters estimated through the inference
scheme (shown in Table 2). In both panels, the solid lines show the mean removal prevalence with
error bars showing the 95% credible intervals over 50 simulations. Black dashed lines show the
observed data.

Figure 7. OPM nest density. (a) Probability density of the number of recorded removed nests per tree
in Bushy Park (blue, open diamonds) and Richmond Park (orange, filled circles). For visualisation
purposes, this shows nest numbers up to 20 per tree only. (b) Box plots of the number of logged nests
per tree on a logarithmic scale, showing all recorded data.

4. Discussion

It is crucial to deepen our understanding of the dynamics of invasive pests to develop
predictive modelling tools and maximise the impact of control strategies. Here, we show
the applicability of two-node compartmental epidemic models, using case study data of
the OPM infestations within the neighbouring Bushy Park and Richmond Park in London.

In our previous work exploring the UK OPM infestation [9], we considered the two
parks as independent contained areas and estimated the parameters for a compartmental
model with a time-varying infestation rate, showing the infestation rate had remained stable
over time. Here we challenge the assumption that the infestations within the two parks
are independent due to their geographical proximity (with the closest park boundaries
separated by approximately 2–3 km).

Instead, we assume that the infestation contact rate within each park, β, (assumed
to be a constant based on the results from [9]) and the removal rate, γ, are inherent
properties of the OPM species under similar conditions, resulting in identical β and γ in
both nodes (parks). Since β can be expressed as κτ/N, with κ the number of contacts and
τ a transmissibility parameter inherent to the species, we have κ1/N1 = κ2/N2 and, thus,
the number of contacts scales with the total population number. In the case of OPM, this
corresponds to an increasing number of ‘contacts’ between trees due to the underlying
movement of the OPM population, an assumption that would hold whilst the typical
movement distances of OPM are of a similar (or greater) length scale to the tree population



Diversity 2023, 15, 496 11 of 13

area, i.e., a greater number of trees (increased N) means a greater number of opportunities
for contacts (increased κ) providing the moths can travel over the whole area. Despite
the joint infestation parameters β and γ, the infestation dynamics can still differ in each
park due to different numbers of susceptible trees and the introduction of two additional
parameters connecting the infestations within the two nodes, α12 and α21.

Similar epidemic models have previously been used to describe the spread of in-
fectious disease within human populations, e.g., for Ebola in [25]. In these cases, the
parameters connecting the nodes represent the rates of the movement of individuals be-
tween nodes, e.g., the movement of infected people between geographical locations. In
the case of our OPM model, the individuals within each of the SIR compartments are
trees, which are spatially fixed and, thus, αij instead represents a proxy measure of the
movement of the underlying OPM population between the two nodes. The movement
patterns of OPM are not fully characterised, but can occur through three possible routes:
short-distance larvae movement, flight of adult moths, and accidental human-mediated
dispersal [13,33]. Considering the locations of the two parks considered here, the latter
two dispersal mechanisms are possibilities for facilitating moth movement between nodes.

We find that the connecting parameter representing the infestation pressure on the
trees in Bushy Park resulting from the infestation in Richmond park is much stronger than
vice versa. The infestation in Richmond Park is relatively unaffected by the infestation
in Bushy Park. One reason for the observed Richmond-led infestation dynamics could
be the higher underlying nest density within the park, resulting in a greater population
density of OPM per susceptible tree, a larger contact number, κ, and more opportunities
for longer-range movement between the two parks. The relationships between OPM nest
density, tree height, infestation percentages, and bacterial control treatment are explored
in [34].

We note that there are control measures taking place in many OPM-infested areas [35].
In Bushy and Richmond Parks, control measures include the yearly nest removal (leading
to the data used here) and limited spraying with a biological insecticide which has been
shown to reduce nest density [34]. Thus, all inferred parameters represent the infestation
dynamics under these conditions, rather than inherent parameters of uncontrolled pest
spread. Although not ideal for learning about the fundamental properties of the species,
this is necessary as emergent invasive pests require an immediate control response.

Future work could explore expanding the epidemic network to a greater number of
areas (nodes), forming more connections across the wider OPM-infested area of south-east
England. If a similar approach to network building was taken to that described in [19],
the results from the statistical compartmental epidemic model could be compared with
the electric network theory model [19]. However, expanding the network represents a
computational challenge, with increasing numbers of parameters to infer.

The results from this work can inform the development of future computational
models for the spread of OPM, and provide a statistical framework for applying to other
emerging pest concerns with similar partially-observed temporal data sets.

Author Contributions: Conceptualization, L.E.W., A.G., N.G.P. and A.W.B.; methodology, L.E.W.,
A.G., N.G.P. and A.W.B.; software, L.E.W. and A.G.; validation, L.E.W. and A.G.; formal analysis,
L.E.W. and A.G.; data curation, J.B. and A.H.; writing—original draft preparation, L.E.W.; writing—
review and editing, L.E.W., A.G., J.B., A.H., N.G.P. and A.W.B.; visualization, L.E.W.; funding
acquisition, L.E.W., A.G., N.G.P. and A.W.B. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the EPSRC New Horizons grant EP/V048511/1 (AB, AG,
NGP, and LW) and NERC Knowledge Exchange Fellows grant NE/X000478/1 (LW).

Data Availability Statement: All statistical modelling software with the Bushy and Richmond Park
time series are available on the Newcastle University data repository: 10.25405/data.ncl.22341289.
The full OPM data used in this paper were collected, processed, and shared by the Royal Parks charity.
These data can be provided from the Royal Parks upon reasonable request.



Diversity 2023, 15, 496 12 of 13

Acknowledgments: We thank Gillian Jonusas from the Royal Parks for sharing the OPM data for the
Bushy and Richmond parks.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

LNA linear noise approximation
MJP Markov jump process
ODE ordinary differential equation
OPM Oak processionary moth
SDE stochastic differential equation
SIR susceptible, infected, removed

References
1. Manchester, S.J.; Bullock, J.M. The impacts of non-native species on UK biodiversity and the effectiveness of control. J. Appl. Ecol.

2000, 37, 845–864. [CrossRef]
2. Kenis, M.; Auger-Rozenberg, M.; Roques, A.; Timms, L.; Péré, C.; Cock, M.J.W.; Settele, J.; Augustin, S.; Lopez-Vaamonde, C.

Ecological effects of invasive alien insects. Biol. Invasions 2009, 11, 21–45. [CrossRef]
3. Freer-Smith, P.H.; Webber, J.F. Tree pests and diseases: The threat to biodiversity and the delivery of ecosystem services. Biodivers.

Conserv. 2017, 26, 3167–3181. [CrossRef]
4. Cuthbert, R.N.; Bartlett, A.C.; Turbelin, A.J.; Haubrock, P.J.; Diagne, C.; Pattison, Z.; Courchamp, F.; Catford, J.A. Economic costs

of biological invasions in the United Kingdom. NeoBiota 2021, 67, 299–328. [CrossRef]
5. Department for Environment Food Rural Affairs. A Plant Biosecurity Strategy for Great Britain; Department for Environment Food

Rural Affairs: London, UK, 2021.
6. Eiswerth, M.E.; Johnson, W.S. Managing nonindigenous invasive species: Insights from dynamic analysis. Environ. Resour. Econ.

2002, 23, 319–342. [CrossRef]
7. Allen, L.J.S. A primer on stochastic epidemic models: Formulation, numerical simulation, and analysis. Infect. Dis. Model. 2017, 2,

128–142. [CrossRef]
8. Hulme, P.E.; Baker, R.; Freckleton, R.; Hails, R.S.; Hartley, M.; Harwood, J.; Marion, G.; Smith, G.C.; Williamson, M. The

Epidemiological Framework for Biological Invasions (EFBI): An interdisciplinary foundation for the assessment of biosecurity
threats. NeoBiota 2020, 62, 161–192. [CrossRef]

9. Wadkin, L.E.; Branson, J.; Hoppit, A.; Parker, N.G.; Golightly, A.; Baggaley, A.W. Inference for epidemic models with time-varying
infection rates: Tracking the dynamics of oak processionary moth in the UK. Ecol. Evol. 2022, 12, e8871. [CrossRef]

10. Wagenhoff, E.; Blum, R.; Engel, K.; Veit, H.; Delb, H. Temporal synchrony of Thaumetopoea processionea egg hatch and Quercus
robur budburst. J. Pest Sci. 2013, 86, 193–202. [CrossRef]

11. Groenen, F.; Meurisse, N. Historical distribution of the oak processionary moth Thaumetopoea processionea in Europe suggests
recolonization instead of expansion. Agric. For. Entomol. 2012, 14, 147–155. [CrossRef]

12. Wagenhoff, E.; Veit, H. Five years of continuous Thaumetopoea processionea monitoring: Tracing population dynamics in an
arable landscape of South-Western Germany. Gesunde Pflanz. 2011, 63, 51–61. [CrossRef]

13. Suprunenko, Y.F.; Castle, M.D.; Webb, C.R.; Branson, J.; Hoppit, A.; Gilligan, C.A. Estimating expansion of the range of oak
processionary moth (thaumetopoea processionea) in the UK from 2006 to 2019. Agric. For. Entomol. 2021, 24, 53–62. [CrossRef]

14. Mitchell, R.; Bellamy, P.; Ellis, C.; Hewison, R.; Hodgetts, N.; Iason, G.; Littlewood, N.; Newey, S.; Stockan, J.; Taylor, A. Collapsing
foundations: The ecology of the British oak, implications of its decline and mitigation options. Biol. Conserv. 2019, 233, 316–327.
[CrossRef]

15. Mitchell, R.; Bellamy, P.; Ellis, C.; Hewison, R.; Hodgetts, N.; Iason, G.; Littlewood, N.; Newey, S.; Stockan, J.; Taylor, A. OakEcol:
A database of Oak-associated biodiversity within the UK. Data Brief 2019, 25, 104120. [CrossRef] [PubMed]

16. Mindlin, M.J.; Le Polain de Waroux, O.; Case, S.; Walsh, B. The arrival of oak processionary moth, a novel cause of itchy dermatitis,
in the UK: Experience, lessons and recommendations. Public Health 2012, 126, 778–781. [CrossRef] [PubMed]

17. Tomlinson, I.; Potter, C.; Bayliss, H. Managing tree pests and diseases in urban settings: The case of Oak Processionary Moth in
London, 2006–2012. Urban For. Urban Green. 2015, 14, 286–292. [CrossRef]

18. Godefroid, M.; Meurisse, N.; Groenen, F.; Kerdelhué, C.; Rossi, J.P. Current and future distribution of the invasive oak
processionary moth. Biol. Invasions 2020, 22, 523–534. [CrossRef]

19. Cowley, D.J.; Johnson, O.; Pocock, M.J.O. Using electric network theory to model the spread of oak processionary moth,
Thaumetopoea processionea, in urban woodland patches. Landsc. Ecol. 2015, 30, 905–918. [CrossRef]

20. Edina Digimap. High Resolution (25 cm) Vertical Aerial Imagery [JPG Geospatial Data], Scale 1:500. Available online:
https://digimap.edina.ac.uk (accessed on 12 May 2022).

http://doi.org/10.1046/j.1365-2664.2000.00538.x
http://dx.doi.org/10.1007/s10530-008-9318-y
http://dx.doi.org/10.1007/s10531-015-1019-0
http://dx.doi.org/10.3897/neobiota.67.59743
http://dx.doi.org/10.1023/A:1021275607224
http://dx.doi.org/10.1016/j.idm.2017.03.001
http://dx.doi.org/10.3897/neobiota.62.52463
http://dx.doi.org/10.1002/ece3.8871
http://dx.doi.org/10.1007/s10340-012-0457-7
http://dx.doi.org/10.1111/j.1461-9563.2011.00552.x
http://dx.doi.org/10.1007/s10343-011-0244-z
http://dx.doi.org/10.1111/afe.12468
http://dx.doi.org/10.1016/j.biocon.2019.03.040
http://dx.doi.org/10.1016/j.dib.2019.104120
http://www.ncbi.nlm.nih.gov/pubmed/31304213
http://dx.doi.org/10.1016/j.puhe.2012.06.007
http://www.ncbi.nlm.nih.gov/pubmed/22902136
http://dx.doi.org/10.1016/j.ufug.2015.02.009
http://dx.doi.org/10.1007/s10530-019-02108-4
http://dx.doi.org/10.1007/s10980-015-0168-6
https://digimap.edina.ac.uk


Diversity 2023, 15, 496 13 of 13

21. Ordnance Survey. 1:250000 Scale Colour Raster™. 2021. Available online: https://osdatahub.os.uk/downloads/open (accessed
on 21 September 2022).

22. Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. Maths. Phys. 1927, 115, 700–721.
23. Andersson, H.K.; Britton, T. Stochastic Epidemic Models and Their Statistical Analysis; Lecture Notes in Statistics; Springer: New

York, NY, USA, 2000, pp 11–18.
24. Ho, L.S.T.; Xu, J.; Crawford, F.W.; Minin, V.N.; Suchard, M.A. Birth/birth-death processes and their computable transition

probabilities with biological applications. J. Math. Biol. 2018, 76, 911–944. [CrossRef]
25. Fintzi, J.; Wakefield, J.; Minin, V.N. A linear noise approximation for stochastic epidemic models fit to partially observed incidence

counts. Biometrics 2021, 78, 1530–1541. [CrossRef] [PubMed]
26. Golightly, A.; Wilkinson, D.J. Bayesian parameter inference for stochastic biochemical network models using particle Markov

chain Monte Carlo. Interface Focus 2011, 1, 807–820. [CrossRef] [PubMed]
27. Fuchs, C. Inference for Diffusion Processes: With Applications in Life Sciences; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2013.
28. Kurtz, T.G. The relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys. 1972, 57,

2976–2978. [CrossRef]
29. van Kampen, N.G. Stochastic Processes in Physics and Chemistry; North-Holland Personal Library; Elsevier: Amsterdam, The Netherlands, 2001.
30. Komorowski, M.; Finkenstadt, B.; Harper, C.; Rand, D. Bayesian inference of biochemical kinetic parameters using the linear

noise approximation. BMC Bioinform. 2009, 10, 343. [CrossRef]
31. Fearnhead, P.; Giagos, V.; Sherlock, C. Inference for reaction networks using the Linear Noise Approximation. Biometrics 2014, 70,

457–466. [CrossRef]
32. Golightly, A.; Henderson, D.A.; Sherlock, C. Delayed acceptance particle MCMC for exact inference in stochastic kinetic models.

Stat. Comput. 2015, 25, 1039–1055. [CrossRef]
33. Townsend, M. Oak processionary moth in the United Kingdom. Outlooks Pest Manag. 2013, 24, 32–38. [CrossRef]
34. Straw, N.A.; Forster, J. The effectiveness of ground-based applications of Bacillus thuringiensis var. kurstaki for controlling oak

processionary moth Thaumetopoea processionea (Lepidoptera: Thaumetopoeidae). Ann. Appl. Biol. 2022, 181, 48–57. [CrossRef]
35. Forestry Commision, Oak Processionary Moth (Thaumetopoea Processionea) Contingency Plan, 2021. Available online: https:

//planthealthportal.defra.gov.uk/assets/uploads/PPM-CPv2022.pdf (accessed on 28 October 2021).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://osdatahub.os.uk/downloads/open
http://dx.doi.org/10.1007/s00285-017-1160-3
http://dx.doi.org/10.1111/biom.13538
http://www.ncbi.nlm.nih.gov/pubmed/34374071
http://dx.doi.org/10.1098/rsfs.2011.0047
http://www.ncbi.nlm.nih.gov/pubmed/23226583
http://dx.doi.org/10.1063/1.1678692
http://dx.doi.org/10.1186/1471-2105-10-343
http://dx.doi.org/10.1111/biom.12152
http://dx.doi.org/10.1007/s11222-014-9469-x
http://dx.doi.org/10.1564/v24_feb_10
http://dx.doi.org/10.1111/aab.12751
https://planthealthportal.defra.gov.uk/assets/uploads/PPM-CPv2022.pdf
https://planthealthportal.defra.gov.uk/assets/uploads/PPM-CPv2022.pdf

	Introduction
	Materials and Methods
	The Data
	The Two-Node Model
	Linear Noise Approximation
	Bayesian Inference

	Results
	Discussion
	References

